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ABSTRACT

A comprehensive theory of cerebellar function is presented, which ties together the
known anatomy and physiology of the cerebellum into a pattern -recognition data
processing system. The cerebellum is postulated to be functionally and structurally
equivalent to a modification of the classical Perceptron pattern -classification device.
I t i s suggested that the mossy fiber -+ granule cell -+ Golgi cell input network performs
an expansion recoding that enhances the pattern -discrimination capacity and learning
speed of the cerebellar Purkinje response cells.

Parallel fiber synapses of the dendritic spines of Purkinje cells, basket cells, and
stellate cells are all postulated to be specifically variable in response to climbing fiber
activity. I t is argued that this variability i s the mechanism of pattern storage. I t i s
demonstrated that, in order for the learning process to be stable, pattern storage must
be accomplished principally by weakening synaptic weights rather than by strengthening
them.

1. INTRODUCTION

A great body o f facts has been known for many years concerning the
general organization and structure of the cerebellum. The regularity and
relative simplicity o f the cerebellar cortex have fascinated anatomists since
the earliest days o f systematic neuronanatomical observations. In just
the past 7 or 8 years, however, the electron microscope and refined micro-
neurophysiological techniques have revealed critical structural details
that make possible comprehensive theories o f cerebellar function. A great
deal of the recent physiological data about the cerebellum come from an
elegant series o f experiments by Eccles and his coworkers. These data
have been compiled, along with the pertinent anatomical data, in book
form by Eccles et al. [5]. This book also sets forth one of the f i r s t reasonably
detailed theories on the function o f the cerebellum. Another theory,
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26 JAMES S. ALBUS

published in 1969 by Marr [ll],in many ways extends and modifies the
theory o f Eccles et al.

The theory presented here was developed independently of the Marr
theory but agrees with it at many points, at least in the early sections.
This article, developed from a study of Perceptrons [15] and memory
model cells 111, applies these results to the structure o f the cerebellum as
summarized by Eccles et al. [5]. The theory presented here extends the
Marr theory and proposes several modifications based on principles o f
information theory. These extensions and modifications relate mainly to
the role o f inhibitory interneurons in the learning process, and to the
detailed mechanism by which patterns are stored in the cerebellum.

11. DATA

To credit each piece o f information presented in this section to i t s
original source would be very tedious. Everything in this section is taken
directly either from Eccles et al. [5] or Fox et al. [7]. Therefore a single
reference i s now made to these sources and to the extensive bibliographies
that appear in them.

A. Mossy Fibers

Mossy fibers constitute one o f the two input fiber systems to the cere-
bellum. Input information conveyed to the cerebellum via mossy fibers i s
from many different areas. Some mossy fibers carry information from the
vestibular system or the reticular formation, or from both. Others carry
information that comes from the cerebral cortex via the pons. The mossy
fiber system that has been most closely studied relays information from
the various receptor organs in muscles, joints, and skin. Mossy fibers that
arrive via the dorsal spinal cerebellar tract are specific as regards modality
o f the muscle receptor organ, from either muscle spindles or tendon organs,
and have a restricted receptor field, usually from one muscle or a group
of synergic muscles.

Mossy fibers from the ventral spinal cerebellar tract are almost ex-
clusively restricted to Golgi tendon organ information but are more
generalized as regards specific muscles than those from the dorsal spinal
cerebellar tract. The ventral tract fibers seem to signal stages o f muscle
contraction and interaction between contraction and resistance to move-
ment o f a whole limb. Other mossy fibers carry information from skin
pressure receptors and joint receptors. There are continuous spontaneous
discharges on most mossy fibers, at rates between 10 and 30 per second,
even when the muscles are completely relaxed.

Mossy fibers enter the cerebellum and arborize diffusely throughout
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A THEORY OF CEREBELLAR FUNCTION 27

the granular layer o f the cortex. A single mossy fiber may send branches
into two or more folia. These branches travel toward the top o f the folia,
giving off further branches into the granular layer of the sides o f the folia,
finally terminating in an arborization at the top of the folia. Each branch
of a mossy fiber terminates in a candelabrum -shaped arborization con-
taining synaptic sites called mossy rosettes. There i s minimum distance
of 80-100 p between rosettes from a single mossy fiber. I t i s estimated that
each branch of a mossy fiber entering the granular layer o f the cerebellum
produces from 20 to 50 or more rosettes. Thus a single mossy fiber may
produce several hundred rosettes considering all i t s branches. The mossy
rosettes are the site o f excitatory synaptic contact with dendrites o f the
granule cells. The mossy fibers also send collaterals into the intracere -
bellar nuclei, where they make excitatory synapticcontact withnuclear cells.

B. Granule Cells

The granule cells are the most numerous cells in the brain. It i s esti -
mated that in humans there are 3 x loio granule cells in the cerebellum
alone. Granule cells possess from one to seven dendrites, the average
being four. These dendrites are from 10 to 30 p long and terminate with
a characteristic claw-shaped ramification in the mossy rosettes. In view
of the spacing between rosettes on a mossy fiber, it i s highly unlikely
that a granule cell will contact two rosettes from the same mossy fiber.
Thus an average granule cell i s excited by about four different mossy
fibers. Since approximately 20 granule cell dendrites contact each rosette,
this means that there are about five times as many granule cells as mossy
rosettes, and at least 100-250 times as many granule cells as mossy fibers.
Since a mossy fiber enters several folia, there may even be four or five
times this many granule cells per mossy fiber.

Each granule cell gives off an axon, which rises toward the surface of
the cortex. When this axon reaches the molecular layer, it makes a T-
shaped branch and runs longitudinally along the length o f the folia for
about 1.5 mm in each direction. These fibers are densely packed and are
only about 0.2-0.3 p in diameter. The parallel fibers make excitatory
synaptic contact with Purkinje cells, basket cells, stellate cells, and Golgi
cells.

C. Golgi Cells

H

Golgi cells have a wide dendritic spread, which is approximately
cylindrical in shape and about 600 pin diameter (see Fig. 1). This dendritic
tree reaches up into the molecular layer, where it i s excited by the parallel
fibers, and down into the granular layer, where it i s excited by the mossy

Mathernalical Biosciences 10 (1971), 25-61



28 JAMES S. ALBUS

fibers. The Golgi axon branches extensively and inhibits about 100,000
granule cells located immediately beneath i t s dendritic tree. Every granule
cell i s inhibited by at least one Golgi cell. The Golgi axons terminate on
the mossy rosettes, inhibiting granule cells at this point. Fox et al. [7] state
that the axon arborizations o f neighboring Golgi cells overlap extensively,
so that two or more Golgi cells frequently inhibit a single granule cell.
Note the overlapping fields shown in Fig. 3. This overlapping i s a point o f
disagreement between Eccles et al. [5] and Fox et al. [7]. It appears,
however, that Golgi cells must overlap, considering their size and that
there are approximately 10% as many Golgi cells as Purkinje cells.

FIG. I. A typical Golgi cell.I t s arborizations extend throughout an approximately
cylindrical volume 600 p in diameter.

The size o f the dendritic spread of the Golgi cell as shown in Figs. 1
and 3 i s a point of some uncertainty. Eccles et al. [5, page 205 and Fig. 1161
state that the spread o f the Golgi dendritic tree is about three times that
of a Purkinje cell (i.e., 600 -750~).However, drawings by Cajal [2] and
Jakob [lo], and statements and drawings elsewhere in Eccles et al. [5,
page 60 and Fig. I]seem to indicate the dendritic spread for Golgi cells

Mathematical Biosciences 10 (1971), 25-61



A THEORY OF CEREBELLAR FUNCTION 29

to be only slightly larger than that of Purkinje cells (i.e., 25G300p).
However, even with a dendritic spread o f only 300 p, the Golgi dendritic
fields would still have significant overlap, as can be shown by drawing
300 ,u diameter circles around the Golgi cell bodies in Fig. 3.

