
1997 Deneb International Simulation Conference, Troy, Michigan, September 29
to October 3, 1997.

1

Remote Graphic Programming and Monitoring Tools of the NIST RoboCrane®

Controller

Nicholas Dagalakis
Intelligent Systems Division

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Abstract

Simple programming and monitoring
tools had to be developed to control the NIST
RoboCrane® to accommodate crane
operators. The programmed move
instructions are generated by an off-line
graphic animator, and the data files are
transferred through the internet. The data are
of neutral text format and any robot controller
with the proper interpreter can understand
them. The controller operation can be
monitored from a remote location, and
control instructions can be issued remotely.
An animation feedback interface allows for
the graphic monitoring of the operation of the
robot, the display of position errors, and
sensor outputs. Various network tools are
being tested for the real time transfer of data
necessary for the last two interfaces. Again,
the interface data are of neutral format.

Biography

Dr. Nicholas G. Dagalakis received
his Diploma in Mechanical and Electrical
Engineering from the National Technical
University of Athens, Greece in 1969. He
received his M.S., Eng.D., and Ph.D., from
the Massachusetts Institute of Technology,
Mechanical Engineering Department in 1971,
1973 and 1975 respectively. Dr. Dagalakis
worked as a Research Assistant and later as a
Research Associate for the Mechanical
Engineering Department and Electrical
Engineering Department of the Massachusetts
Institute of Technology. Before joining the
Intelligent Systems Division (ISD) of the
National Institute of Standards and
Technology (NIST), Dr. Dagalakis worked
as an Assistant Professor at the University of
Maryland, College Park.

Introduction

The experimental prototype of a cable
driven RoboCrane® was developed at NIST
in the late 1980’s [1]. Because crane
operators are not expected to program crane
controllers to perform complex operations, it
became necessary to develop an off-line
graphic programming capability for the
RoboCrane® controller. Many applications
planned for the RoboCrane® involve
operations in hazardous environments,
creating a need for development of a remote
monitor and control capability. Fig. 1 shows
a block diagram of the controller and its
interfaces to the remote graphic programmer,
monitor-controller, and animation feedback.
This paper describes the techniques used to
model and animate the operation of the
RoboCrane® and to develop the remote
graphic programmer. It also describes
animation feedback capabilities mentioned
above using commercially available software
packages.

Remote
Graphic

Programmer
Remote

Monitor-Controller
Animation
Feedback

Network

RoboCrane
Controller

Fig. 1 Block diagram of controller interfaces

2

As work on these subjects progressed, it
became obvious that the capabilities that were
being developed had broader applications that
could benefit other advance projects like the
“Hexapod Machines Simulation and
Characterization” [2] and the “Machine Tool
Performance Models and Data Repository”
[3]. The availability of network
communications tools made the network a
preferred medium to transfer data among the
off-line programming computer, the remote
monitor-controller, and the RoboCrane®

controller. Experimental prototypes of
interfaces to the off-line graphic programmer
and the remote monitor-controller have been
developed and are being tested on various
demonstration problems. All these interfaces
are in a neutral text format and can be
understood by any controller with the proper
interpreter.

Graphic Animation Model

Fig. 2 shows a TGRIP1 model of the
RoboCrane® (the role of the transparent
platform will be explained later), where the
supporting legs of the reference platform
have been removed, to allow a better view of
the mechanism.

The RoboCrane® consists of a reference
frame platform and a moving platform [1].
The moving platform is suspended from the
reference platform by six cables, two at each
vertex of an equilateral triangle. The wires
form a Stewart mechanism [4], which
provides the moving platform with six
degrees of freedom as long as all six cables
are in tension. By controlling the lengths of
these cables, the operator can control the
position and orientation of the moving
platform. Various types of tools can be
mounted on the moving platform. These can
then be used for various applications like
heavy load maneuverability, construction,
clean up of nuclear and toxic waste, grinding,
and welding. The main advantages of this
robot, as compared to a serial manipulator of
the same payload, are higher payload to
weight ratio, larger workspace, and higher
stiffness. The main disadvantage is lower
dexterity.