D. Purkinje Cells

The Purkinje cell has a large and very dense dendritic tree. The dendritic
tree o f the Purkinje cell i s shaped like a flat fan and measures on the average
about 250 p across, about 250 p high, and only about 6 p thick, as shown
inFig. 2. The flat face o f this fan i s positioned perpendicular to the parallel
fibres that course through the branches of the tree. It i s estimated that
around 200,000 parallel fibres pierce the dendritic tree o f each Purkinje

FIG. 2. A typical Purkinje cell. I t s dendritic tree i s restricted to a volume approximately
250 X 250 X 6p.

cell, and that inpassing virtually every parallel fiber makes a single synaptic
contact with the dendrites of the Purkinje cell. At the site o f a parallel
fiber Purkinje dendritic synapse, the parallel fiber enlarges to about 1p
in diameter and i s filled with synaptic vesicles. A spine grows out o f the
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Purkinje dendrite and i s enclosed by an invagination of the enlarged part
of the parallel fiber.

A unique characteristic of the Purkinje cell i s that there i s virtually no
intermingling of i t s dendritic tree with that of other cells. The Purkinje
cell bodies are beet shaped and about 35 p in diameter. They are scattered
in a single layer over the cortex at intervals o f about 50p along the
direction of the parallel fibers, and about 50-1OOp in the transverse
direction. Thus the fan-shaped dendritic trees overlap in the transverse
direction but are offset in the longitudinal direction sufficiently so as to
not intermingle. Figure 3 shows a top view looking down on the packed
Purkinje dendritic trees. The trees are about 6 p thick and are separated
by about 2-4p. Thus a parallel fiber encounters a different Purkinje

FIG. 3. View of cerebellar cortex looking down on top of Purkinje dendritic trees.
Purkinje cells are shown here spaced approximately every 50 p in the longitudinal
direction and every 60 p in the transverse direction. They are staggered so that the
dendritic trees do not intermingle. Four Golgi cells are shown with the outline of their
area of arborization traced. There i s one Golgi ccll to every nine Purkinje cells. Note
the extensive overlapping of Golgi arborization. Each point on the cortex is subject to
influence by about nine different Golgi cells.
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dendritic tree every 8-10 p. Since a parallel fiber synapses with virtually
every Purkinje dendritic tree it passes, a 3-mm parallel fiber contacts
about 300 Purkinje cells.

Purkinje cell axons constitute the only output from the cerebellar
cortex, These axons make inhibitory synapses with the cells of the cere-
bellar nuclei and of the Deiters nucleus. In addition, Purkinje axons send
recurrent collaterals to other Purkinje cells, basket cells, stellate cells,
and Golgi cells.

E. Basket Cells

The basket cells also have flat fan-shaped dendritic trees, which extend
upward in the 2-4p spaces between Purkinje dendritic layers. Basket
dendritic trees are much less dense than those of Purkinje cells, but cover
roughly the same area. Basket dendrites also receive excitatory synaptic
contacts from parallel fibers via dendritic spines. Basket cel l dendritic
spines are much sparser, more irregularly spaced, longer, and thinner than
Purkinje spines. They are very often hook shaped. Basket cell bodies,
about 20p in diameter, are located in the lower third o f the molecular
layer. Basket cells are 15 %-20 more numerous than Purkinje cells.

Basket cells send out axons in the transverse direction, perpendicular to
the parallel fiber pathways. These axons branch and send descending
collaterals, which makes strong inhibitory synapses around the preaxon
portion of the Purkinje cells. They also send ascending collaterals into the
Purkinje cell dendritic trees, where they form further inhibitory synapses.
Each basket cell inhibits about 50 Purkinje cells over an elliptical area
about 1000 p x 300 p. The basket cells do not inhibit the Purkinje cell
immediately adjacent, but begin their inhibitory activity one or two cells
away, and inhibit Purkinje cells out to about 1 mm away in the transverse
direction. Thus any parallel fibcr that excites a Purkinje cell i s not likely
to also inhibit the same Purkinje cell via a basket cell.

F. Stellate Cells

Stellate cells have dendritic arborization very similar to that o f basket
cells, although somewhat smaller. On the basis of axon distribution,
there are two types o f stellate cells. Stellate “a” cells send axons into
Purkinje dcndritic trees immediately adjacent, whereas stellate “b” cells
send their axons transversely, making inhibitory contact with Purkinje
dendrites in an area similar in size, shape, and relative position to that o f
basket cells. Functionally, the main distinction between basket cells and
stellate “b” cells seem to be that stellale “b” cells are located higher in the
molecular layer and send few, if any, axon collaterals to the Purkinje
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preaxon, or “basket” region. However, there are many intermediate forms
and the cell types seem to change progressively from basket cells in the
upper granular layer to stellate “b” cells in the mid and upper molecular
layer. Thus in this article the basket cells and stellate “b” cells will be
assumed to perform roughly the same functions, which include receiving
excitatory inputs from parallel fibers and transmitting inhibitory signals
to Purkinje cells.

G. Climbing Fibers

A second type of input fibers, the climbing fibers, also enters the cere-
bellum. These fibers are distinguished by the fact that each Purkinje cell
receives a single climbing fiber in a 1: 1 fashion. They are called climbing
fibers because they contact the Purkinje cell at the base o f i t s dendritic
tree and climb up the trunk of the tree, making repeated strong excitatory
synaptic contacts. A single spike on a climbing fiber can evoke a complex
burst o f Purkinje activity. The exact nature o f this activity i s not entirely
clear. Observations by Thach [17] seem to indicate that this complex
burst o f activity consists of a single Purkinje axon spike followed by
several milliseconds of spike-like activity propagating throughout the
Purkinje dendritic tree. This dendritic activity i s accompanied by intense
cell depolarization and a pause in spontaneous Purkinje axon spike
activity for 15-30 msec. This depolarization and pause was termed the
inactivation response by Granit and Phillips [SI.

The climbing fibers are usually thought to originate primarily in the
inferior olivary nucleus and make a precise point-to-point mapping from
the olivary nucleus to the cerebellar cortex. There is, however, some
indication from cell counts done in the olivary nucleus [6], that either each
climbing fiber branches about 15 times before reaching the cerebellum,
or the majority o f climbing fibers come from other sources outside the
olivary nucleus.

Information carried by climbing fibers comes from a great variety of
areas. The inferior olive receives afferents from proprioceptive end organs
as well as all lobes o f the cerebral cortex. The inferior olive also receives
a strong projection from the red nucleus and the periaqueductal gray via
the central tegmental tract.

The response of climbing fibers to peripheral stimulation i s quite
distinct from thatof mossy fibers. A climbing fiber will typically respond
to pinching the skin and deeper tissue anywhere within a receptive field,
which may encompass an entire limb [17]. In monkeys performing a motor
task it has been observed that climbing fiber spikes are correlated with
quick movements made in response to external stimuli, but not with self-
paced movements, such as rapidly alternating wrist motions [IS,191. This
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evidence would seem to indicate that information carried on climbing
fibers i s the product of a great deal o f integration through higher centers.

In addition to the precise one-for-one climbing fiber contact with
Purkinje cells, climbing fibers also put out three sets o f collaterals; that is,
(1) a climbing fiber sends collaterals to synapse on basket cells and stellate
cells in the immediate vicinity o f the Purkinje cell that i t contacts; (2) a
climbing fiber sends collaterals to one or more Golgi cells located within
an elliptical region about 1000 x 300p centered on the Purkinje cell that
it contacts; (3) a climbing fiber sends collaterals to nuclear cells in the
cerebellar nuclei and in the Dei ters nucleus.

H. Nuclear Cells

The nerve cells o f the cerebellar nuclei and Deiters nucleus are of at
least two types. One type i s large multipolar neurons, with relatively
simple and irregular dendritic arborization. The axons from cells of the
cerebellar nuclei go to the nucleus ventralis lateralis of the thalamus, to
the red nucleus, to the pontomedullary reticular formation, and to the
vestibular nuclei. Cells from the Deiters nucleus join the vestibulospinal
tract. Thus some of these efferents send information toward the sensori -
motor cortex, others toward the spinal motor neurons. The second type
o f nuclear neuron i s smaller, with short axons, possibly a Golgi type I1cell.

The cerebellar nuclei and Deiters nucleus cells receive excitatory inputs
from climbing fiber collaterals and mossy fiber collaterals. They receive
inhibitory inputs from Purkinje axons.

111. PATTERN RECOGNITION AND THE PERCEPTRON

A. The Classical Perceptron

Since the neurophysiologist i s usually not well versed in the field of
pattern -recognition theory, a few short tutorial paragraphs concerning
the pattern -recognition device known as the Perceptron are included to
form a basis for arguments relating the cerebellum to the Perceptron.
Again, rather than crediting all the many contributors to the theory ‘of
pattern-recognition and linear threshold devices, we refer the reader to
the review books by Nilsson [I41 and Minsky and Papert [I31 for extensive
references to the literature. These books contain mathematical proofs for
most o f the informal assertions made in following paragraphs.

The Perceptron developed by Rosenblatt [15] was inspired in large
measure by known or presumed properties o f nerve cells. In partiylar,
a Perceptron possesses cells with adjustable -strength synaptic inputs o f
competing excitatory and inhibitory influences that are summed and
compared against a threshold. If the threshold is exceeded. the cell fires.
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Ifnot, the cell does not fire. The original Pzrceptron was conceived as a
model for the eye (see Fig. 4).

SENSORY ASSOCIATION ADJUSTABLE RESPONS E
CELLS WElG HTS CELLSCELLS

FIG. 4. Classical Perceptron. Each sensory cell receives stirnutus either +1 or 0. This
excitation is passed on to the association cells with either a +1or -1multiplying factor.
I f the input to an association cell exceeds 0, the cell fires and outputs a 1; i f not, i t
outputs 0. This association cell layer output is passed on to response cells through
weights Wi,j, which can take any value, positive or negative. Each response cell sums
i t s total input and if it exceeds a threshold, the response cell Rj fires, outputting a 1;
i f not, it outputs 0. Sensory input patterns are in class 1 for response cell Rj if they
cause the response cell to fire, in class 0 if they do not. By suitable adjustment of the
weights Wi,j, various classifications can be made on a set of input patterns.

Patterns to be recognized, or classified, are presented to a retina, or
layer o f sensory cells. Connections from the sensory cells to a layer of
associative cells perform certain (perhaps random, perhaps feature -
detecting) transformations on the sensory pattern. The associative cells
then act on a response cell through synapses, or weights, of various
strengths. The firing, or failure to fire, o f the response cell performs a
classification or recognition on the set o f input patterns presented to the
retina.

B. Perceptron Learning

The Perceptron shows a rudimentary ability to learn. If a Perceptron
is given a set of input patterns and i s told which patterns belong in class 1
and which in class 0, the Perceptron, by adjusting i t s weights, willgradually
make fewer and fewer wrong classifications and(undcr certain rather restric -
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tive conditions) eventually will classify or recognize every pattern in the set
correctly. The weights usually are adjusted according to an algorithm
similar to the following.

1. If a pattern i s incorrectly classified in class 0 when i t should be in
class 1, increase all the weights coming from association cells that are
active.

2. I f a pattern is incorrectly classified in class 1 when it should be in
class 0, decrease all the weights coming from association cells that are
active.

3. If a pattern i s correctly classified, do not change any weights.
Four features of this algorithm are common to all Perceptron training

algorithms, and are essential to successful pattern recognition by any
Perceptron -type devicz : (1) Certain selected weights are to be increased,
others decreased. (2) The average total amount of increase equals the total
amount o f decrease. (3) The desired classification, together with the pattern
being classified, governs the selection of which weights are varied and in
which direction. (4) The adjustment process terminates when learning i s
complete.

The Perceptron works quite well on many simple pattern sets, and if the
sensory -association connections are judiciously chosen, it even works
on some rather complex pattern sets. For patterns o f the complexity
likely to occur in the nervous system, however, the simple Perceptron
appears to be hopelessly inadequate. As the complexity o f the input
pattern increases, the probability that a given Perceptron can recognize it
goes rapidly to zero. Alternatively stated. the complexity o f a Perceptron
required to produce any arbitrary classification, or dichotomy, on a set
o f patterns increases exponentially as the number of patterns in the set.
Thus the simple Perceptron, in spite of i t s tantalizing properties, i s not
practical as a realistic brain model without significant modification.

C. The Binary Decoder Perceptron

This lack o f power of the conventional Perceptron can be overcome by
replacing the sensory -association layer connections with a binary decoder,
as shown in Fig. 5. I t i s then possible to trivially construct a Perceptron
that wil l produce any arbitrary pattern classification. A binary decoder
can be considered to be a recoding scheme that recodes a binary word
of N bits into a binary word o f 2N bits. This recoding introduces great
redundancy into the resulting code. Each association cell pattern i s
restricted to a unique association cell in the 1 condition, all other associa -
tion cells in the 0 condition.

However, a binary decoder Perceptron i s seldom seriously considered

Mathematical Biosciences 10 (1971), 25-61



36 JAMES S. ALBUS

as a brain model for several reasons. First, the binary decoder requires
such specific wiring connections that it i s entirely too artificial to be
imbedded in the rather random-looking structure o f the brain. Second,
the number o f association cells increases exponentially as the number o f
inputs. Thus Ninput fibers require 2N association cells. Simple arithmetic
thus eliminates the binary decoder Perceptron as a brain model.

SENSORY
CELLS

BINARY
DECODER

ASSOCIATION
CELLS

ADJUSTABLE
WEIGHTS

W
RESPONSE

CELL

FIG. 5. Binary decoder Perceptron. Each association cell firing uniquely corresponds to
one of the possible 2N input patterns. This type of Perceptron can perform any desired
classification of input patterns. I t has, however, no capacity for generalizing.

D. The Expansion Recoder Perceptron

However, there does exist amiddle ground between a simple Perceptron
and a binary decoder Perceptron. Assume a decoder, or rather a recoder,
that codes Ninput fibers onto I O O N association cells, as shown in Fig. 6.
Such a recording scheme provides such redundancy that severe restrictions
can be applied to the l O O N association cells without loss o f information
capacity. For example, it i s possible to require that of the lOONassociation
cells, only 1% (or less) o f them are allowed to be active for any input
pattern. That such a recoding is possible without loss of information

capacity i s easily proven, for 2" Q (':N). That such a recoding increases

the pattern -recognition capabilities o f a Perceptron i s certain, since the
dimensions of the decision hyperspace have been expanded 100 times.
The amount of this increase under conditions likely to exist in the nervous
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system is not easy to determine, but it may be enormous. It can be shown

that ('YN) > 1OON. Thus 2Npossible input patterns can be mapped onto

100N possible association cell patterns. If this is done randomly, the
association cell patterns are likely to be highly dissimilar and thus easily
recognizable. The ratio o f 100N/2N = 50N rapidly increases as Nbecomes
large.

IN-tlOON I

RECODER I
I

I I

I RESPONSE

I

I

I I I CELL

1.100N

U
SENSORY ASSOCIATION ADJUSTABLE

CELLS CELLS WEIGHTS

FIG. 6. N--f lOONExpansion recoder Perceptron. The association cell firing i s restricted
such that only 1% of the association cells are allowed to fire for any input pattern.
This Perceptron has a large capacity and fast learning rate, yet it maintains the number
of association cells within limits reasonable for the nervous system.

The restriction that only 1% of the association cells are allowed to be
active for any input pattern means that any association cell participates
in only 1% of all classifications. Thus i ts weight needs adjusting very
seldom and there i s a fairly good probability that i t s i i r s t adjustment i s at
least in the proper direction. This leads to rapid learning.

1V. THE CEREBELLUM AS A PERCEPTRON

A. Pattern Recoding in the Cerebellum

The granular layer o f the cerebellum takes in information on mossy
fibers and puts out information on parallel fibers. There are from 100 to
600 times as many parallel fibers as mossy fibers. Thus the granule cells
can be said to be association cells that recode information from Ninputs
to at least l O O N outputs.
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What can be said about the nature o f this recoding? It was already
noted that no granule cell receives more than one excitatory input from
any one mossy fiber. I t was also noted that the mossy rosettes from a
single mossy fiber were widely distributed over several folia with a rather
uniform random distribution. Thus, by the central limit theorem of
probability, the distribution of granule cells with any given number o f
excitatory inputs will approach a Gaussian distribution with B equal to
the extent o f the mossy rosette distribution. Since the mossy rosette
distribntion of each mossy fiber extends over several folia, the Gaussian
curve wil l be flat, for all practical purposes, over regions large compared
with a single folia, even more so compared with any individual cell.

Since virtually nogranule cells are excited at two sites by the same mossy
fiber the relative abundance of granule cells simultaneously excited by
17 active mossy fibers will be proportional to I/..