When the animation model of the
RoboCrane® was being developed, no
commercial software package could support
its kinematics. Only serial types of robot
mechanisms could be supported by the
available software packages. The alternatives
were 1) develop our own animation software
or 2) make creative use of the existing ones,
which is what we chose to do.

The Deneb TGRIP1 software was used
for all the animations described in this paper.
This software allows the representation and
control of rigid bodies moving in three
dimensional space with an option called
“simple inverse kinematics.” This gave the
idea of breaking the mechanism into the
moving platform (tool mounting plate) and
several serial manipulators. The moving
platform is commanded to move according to
the requirements of the application, while the
serial manipulators are forced to follow
certain points (tag frames) of the moving
platform. In the case of the RoboCrane®,
these points are the suspension points of the
moving platform. An alternative is to use
datum lines to represent the serial
manipulators.

The technique worked well and has been
used for the animation of various
experimental robotic devices including the
Hexapod machine tool [5]. The technique is
relatively simple and allows the animation of
complex experimental robotic devices
(combinations of serial and parallel
mechanisms) with the minimum amount of
time and effort.

During motion simulation, the TGRIP1

animator generates position and orientation
information for the moving platform at each
time step. The information consists of the x,
y, and z Cartesian coordinates and orientation
of the coordinate frame during the CAD

1 Certain commercial products, are identified in this
paper to specify experimental procedures adequately.
Such identification is not intended to imply
recommendation or endorsement by the National
Institute of Standards and Technology, nor is it
intended to imply that the products identified are
necessarily the best available for the purpose.

3

creation of the moving platform with respect
to the workcell base frame. In our case, this
frame is located at the centroid of the
suspension plane of the moving platform.
This plane is defined by the suspension
points of the platform. If the position and
orientation of the reference platform
coordinate frame with respect to the base
frame is known, then the robot controller can
determine the commanded position and
orientation of the moving platform with
respect to its own base frame.

Animation Graphic Programming

This capability allows to program a
controller from the graphical animation of a
desired sequence of operations.

Besides the simulation graphic sequences
generated by an animator, the animator can
also be programmed to generate a basic time
history of robot motions and tool actions in
neutral text format. A robot controller may
then connect to this animation graphic
programmer and read the time sequence of
instructions. With the proper interpreter, the
controller should be able to understand these
instructions and command the robot to repeat

the motions and
actions simulated by
the animator.

This low level
interface would
allow simple
inexpensive
controllers to control
complex workcells,
since there will be
no need for the
controller to be
equipped with
trajectory planning
software.

The transfer of
information between
the controller and
the graphic
programmer could
take place by a direct

serial or parallel connection, or a network
connection. In the case of our RoboCrane®

controller, the network connection was
chosen. A network transfer of data offers the
advantage that a single animator graphic
programmer can program a large number of
controllers, which makes optimal use of
resources. A remote graphic programming
capability frees the crane operator or plant
floor operator from typing instructions of
long computer programs in a noisy
environment, which is prone to typing and
other mistakes.

The objective of our effort until now has
been to develop a neutral interface to transfer
data from the graphic programmer to the
controller. The programming of the
animator, itself, was left to the individual
programmer. Several commercial robot
graphic animation software packages are
available. Each one of them uses different
programming techniques and instructions.

In the case of long trajectories, the
graphic programming interface file, with low-
level time sequences of instructions, could
become large. In those cases, it might be
better to save high-level motion instructions,
which can be in a neutral text format that is
easily recognized by the controller. For this

4

high-level interface to work, the controller
must use the same names for the trajectory
points as those used by the animator.
Unfortunately, all available robot controllers
use different programming instructions. For
this interface to become possible, a standard
set of instructions must be adopted.

Several RoboCrane® applications were
programmed using the remote graphic
programming technique. One of the most
complex was an arc welding application.
Fig. 3 shows the RoboCrane® welding
workcell.