Thus at any instant the surface o f the cerebellum should be dotted
nearly uniformly randomly with granule cells whose input consists of one
mossy fiber excitation. The surface o f the cerebellum should also be dotted
randomly, but less densely, with granule cells excited by two mossy fibers;
and so on, progressively less densely with granule cells excited by three,
and four, and five, up to seven mossy fibers. The total density o f this
dotting depends on the percentage of mossy fibers active.

The particular granule cells that actually fire as a result o f various levels
o f mossy fiber excitation depend on the threshold levels o f the granule
cells. Only granule cells with enough excitatory inputs to exceed threshold
will fire. This threshold for granule cells i s regulated by Golgi cell activity.

The output of the granule cells i s sampled by the Golgi cells via synapses
with parallel fibers. This sampling i s over an area approximately 250-650 p
in diameter. Each Golgi cell feeds back inhibitory influences to about
100,000 granule cells. Neighboring Golgi cells overlap extensively in their
dendritic fields and in their axon arborization. This very broad general
feedback system suggests the function of an automatic gain control. Thus
i t i s argued that the Golgi cells serve to maintain granule cell, and hence
parallel fiber, activity fixed at a relatively constant rate. If few parallel
fibers are active, Golgi inhibitory feedback decreases, allowing granule
cells with lower numbers of excitatory inputs to fire. I f many parallel
fibers become active, Golgi feedback increases, allowing only those few
granule cells with many active mossy inputs to fire.

The Golgi cells also have input from mossy fibers directly, a so-called
feed-forward inhibition. This input tends to raise granule cell threshold
levels when mossy fiber activity i s large, and decrease granule thresholds
when mossy fiber activity i s small. This effect i s also such as to stabilize
the amount o f parallel fiber activity.
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To obtain aquantitativefeel for what i s occurring via these two types o f
Golgi cell inputs, consider Fig. 7. From the figure we can write

P = (M- Z + Sp)Gr

z = (KM + P)Go
(1)
(2)

where P is the expected value of the spike rate for a parallel fiber, M, the
expected value o f the spike rate for a mossy fiber, Z, the expected value o f
the spike rate for a Golgi cell, Gr, the average transfer gain o f granule
cells, Go, the average transfer gain o f Golgi cells, K, the relative strength
of mossy fiber input on Golgi cells to that o f parallel fiber input, and Sp,
the expected value o f the spontaneous rate for a granule cell.

Combining (I)and (2) and differentiating with respect to Mgives

dP Gr(1 - KGo)
dM 1 + GrGo .
- =

From Eq. (3) it can be seen that by proper adjustment o f parameters
(i.e., KG0 z I)it i s possible to make P, the expwted value of the spike rate
for a parallel fiber, very nearly constant despite variations in mossy fiber
input rate M.

It might not be unreasonable to assume values for Go and Gr as follows.

1 granule spike
1 mossy spike

Gr = X divergence of 100 = 100.

1 Golgi spike
1000 parallel spikes

GO = x divergence of 100,000 = 100.

These values substituted in (3) give

dP 1-100K_ _ N ___
dM - 100

Thus if K x 0.01 (i.e. 1 Golgi spike/l05 mossy fiber spikes), the expected
value o f parallel fiber activity rate P i s nearly constant. This, o f course,
does not mean that parallel fiber patterns would be independent o f mossy
fiber patterns, but merely that the overall level o f activity (i.e., spikes per
second) of parallel fibers could be constant in spi te o f what percentage,
or at what rate, the mossy fibers are firing.

The mossy fibx inputs to Golgi cells probably also serve to stabilize
parallel fibx rates under transient conditions. The feedback path via
parallel fibers involves delays. The feed-forward path i s undoubtedly
faster acting. The net result o f Golgi cell activity seems therefore to be to
stabilize the level o f parallel fiber activity to a nearly constant value under
all conditions.

I t will thus be hypothesized that the surface of the cerebellum i s dotted
randomly with active parallel fibers and that the density o f this activity i s

Mathematical Biosciences 10 (1971), 25-61



40 JAMES S. ALBUS

very nearly uniform, both spatially and temporally. I t was noted earlier
that if this density o f parallel fiber activity i s 1% or less, patterns are easily
recognized and quickly learned. Furthermore, a 1% activity level i s more
than adequate from an information theory standpoint. Therefore, it will
be further hypothesized that the density o f parallel fiber activity i s on the
order of 1%.

- -M 7. - * P

I

FIG. 7. Parallel fiber rate control circuit. M, expected value of mossy fiber input in
spikes per second; P, expected value of parallel fiber output;I,expected value of Golgi
cell rate: Sp, expected value of spontaneous granulecellrate; Gr, transfer gain of granule
cell network; Go, transfer gain of Golgicellnetwork; K, relative strength of mossy fiber
input on Golgi cells to that of parallel fiber input.

As was shown previously, recoding fromNfibers to lOON fibers, under
the restriction that only 1% o f the output fibers are active for any input
pattern, expands the number o f possible patterns from 2N to about looN,
or an expansion of around 50N. In the cerebellum the number o f input
mossy fibers i s approximately 5 x 104 per square millimeter. Thus the
pattern -expansion capacity of 1mm2 of cerebellar cortex is on the order
of 50~0000.Just what this means in increased pattern -recognition capability
i s unclear, but we get the feeling it i s quite significant. This argument i s
even more compelling when i t i s realized that the mossy fiber system
undoubtedly carries only a very restricted subset o f the 2N(really RN where
R i s the number of distinguishable levels o f fiber firing rate) possible input

'patterns. Thus the recoding fromNfibers to l O O N fibers may well produce
an enormous increase in classification capability o f cells in the cerebellum
functioning as pattern -recognition response cells.

I f this hypothesis o f mossy fiber recoding by granule cells i s correct,
it implies that, to a neurophysiologist probing with an electrode, any
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parallel fiber should appear to fire uncorrelated with neighboring parallel
fibers, a t least in an unanesthetized awake preparation.

An intuitive feel for why this recoding process i s advantageous can
be obtained from a simple example. Consider a Perceptron with only two
association cells. There are then at most four different patterns o f associa-
tion cell firings. Suppose now it i s desired for the response cell to fire
whenever a sensory pattern occurs that produces an association cell
pattern o f 01 or 10, and it i s desired for the response cell not to fire for
any association cell pattern of 00, and 11. Try as we might it i s impossible
to find any combination of weights that can cause the response cell to
have this behavior. I t i s rather simple to make the response cell l i re on 01,
and 10, and to not fire on 00. However, the 11 pattern creates a problem.

If, however, an expansion recoder i s put between the sensory cells
and the association cells, so that there are, for example, five association
cells, the problem is much easier. The sensory pattern that previously
produced the association cell pattern:

01 now might produce 00100;
10 now might produce 01001;
00 now might produce 1oooO;
11 now might produce 00010.

It i s trivial to adjust weights so that association cell patterns 00100 and
01001 cause the response cell to lire, and the patterns 10000 and O0010
cause the response cell not to fire. The training procedure would consist
of at the most one adjustment for each pattern.

A computer simulation of this type o f recoding process has been run
for a more complicated case. Twenty (20) mossy fibers were modeled.
An expansion recoder of mossy rosettes, granule cells, and Golgi cells
was modeled that transformed 20 mossy fiber firing rates into 2000
granule cell firing rates. Golgi cell feedback restricted the granule cells so
that only about 1% of them could fire. The result was that for two very
similar mossy fiber patterns the granule cell firing patterns were similar .
in some respects but quite distinguishable in others. Some granule cells
responded exactly the same for both mossy patterns, but other granule
cells responded entirely differently. This implies that mossy fiber input
patterns that would be very difficult to distinguish i f put directly into a
Perceptron response cell are easily distinguishable after passing through
the pattern recoder.

B. The Purkinje Response Cell

It has been argued that the parallel fibers contain information coded
in an ideal manner to serve as the input to a Perceptron response cell.
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I t wil l now be argued that the Purkinje cells serve a function similar to
Perceptron response cells.

From a purely structural standpoint, the Purkinje cell certainly i s
related to granule cells very similarly to the way a Perceptron response
cell i s related to association cells. Each Purkinje cell has an enormous fan-
in; each granule cell has a large fan-out. I t i s hard to conceive a more
efficient parts layout for this type o f circuit than the parallel fiber-Purkinje
dendrite arrangement. A flat tree with input fibers piercing it at right
angles creates the maximum possible fan-in for each Purkinje cell. The
flat, closely stacked Purkinje dendritic trees allow the maximum possible
fan-out for each parallel fiber. Any other arrangement would almost
certainly decrease the ratio o f computational elements to the brain tissue
mass.