The moving platform carries two
necessary tools for this application, a grinder

and a welding wand. The grinder cleans the
surfaces before welding. It retracts when not
in use, and it is lowered below the bottom
surface of the platform when it is time to
grind. The controller can control the power
and position of the grinder, although manual
control is possible too. Similarly, the
welding wand can be retracted when not in
use and lowered when welding must take
place.

The graphic programmer generates two
files. The first file specifies how many
robots are active in the workcell and how
many tools they carry. The second file
contains the necessary control data to carry
out the welding operation. Fig. 4 shows a
portion of that file.

The first column represents time. The
next three columns provide the absolute
position of the moving platform (mounting
tool plate) centroid with respect to the work
cell base frame. The next three columns
provide the angular rotations of the platform
axes with respect to the base frame. And the
last four columns represent binary
information. The first bit specifies whether

the tools are under manual or automatic
control. The second indicates whether the
welding wand should be lowered or
retracted. The third controls the welder
power. The last bit controls the position and
power of the grinder. At this particular
segment of the operation, the data indicates
that the controller must have control over the
tools, and the grinder must be at its lower
position grinding, as Fig. 3 shows. As soon

5

as a tool is activated, its color turns red in the
animation scene and remains red until it is
deactivated. Programs of sequential
operations can be accommodated by
appending the graphic programming data to
the data file of the previous program. A pop-
up window allows the operator to select, to
save or not to save, append or abort the file.

Because the parts used for welding are of
construction quality, there is significant
variation in their dimensions. No seam
tracking sensor has been installed yet, so this
necessitates the use of manual teach control to
supplement the off-line programming and
align the graphic model of the part to that of
the RoboCrane® workspace. Under manual
control, the moving platform is moved so that
the welding wand touches a few key points
of the parts. The corresponding graphic
model points (tags) are then moved to assume
the same coordinates before graphic
programming commences.

Fig. 5 shows a flow chart of the
controller interface. The connection to the
graphic programmer is activated by a button
on the front panel of the controller (see Fig.
6). When a connection is established, the
button turns red and remains red until the
complete transfer of the data.

First, the file with the control data must
be read. The control data specify the number
of active robotic devices and the method used
to specify the translation and rotation of their
tool plate for example a sequence of roll,
pitch, yaw rotations. The number of tools

each one carries
must also be
specified at this
point. This
information defines
the type of command
data (format) that the
graphic programmer
generated.

The controller
interface remembers
the number of
commands it
received from the

graphic programmer. Every time the
controller interface is called, it discards the
old data and works with only the new data.
The new data are read and their format is
thoroughly checked. If any discrepancy is
found, the operation is aborted. The
frequency of occurrence depends on the
communications hardware and the network
transfer protocol used. The User Datagram
Protocol (UDP) should only be used when
the underlying network is inherently reliable.
The UDP is a network communications
protocol that does not provide date packet
sequencing and provides an optional check
sum.

Once the data have passed all these
checks, they are ready to be used. One line
of data is read at a time. The moving
platform move commands are separated from
the binary tool control data. The move
commands are checked for limit violations
and then sent to the controller. The tool
commands are sent to the binary interface and
Light Emitting Diode (LED) indicators on the
control panel (see Fig. 6).

 Time X Y Z Φz Φy Φx b1b2b3b4

50.150 0.000 27.756 54.052 0.000 0.000 180.000 1 0 0 1
50.320 0.000 28.011 54.051 0.000 0.000 180.000 1 0 0 1
50.490 0.000 28.266 54.050 0.000 0.000 180.000 1 0 0 1
50.660 0.000 28.521 54.048 0.000 0.000 180.000 1 0 0 1
50.830 0.000 28.776 54.047 0.000 0.000 180.000 1 0 0 1
51.000 0.000 29.031 54.046 0.000 0.000 180.000 1 0 0 1
51.170 0.000 29.286 54.045 0.000 0.000 180.000 1 0 0 1
51.340 0.000 29.541 54.043 0.000 0.000 180.000 1 0 0 1
51.510 0.000 29.796 54.042 0.000 0.000 180.000 1 0 0 1