We may reasonably ask why this same structure does not exist in the
cerebral cortex. The answer may well l i e in the differences between the
functions required of the cerebrum and of the cerebellum. The portion
of the cerebral cortex that i s best understood from a functional standpoint
is the visual cortex. Here it i s well known that a great amount o f feature
detection [9] takes place, such as line detection, edge detection, motion
detection, and binocular correlation. Many of these transformations are
translationally invariant over certain fields o f view; that k, cells in the
visual cortex respond to certain global features o f the visual input irres-
pective o f small changes in retinal coordinate position. I t would appear,
then, that in the cerebrum considerable feature -detection processing
precedes, and perhaps is intermingled with, the expansion recoding
circuitry. The geometrical requirements o f translationally invariant global
feature detection require elaborate plexuses of fibers crisscrossing in the
cerebral cortex, and cells with their dendritic fields geometrically positioned
to extract feature-dependent inputs from these fiber plexuses. Any pattern-
recoding and pattern -recognition circuitry interspersed in this tangle
would certainly be less compact and regular than that found in the cere-

On the other hand, in the cerebellum, granule cell receptive fields [17]
show no evidence of feature detection analogous to that found in cerebral
cortical cells. This i s not too surprising since there should be no need for
translationally invariant feature detection in a system that senses body
conditions and controls motor commands. The problem o f the cerebellum
i s merely to recognize patterns of information from proprioceptive receptors
and to generate the appropriate motor command signals. The circuitry
to do this i s arranged as compactly as possible. The result i s the beautiful
regularity o f the cerebellum.

Large portions o f the cerebellum receive inputs from and project back

’ bellar cortex.
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toward the cerebral cortex. Since the anatomy of this portion o f the cere-
bellum i s not appreciably different from the portion that interacts with
the periphery, it i s reasonable to assume that the transfer function is
similar (Le., a mossy fiber pattern input producing a Purkinje cell pattern
output).

The nervous system has one constraint that does not exist in the
Perceptron. In the nervous system a particular type of cell i s either
excitatory or inhibitory. Any single granule cell thus cannot be excitatory
on one Purkinje cell and inhibitory on another. The basket and stellate b
cells appear to provide a means o f overcoming this deficiency. Basket and
stellate b cells receive excitation from parallel fibers and inhibit Purkinje
cells located transversely. This arrangement allows any parallel fiber to
excite a number of Purkinje cells along i t s length, and to inhibit another
group of Purkinje cells located on i t s flanks. As noted before, a parallel
fiber i s not likely both to excite a Purkinje cell directly and also to inhibit
the same Purkinje via basket or stellate b cells. Thus, as shown in Fig. 8,

\PARALLEL FIBERS

G R A N ~ ~ L E
CELL

N-iG??N
RECODER

-
PURKINJE
RESPONSE

CELL

-
ADJUSTABLE

t t t T !
MOSSY
FIBEF. WEIGHT

INPUTS SYNAPSES

FIG. 8. Cerebellar Perceptron: P, Purkinje cell; B, basket cclls; S, stellate b cells. Each
Purkinje cellhas inputs of the type shown.

the Purkinje cell looks very much like a Perceptron response cell. The only
logical difference i s that the inhibitory input to the Purkinje cel l i s collected
and summed by flanking basket and stellate b cells before being relayed
to the Purkinje cell. The inhibitory input o f each basket and stellate b
cell i s also sent to many other Purkinje cells, but this fact i s immaterial to
any individual Purkinje. It i s influenced only by the inputs it receives, not
by the other places those inputs may go. In order to complete the analogy
between Purkinje cells and Perceptron response cells, it i s necessary to
introduce adjustable synaptic strengths.
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C. The Hypothesis of Variable Synapses

The fundamental hypothesis of this article i s that parallel fiber synapses
are adjustable on both Purkinje cell dendrites and stellate and basket cell
dendrites. The mechanism o f change in both cases is hypothesized to be
closely related to climbing fiber input activity. I t will be argued that both
excitatory and inhibitory influences on Purkinje cells are specifically
modified under the control of climbing fiber activity patterns.

Each Purkinje cell i s contacted by a single climbing fiber. In a conscious
animal the climbing fibers f i re in short bursts o f one or more spikes at a
rate of about 2 bursts/sec [5, 181. Each climbing fiber burst causes a single
spike on the Purkinje axon followed by a complex burst of spike-like
activity in the Purkinje dendritic tree and intense depolarization of the
Purkinje cell. The single axon spike i s followed by a pause in the spon-
taneous Purkinje axon spike activity for 15-30 msec. This pause, accom-
panied by intense depolarization, was f i rs t observed by Granit and Phillips
[8] and was termed the inactivation response to distinguish it from a normal
pause in activity resulting from hyperpolarization. After the 15- to 30-msec
inactivation response, the cell gradually recovers i t s spontaneous firing
rate over a period o f 100-300 msec [3]. As it approaches normal, the cel l
becomes once again responsive to parallel fiber input activity.

I t i s now hypothesized that the inactivation response pause in Purkinje
spike rate is an unconditioned response (UR) in a classical learning sense
caused by the unconditioned stimulus (US) of a climbing fiber burst.
I t i s further hypothesized that the mossy fiber activity pattern ongoing
at the time of the climbing fiber burst is the conditioned stimulus (CS).
If this i s true, the effect of learning should b e that eventually the particular
mossy fiber pattern (CS) should elicit a pause (CR) in Purkinje activity
similar to the inactivation response (UR) that previously had been elicited
only by the climbing fiber burst (US). In order to accomplish this result
i t i s necessary to postulate that the climbing fiber input to the Purkinje
cell not only causes the Purkinje cell to pause momentarily but also
weakens any parallel fiber synapses that are tending to cause the Purkinje
to fire during the inactivation response.

A possible mechanism for such weakening might be that there exists
a critical interval near the end of the inactivation response after the effect
of the climbing fiber burst has worn off sufficiently so that the cell can be
fired by parallel fiber input but before the dendritic membrane has returned
completely to normal. If the Purkinje cell fires in this interval, this firing
i s an error signal that signals every active parallel fiber synapse to be
weakened.

The amount of weakening of each synapse i s proportional to how
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strongly that synapse is exciting the Purkinje cell at the time of error
signal. The effect of this mechanism would be to train the Purkinje cell
to pause at the proper times, that is, at climbing fiber burst times. After
learning i s complete, the Purkinje knows when to pause because it re-
cognizes the mossy-parallel fiber pattern that occurred previously at the
same time as the climbing fiber burst. Later, since each parallel fiber
active synapse was weakened by the error signal, if the same mossy-
parallel fiber pattern occurs again, the Purkinje will pause even without
the climbing fiber burst. Thus, the Purkinje is forced to perform in a
certain way by the climbing fiber teacher. After learning i s complete,
however, i t behaves in that same way, under the same mossy fiber con-
ditions, even in the teacher’s absence.

Note that this mechanism corresponds closely with the Perceptron
training algorithm in that (1) if the response cell fires (or tends to fire)
when it should not fire, then all synapses coming from active parallel
fibers wil l be decreased or weakened; (2) if the response cell does not
f i re improperly, no adjustments are made.

It i s now possible to consider many climbing fibers, each firing at
different rates in some spatial pattern C, at time t,. This climbing fiber
firing pattern wil l elicit a Purkinje firing pattern C;. Assume at time t, the
mossy fibers have some firing pattern MI. Each climbing fiber will train
i t s respective Purkinje cell (or cells) to recognize the mossy fiber input
pattern M, that was present when C1 occurred. I f during training MI
on the mossy fibers occurs in coincidence with C, on the climbing fibers,
after training the occurrence o f M, on the mossy fibers will elicit C;,
from the Purkinje cells whether or not C, appears on the climbing fibers.
I t can then be said that climbing fiber pattern C1 has been imprinted,
or stored, on mossy fiber pattern MI. In the same way a second climbing
fiber firing pattern C2 can be stored on another mossy fiber pattern M,,
and so on.

An important feature o f this hypothesis i s that the C; patterns coming
out of the Purkinje cells are not necessarily binary patterns; Ci represents
the relative rates o f firing of all the Purkinje cells. Thus relative patterns
are stored and relative patterns are recalled.