Fig. 4 Sample of control data

6

Connect to
graphic programmer

Read control file
Establish data format

Identify new commands

Read new data
Check format

Read one command
line at a time

Check for limit violations

Send move command to controller
and tool commands to binary interface

Error ?
Yes

No

Abort

Error ?
Yes

No

Abort

Error ?
Yes

No

Abort

Fig. 5 Graphic programming controller interface

Animation Feedback

Animation feedback is an animation
graphics capability with two solid models of
anything that moves in a workcell. One
model, “ghost”, is transparent; the other,
“true model”, is not. The animation feedback
moves the “ghost” model based on its
commanded (desired) position and
orientation, while the “true model” is moved
based on its measured (true) position and
orientation. Time delays in the execution of
the move commands and calibration errors
cause a difference in the position and
orientation of the two models.

Fig. 2 shows the ghost transparent figure
of the RoboCrane® moving platform and the
true model. In this case, the ghost delivered
an “I” beam and it is moving away while the
true model has not completed the task yet.
Fig. 7 shows a similar case involving a
machine tool. The spindle of this machine
tool is commanded to follow the path tracked
by the ghost. In reality, the true model
follows a different path which results in
machining errors.

There are two different applications of
this capability. One is the simulation of
faulty operation of a device and the animation
of the results this has on the operation.
Another is the real-time animation display of
the device operation where the true model is
driven by the measured position and
orientation of the device. We have
experimented with a network socket interface
between the controller of the RoboCrane® and
its TGRIP1 graphic model to transfer
animation feedback position and orientation
information.

The animation feedback interface is useful
for cases where the robot operator has no
direct line of sight view of the workcell and
video cameras are not available or too slow.
The operator can view the differences
between the desired and actual position and
orientation of all moving parts, and pan, tilt,
rotate, or zoom to obtain a better view of
these differences. The differences (errors)
can be multiplied with a scale factor in order
to exaggerate the visualization effect. This
way, a small defect can be noticed and
corrected before a catastrophic failure occurs.
In the case of a simulated faulty operation, a
better insight into the operation of the device
can be obtained.

Two separate processes generate the twin
images of the animation feedback, ghost and
true model. These processes communicate
with each other through socket ports. When
one process generates a command, for
example, “move the true model to a certain
location,” the other process is notified to
execute the corresponding command for the
twin device model. In this case, the ghost is
commanded to move to the corresponding
desired location. No further action is allowed

7

until both devices have completed the
command execution.

The display of error vectors is an
extension of the animation feedback twin
images idea. These vectors are attached to
specific parts of devices and can display
position errors or orientation errors. They
are drawn in such a way that they follow the
movements of the part to which they are
assigned. The vectors’ lengths are scaled
representations of the magnitude of the errors
they represent. Their orientation can be used
to display the directional property of the
error. Their color can be used to represent
another property of the error.

Fig. 7 is an example of the use of this
technique for the display of machining
position errors. The straight lines,
resembling whiskers, connect corresponding
points between the desired and the true
(achieved) locations of the cutting path. As
the ghost and the true models of the spindle
are moving, the error vectors are drawn as
straight lines, which connect the centers of
the two cutting tools and remain in that

position even after the tools have moved
away. The color of each line is green if the

tool cuts less material than specified, and red
if it cuts too much material. Since machining
errors are very small and difficult to see, they
must be multiplied with a large scale factor to
make them more visible. In the case of Fig.
7, the scale factor selected by the operator
was 10,000.

Another interesting application of these
animation vectors is the display of sensor
outputs. For example, these could be the
outputs of temperature, or accelerometer
sensors, mounted on the spindle and/or
actuators of a machine tool or end effector
and/or links of a robot. Since these attached
vectors follow the moving parts, they can
provide a very vivid view of the condition of
the device.