D. Variable Inhibitory Synapses

Since variation o f parallel fiber Purkinje cell synapses i s sufficient to
cause patterns to be stored in the cerebellum, we might well suggest [l11
that no further mechanism o f variable inhibitory synapses i s necessary.
However, there are good reasons to further hypothesize variable inhibitory
synapses.

First, if only the excitatory inputs to a cell are caused to decrease, while
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the inhibitory inputs are held fixed, eventually the cell fails to fire in
response to any input pattern. Second, a pattern -recognition device based
on only excitatory weight adjnstment has inherently low capacity. Marr [ll]
estimates that a Purkinje cell capable of only excitatory synaptic adjust -
ment has the capacity to make about 200 mossy fibx pattern dichotomies.
However, a Perceptron with both positive and negative weight adjustments
has the capacity to make about twice as many dichotomies as there are
adjustable weights [4]. Thus, if both excitatory and inhibitory synapse
adjustment i s possible in the cerebellum, each Purkinje cell would have
the capacity to make on the order o f 200,000 pattern dichotomies. The
adjustment o f inhibitory weights thus results in a thousandfold increase
in recognition capacity. Third, any pattern -recognition system capable of
varying weights in only one direction i s necessarily very slow to learn.
An example o f the learning difficulties encountered by such a system can
be seen by referring to Fig. 4. Assume a pattern M causes only association
cell A, to fire. This will affect the response cell R1 through weight Wl,2.
Four possible situations can exist when pattern A4 i s f i rs t presented :

case I M desired in class 1, R, = 1;
case 2 M desired in class 1, R1 = 0;
case 3 M desired in class 0, R1 = 1;
case 4 M desired in class 0, R1 = 0.

In case 1 and case 4, Mi s already in the proper class and no adjustment o f
weights i s necessary. In case 3, the weight Wl,2 needs to be decreased so
as to force the R, cell below threshold. In case 2, the weight W1,2 needs
to be made more positive so as to raise the RI cell above threshold. If
such a positive adjustment is not allowed, another means i s available.
All the weights to R, except can be decreased, and the threshold of
the R1 cell somehow decreased accordingly. This would have the same
result as an increase in W,,2. As a mechanism likely to occur in the
cerebellum, however, this scheme has several serious difficulties :

1. Decreasing all weights except one i s cumbersome. I t i s inconceivable
to decrease 199,999 weights in order to increase 1.

2. It i s very difficult to suggest a mechanism with such abilities. The
mechanism must: in case 3, decrease the synaptic strength of all active
parallel fibers, but in case 2, decrease the synaptic strength of all except
the active parallel fibers.

3. I f the threshold of the R1 cell i s to be lowered along with all the
weights except Wl,z, this in itsel f implies that variable inhibitory synapses
are necessary in the cerebellum.

4. If basket and stellate cells have no variable synapses, it i s hard to
imagine why they are so numerous, or what i s the purpose of their peculiar
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axon distributions. I f these inhibitory interneurons merely serve the
purpose of general threshold regulators, it would seem that a few cells
should do as well. For example, only a few Golgi cells are necessary to
set general threshold levels for an enormous number of granule cells.
Yet there are about twice as many basket and stellate by cells as Purkinje
cells. Surely these cells have a more sophisticated function than general
threshold regulation. Variable inhibitory synapses could explain why
basket and stellate cells are so numerous.

E. Site of Inhibitory Synaptic Change
Inhibitory synaptic strength variation could occur at two sites. One

site is where basket and stellate b cells synapse on the Purkinje cells. This
i s perhaps an obvious first candidate. However, the amount o f convergence
i s small. Certainly less than 1000 different basket and stellate b cells
synapse on each Purkinje. The actual figure is probably less than 100.
This i s a far cry from the parallel fiber convergence of about 200,000
variable excitatory synapses. The addition of 100 variable inhibitory
synapses would seem to add little to the recognition capacity of the
Purkinje cell.

The second site where inhibitory inputs to Purkinje cells might be
varied is at the parallel fiber synapses on basket and stellate b dendrites.
A decrease in strength of the excitatory parallel fiber synapses on basket
and stellate b cells results in a decrease in inhibitory input to the related
Purkinje cells. The basket and stellate b dendritic trees are sparser than
those o f Purkinje cells, but they do contact perhaps 5 % of the parallel
fibers coursing through them. When account is taken o f the fact that
about 100 of these cells then synapse on a single Purkinje, the result i s
a convergence of variable inhibitory inputs to the Purkinje cell o f the
same order of magnitude as that o f variable excitatory inputs. Thus the
Purkinje recognition capacity i s on the order o f 200,000 patterns rather
than 200 patterns as suggested by Marr [lI].

I t i s interesting that lower forms, such as frogs, have no basket cells.
A cerebellar Perceptron with no variable inhibitory weights i s certainly
possible. I t s only shortcoming would be a very limited capacity for
discrimination.

Several other facts support the hypothesis that the parallel fiber
synapses on basket and stellate b cells are the sites of variable inhibitory
weights. First, the basket and stellate cells contact the parallel fibers with
dendritic spines similar to those of the Purkinje cells. Second, each
climbing fiber, in addition to synapsing strongly on a single Purkinje cell,
also sends collaterals, which synapse on the soma of adjacent basket and
stellate cells. Since the climbing fiber input is assumed to be intimately
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related with varying parallel fiber synapses on Purkinje cells, it i s perhaps
reasonable to suggest that the same climbing fiber may also vary parallel
fiber synapses on basket and stellate cells. The mechanism o f variation
could be identical or at least very similar. In other words it i s argued that
on every cell contacted by an active climbing fiber, each active parallel
fiber synapse i s weakened by the same mechanism regardless o f whether
the cell i s Purkinje, basket, or stellate b. This hypothesis has the elegant
feature that a single event causes a change inboth excitatory and inhibitory
influences. The fact that climbing fibers do not contact dendrites o f basket
and stellate cells may be accounted for by the fact that their dendritic
arborization i s less extensive than that o f Purkinje cells.

In order to satisfy the Perceptron training conditions that excitatory
and inhibitory changes be equal on the average, it i s merely necessary to
assume that the size o f the decrement in each synapse i s such that the
expected value of the excitatory change be equal to the expected value of
the inhibitory change.

F. Pattern Storage on Excitatory andInhibitory Synapses

The effect in terms o f pattern storage o f this scheme can be seen by
referring to Fig. 9. Assume theclimbingfiber firingpattern cfl = 1, cf2 = 0
occurs. In this case P, pauses and P, i s released from inhibitions by B,
pausing. Further, assume a mossy fiber pattern occurs such that Pfl = 1,
Pfz = 1. The coincidence of these two patterns will tend to decrease
weights W,, and WSI but leave unchanged WP2 and wB2. At a later
time when the climbing fibers are silent, cfl = cf2 = 0; if the same mossy
fiber pattern recurs such that Pfl = Pf2 = 1, P, will pause because o f
decreased W,, and P, will be disinhibited because of decreased WBl.
Thus, the original climbing fiber response, P1 pause, Pz disinhibited, can
be recalled by the mossy fiber pattern, which causes F'f,= Pfz = 1.
I t can thus be said that the climbing fiber pattern is imprinted on the
mossy fiber pattern.

Note that all the adjustment of the variable synapses takes place in the
immediate vicinity o f the Purkinje cell excited by an active climbing fiber,
even though the disinhibitory effects are fe l t by Purkinje cells far removed
in the transverse direction.

In order to satisfy the requirement that the expected value o f the change
in excitation equals the expected value o f the change in inhibition it i s
necessary to assume some things concerning the relative amount by which
W,, and W,, are changed. The synapse of Pfl on P1 occurs with a pro-
bability o f nearly 1. The synapse o f Pfl on B, occurs with a probability
o f around 0.05 or less. However, the effects o f W,, are distributed to
30-50 Purkinje cells, whereas the effects o f W,, are confined to one
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Purkinje cell. In addition, the strength of WB, i s multiplied by a gain
factor govcrned by the strength of the basket cell synapses on Purkinje
cells. Since this is a rather strong synapse, the gain factor i s probably
greater than 1. Thus in order for the total average decrease in excitation to
equal the total average decrease in inhibition, the following equation must
be satisfied.

Aw BI x pB1(pfl) x DBI x = A w P l x pP1(pfli) (5)
where A WB, i s the change in WBl, AWpl the change in Wpl, PB1(Pfl) the
probability B1 contacts Pfl, Ppl(Pfl) the probability P, contacts Pfl,
D,, the number o f Purkinje cells B, contacts, GB, the strength o f BI
synapse in Purkinje cells.

FIG. 9. Climbing fiber input. Each climbing fiber contacts a single Purkinje cell and
several nearby basket cells or stellate cells, or both. I ff'jlis active when PIor B1, or both,
fire in the critical interval during a cyl inactivation response, then W,, or W,,, or both,
are altered. This change in synaptic strength can later be read out in the form of Purkinje
postsynaptic potentials by firingPf, again.

Everything considered, it i s likely that AWB1 i s less than AWp,. This
judgment seems to be supported by the experimental fact that the effect
o f a climbing fiber on a basket cell i s less strong than on a Purkinje cell [5].
Presumably a smaller climbing fiber effect produces less synaptic weakening.

This cerebellar system now has most o f the characteristics of a Per-
ceptron; that is, it corrects errors by adjusting weights positively and
negatively; the average total increase equals the average total decrease;
the pattcrn being stored, in coincidence with the pattern on which it i s
stored, governs which weights are increased and which are decreased; and
the adjustment procedure terminates as learning asymptotically approaches
completion. In addition, the hypothesized cerebellar system exhibits the
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capacity to store information concerning the relative firing rates o f
climbing fiber patterns.

F. Defense of the Synaptic Weakening Argument

The argument synaptic weights are weakened by learning rather than
strengthened is counterintuitive and contrary to most, if not all, theories
of synaptic learning that have appeared in the literature. Thus i t perhaps
should be examined in more detail. There are three main reasons why
synaptic weakening rather than strengthening i s hypothesized to take
place in the cerebellum. First, the experimental data that are available
seem to suggest it. Climbing fibcr inputs cause Purkinje cells to pause.
I f the Purkinje i s to learn to pause, parallel fiber excitation must be de-
creased. Second, Perceptron theory proves that the most effective training
algorithms are error correcting in nature. Thus, firing at erroneous times
should reduce the tendency to fire again. Firing at the proper times
requires no adjustment. This algorithm implies weakening of synapses
that contribute to erroneous firings. It i s possible to conceive an error-
correcting scheme that would operate by strengthening synapses but the
mechanism seems quite unlikely. There are only two possible error con-
ditions: (1) Cell fires when it should not. This condition can be corrected
by weakening erroneous excitatory synapses (as suggested) or by
strengthening erroneous inhibitory synapses. On the Purkinje cell the
excitatory spine synapses seem much more likely candidates for variability
than the inhibitory synapses. There are relatively few inhibitory synapses.
Learning capacity would be quite low if on the Purkinje the inhibitory
synapses rather than the excitatory were the site for variability. (2) Cell
does not f i re when it should. This condition can be corrected by strengthen -
ing erroneous excitatory synapses or by weakening erroneous inhibitory
synapses. In this case it i s difficult to suggest how the individual synapses
know when an error has occurred. The absence of postsynaptic cell
firing may be the correct response as far as each synapse knows. An
additional piece o f information i s needed-the information that an error
has occurred. I t i s difficult to imagine how this information i s conveyed
to synaptic sites in the absence ofpostsynaptic activity. Thus, if the Purkinje
cell learns by error correction, the most probable mechanism i s synaptic
weakening in the presence o f erroneous firing.

The third reason synaptic weakening is hypothesized to occur in the
cerebellum i s that there are serious stability problems of learned responses
under conditions of overlearning if synaptic activity causes synaptic
facilitation. Consider Fig. 10: C1 and C, are climbing fibers synapsing
with synapses of fixed strength on Purkinje cells P, and P,. A parallel
fiber pf synapses on PIand P2 with variable -strength synapses of weights
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W, and W,. If it i s now assumed that the synaptic weights are strengthened
by coincidence of pre- and postsynaptic activity, it i s possible to write

AiWl = fpl fpf at t = i (6)
where AiW, i s the increase in W1 at time t = i,fpl the frequency of spikes
011 PI, andfpf the frequency of spikes on pf. Le t Wl originally equal W,.
As learning takes place, the following situation obtains. At

t = 0, fP1 = kfc, + OWlfPf;

f = 1, ./-PI = M C l + (OW1 + AoWIvPf;
t = 2, fP1 = kfCl + (OW1 + AOW, + A1Wllhf;
t = 3, fp1 = kfcl + (ow1 + Aow1 + AIW1 + Azw1)fpf;

c,
FIG. 10. Two Purkinje cells contacting the same parallel fiber.

We can readily see that the weight Wl continuously increases at each
learning interval. In fact, since AiWl i s the product offpl *fpf, and since
fpI increases during eachlearninginterval, AoWl < A1Wl < A, Wl < .e..

Therefore W1 grows at an exponential rate, and o f course so does fp,.

Certainly Wlmust eventually saturate. Now suppose that during the same
learning sequence a spike train also appears on C2 at half the frequency
of that on CI:

Until W, saturates,

Eventually, however,

fc2 = 4 f C l .

w, N 2w,.

W, = W, = saturation value.
kfurhemarical Biosciences 10 (1971). 25-61
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Thus, after a sufficiently long period, all parallel fiber synapses will eventu -
ally become saturated. The very active ones will saturate first, but over
a long time virtually every synapse will saturate. Synaptic facilitation
suggests learning i s exponential. Synaptic weakening suggests learning i s
asymptotic.

This problem could possibly be averted by proposing some sort o f
decay rate for all synaptic strengths. Thus synaptic strengths would not
remain saturated. However, such a mechanism would need to be very
exotic to prevent continued learning from degrading performance and,
at the same time, to preserve learned patterns over long time periods. I t i s
common experience that memories o f motor skills are preserved rather
well over periods o fmany years. It i s also common experience that repeated
practice of motor skills leads to improved motor performance, even when
the practice sessions are intensive and of short duration (on the order o f
minutes or hours). I t i s difficult to conceive of a decay system that could
preserve memory over periods of years and at the same time prevent
saturation over periods o f minutes.

It i s an obvious fact that continued training in motor skills improves
performance. Extended practice improves dexterity and the ability to
make fine discriminations and subtle movements. This fact strongly
indicates that learning has no appreciable tendency to saturate with over-
learning. Rather, learning appears to asymptotically approach some ideal
value. This asymptotic property o f learning implies that the amount of
change that takes place in the nervous system i s proportional to the dffer-
ence between actual performance and desired performance. A difference
function in turn implies error correction, which requires a decrease in
excitation upon conditions of incorrect firings.

This argument i s not meant to suggest that synaptic facilitation does
not occur anywhere in the nervous system. In fact the stellate a cells wil l
shortly be conjectured to undergo synaptic facilitation. Synaptic facilitation
very probably plays an important role in many places in the nervous
system. However, in situations where saturation would degrade per-
formance, and particularly in the cerebellar cortex, where other evidence
points to weakening, synaptic weakening seems very likely to be the
principle learning mechanism. It might be argued that the saturation
argument holds equally well in the opposite sense, that is, that all synapses
would eventually be reduced to zero. One answer to this i s that the synaptic
strengths tend toward zero asymptotically. Therefore the weaker a
synapse becomes, the less i s i t s contribution to any erroneous firings and
the less it i s weakened by any correction. Another answer i s that new
variable spiny synapses may be hypothesized to spontaneously and
randomly grow and mature into active effection synapses. The result of
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this would not be to destroy learning but to mask it over a period of time
by background noise. To clarify this point, no synapse that has undergone
any decrementing is hypothesized to grow back in strength. However, new
synapses are hypothesized to grow to full size and then mature into an
effective state. From this point they are then decremented, perhaps all
the way to zero. There may be some evidence for such a phenomenon in
the visual cortex o f the mouse. Ruiz-Marcos and Valverde [I61 note that
the density of spines on pyramidal cells in mouse visual cortex r ises to a
maximum shortly after the mouse opens i t s eyes. From that time the
density o f spines decreases asymptotically to a smaller value. Light
deprivation considerably reduces the spine density. This might suggest
that spines develop randomly under tropic influence o f presynaptic nerves
and are specifically decremented in the process o f learning.