Drawing error vectors, attached to
graphic models of three degrees of freedom
(3-D) animations, is not trivial. Most
commercially available software packages do
not provide such a capability. To generate

8

these vectors in TGRIP1, fictitious parts had
to be imported into the workcell. There were
as many parts as the desired colors of the
error vectors. Before the drawing operation,
the part of the desired color would be
activated (opened). The two ends of the
vector are marked by coordinate frames
(tags) which are attached to the desired part.

Fig. 8 shows the vector positions of the
ghost and true models cutting tools with
respect to the base frame. D represents the
desired position of the tool tip, given by V d ,
and A the achieved or true position given by
 V a. S is the scaled error vector position given
by V s. The error vector is calculated as:

 V e = V a - V d (1)

If SF is the desired scale factor then

 V s = SF * V e + V d (2)

The true model of the tool must be translated
by the offset vector AS .

One way to determine whether the tool is
excessively penetrating into the part is to
transform the homogeneous coordinates point
D vector V d from base frame coordinates to a
coordinate system attached to A, as shown in
Fig. 8. If T BA is the homogeneous
transformation from the base frame to a frame
attached to A, then

 V da = T BA V d (3)

A positive value of the coordinate of V da
along a certain cutting direction indicates that
the tool cuts less material than it is supposed
to cut. A negative value indicates the
opposite. The operator specifies, at the
beginning of the simulation, the direction
along which material is being removed. In
the case of Fig. 7, it is an end cutting
operation, and the Z axis coordinate of V da
determines the color of the error vector.

9

Conclusions

Two capabilities of the RoboCrane®

controller have been described. The remote
graphic programmer can reduce the cost of
programming and remove it from the error
prone plant floor environment. The network
interface allows for the optimum use of an
expensive resource, and the animation
permits inspection prior to testing. The
animation feedback simplifies the study of
faulty behavior of robotic and machine tool
devices. Its use as a real time monitoring tool
could reveal the presence of defects and
prevent catastrophic failures. The vector
visualization associated with animation
feedback could be very useful for the display
of errors and sensor output signals.

Acknowledgments

The author would like to thank Joe Falco
of NIST/ISD for preparing portions of some
of the Computer Aided Design (CAD) models

in figures used in this paper,
laying out the machining paths of
the Hexapod, and help with the
Graphic Simulation Language
(GSL) programming questions. I
would also like to thank the late
Nicholas Tarnoff who coined the
term “ghost” for the transparent
animation feedback figure. May
God grant him peace. Special
thanks go to Deborah Gilbert,
Bruce Bradberry, and Carlos
Perozo of Deneb Robotics, Inc.,
for their help to solve some of the
problems associated with the use
of TGRIP1 to do the work
described in the paper.

Partial support for this work was
provided by the National
Advanced Manufacturing Testbed
(NAMT). This is a testbed to
demonstrate how machines,
software, and people can
efficiently and effectively be
networked together to improve
productivity and foster innovation
at all levels of a manufacturing

enterprise.

References

1. “The NIST ROBOCRANE®,” J. Albus,
R. Bostelman, N. Dagalakis; Journal of
Robotic Systems, 10(5), 709-724, 1993.

2. “Characterization Remote Access and
Simulation of Hexapod Machines,” Toward
21st Century Information Based
Manufacturing, NIST Special Publication
913, April 1997.

3. “Machine Tool Performance Models and
Machine Data Repository,” Toward 21st

Century Information Based Manufacturing,
NIST Special Publication 913, April 1997.

4. “A Platform with Six Degrees of
Freedom,” D. Stewart, Proc. of the Inst. of
Mech. Eng., Vol. 180, Part I, No. 15, pp.
371-386, 1965-11966.

Z
Y

X
B

z
x

y

z
x

y

DA

S

Vd

Va
Vs

Ve

Fig. 8 Vector representation of errors

10

 5. “Virtual Manufacturing Tools for
Collaborative Exploration of Hexapod
Machine Capabilities and Applications,” J.

Falco, Deneb International Simulation
Conference, Sep. 1997.