G. Response Speedup via Stellate a Cells

The notion that occurrence o f a particular mossy fiber pattern causes
a decrease in excitation of Purkinje, basket, and stellate b cells, and that
this decrease in excitation causes the proper response o f the Purkinje
cell, raises a question of response speed. The decrease in excitation
resulting from a decay of synaptic transmitter substance is not generally
considered to occur as quickly as a buildup of excitation resulting from
release o f transmitter substance. Thus a system that operates solely on
decay o f excitation may lack the speed necessary for quick movements.
I t will now be suggested that stellate a cells are ideally situated for pro-
viding a speedup mechanism.

The main structural difference between stellate a and stellate b cells
i s in their axon arborization. The stellate a cells send synaptic contacts to
Purkinje cells in their immediate vicinity and to adjacent Purkinje cells
in the longitudinal direction. Thus it i s quite likely for a parallel fiber to
excite a particular Purkinje cel l and to inhibit the same Purkinje via a
stellate a cell. Climbing fiber collaterals also contact stellate a cells. Thus,
following the same reasoning used for Purkinje, basket, and stellate b cells,
it i s not unreasonable to assume that coincidence between climbing fiber
and parallel fiber activity effects a change in synaptic strength o f stellate a
cells also. It would seem, however, that in order to perform a useful
function, the synaptic change in this case should be a strengthening rather
than a weakening. I t will b e conjectured that coincidence o f a climbing
fiber spike with parallel fiber activity on a stellate a cell will cause an
increase in the synaptic strength of the parallel fiber-stellate a cell synapse.
Thus the stellate a synapses are conjectured to change in the opposite
direction from all the other variable synapses under the same coincidence
conditions.
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Consider parallel fiber pattern MI to be imprinted positively on stellate
a cells, but negatively on an immediately adjacent Purkinje cell. Occurrence
o f pattern MIcauses the Purkinje cell to receive less excitation. Pattern MI

causes the stellate a cell to receive more excitation, and hence actively
inhibit the Purkinje. The result would be an increase in speed of the
Purkinje cell response.

The stellate a cell variable synapses would of course be subject to the
saturation problem discussed previously. However, if the stellate a con-
tribution to the Purkinje input were small compared to the other inputs
from basket and stellate b cells and parallel fibers, the saturation effect
would be small in the steady state. The stellate a input would be significant
only in the first few milliseconds following a transient. In this interval the
stellate a cell would get the Purkinje response going in the proper direction.
Later the other inputs to the Purkinje would predominate to set the proper
final value. The same effect would obtain if the stellate a response were
not necessarily small but merely o f short duration.

Note that in the arguments concerning stellate a cells the word con-
jecture was used rather than hypothesis. Very little i s known concerning
the behavior o f stellate a cells and any confident prediction concerning
their function i s certainly premature. Stellate a cells may have nothing at
all to do with memory or variable synapses. In the next section it is sug-
gested that perhaps stellate a cells may have rather to do with attention
mechanisms.

H. The Function of Recurrent Purkinje Collaterals

The fact that the cerebellum i s spontaneously active allows it to achieve
a high degree of sensitivity and precision. A spontaneously active system
i s essentially linear, at least for small inputs. Thus any small input will
produce an output whose size wil l depend on both the size of the input
and the gain o f the system. I f the system i s not spontaneously active,
small signals do not have any effect on the output until they exceed a certain
threshold. This i s usually not a desirable trait for a feedback control
system.

As was discussed earlier, the mossy fiber -,granule cell + Golgi cell
interconnection network appears to work so as to maintain granule cell
activity at some relatively constant level. In addition, the Purkinje cell
axons put out recurrent collaterals that are known to contact Golgi cells,
basket cells, and other Purkinje cells. These Purkinje recurrent collaterals
send inhibitory impulses over a wide-ranging area, even into adjacent folia.
The Purkinje recurrent collateral synapses on other Purkinje cells have the
effect of maintaining the average Purkinje cell activity fixed at a relatively
constant level over the entire cortex. I f the average Purkinje activity rises

Mathematical Biosciences 10 (1971), 25-61



A THEORY OF CEREBELLAR FUNCTION 55

too high, the inhibitory effect o f the recurrent collaterals drives it back
down. I f Purkinje cell activity drops too low, the decrease in inhibition will
l e t i t rise again. Thus a relatively constant spontaneous discharge rate will
be maintained despite rather large variations in cell conditions, such as
nutrition or fatigue.

Another effect o f the recurrent collateral inhibition on Purkinje cells
i s the contrast enhancement effect of lateral inhibition. Thus any local
increase in activity will be accompanied by a surrounding field of depressed
activity. There also appears to be some specific contralateral inhibition
produced by Purkinje recurrent collaterals.

The existence o f Purkinje recurrent collateral synapses on Golgi cells
is very interesting. The effect i s that o f both positive and negative feedback
since the affected parallel fibers both excite the Purkinje cells directly and
inhibit them via basket and stellate cells. The total effect may be that
when a general area of the cerebellar cortex i s actively engagedinprocessing
information, the Golgi cells limiting the input to that area are suppressed,
thus allowing input to that area more free access. This would then con-
stitute a crude form of attention mechanism. Any area actively engaged
in processing information would be given priority over other areas that
are inactive at the time. This of course is quite speculative, but a rather
pregnant possibility.

The function of Purkinje recurrent collateral synapses with basket
cells i s not clear. The effect i s certainly that o f positive feedback. Positive
feedback is commonly used in electronic circuitry to produce one or the
other o f two effects: either oscillatory behavior or bistable switching
behavior. There i s no evidence o f any oscillatory effects in the cerebellum
that are likely to be mediated by Purkinje recurrent collaterals. There is,
however, a curious bistable effect in the firing rate of Purkinje cells that may
be caused by the Purkinje recurrent collateral interaction with the various
interneurons. Although a Purkinje cell sometimes is spontaneously active,
at other times the same cell i s completely quiet except for climbing fiber
responses. This rather implies that Purkinje cells have at least two stable
states, one spontaneously active, the other completely silent. The transition
between states seems to be somewhat correlated with climbing fiber
activity [3]. We might speculate that certain parts o f the cerebellum are
switched on by an attention mechanism when they are needed, and
switched off again when they are not in use. The Purkinje collateral -
basket cell or Golgi cell circuit may provide the positive feedback necessary
to switch between states. Specific climbing fiber patterns could provide
the trigger signal to initiate the switching. Climbing fiber inputs to Golgi
cells may be the means by which climbing fibers trigger Purkinje cells
into an active state. Climbing fiber inputs to stellate a (or basket and
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stellate b) cells might trigger Purkinje cells into a quiet state. Although
these notions are admittedly tenuous, such activity certainly i s character -
istic o f control systems far less complex than the brain. I t should not be
surprising if similar behavior i s found in the brain.

I.Effects of the Intracerebellar Nuclei

I t must be emphasized that details o f the microstructure in the intra-
cerebellar nuclei are much less well defined than in the cerebellar cortex.
Even less i s known about detailed interactions and pathways outside the
cerebellum altogether. However, it i s fel t that the following type of argu-
ment must eventually be made before the function of the cerebellum can
be said to be understood.

STELLATE CELLS
I

GRANULE CELLS

GOLGI CELLS

rnf, c f

FIG. 11. Interaction between the cerebellar cortex and nuclear cells. Mossy fibers act
on Purkinje cells, which act as modified Perceptron response cells. Mossy fibers,
climbing fibers, and Purkinje axons all interact in nuclear cells.

Nuclear cells in the cerebellar and Deiters nuclei are contacted by
collaterals from mossy fibers, collaterals from climbing fibers, and Purkinje
axons. Thus circuits o f the type shown in Fig. 11 probably exist.

The frequency of firing o f the Purkinje cell i s o f the form

f p = f c k c ~ - X,(fm,,fm,,f&, . . .,fmJ +fop (7)
where fP i s firing rate o f Purkinje cell, fc firing rate o f climbing fiber,
lccp i s the climbing fiber input-Purkinje cell output transfer function,
Xi(fml,. . .,,fm,) i s the input to the Purkinje of a learned pattern M, of
mcssy fiber inputs (the sign i s negative since the Purkinje learns to pause),
and,fop i s steady-state rate o f Purkinje.
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The firing rate of the nuclear cell, which i s also spontaneously active,
i s given by

fN = fckcN - fpkpN -k fmlkmN -k fON (8)

where ,$ON i s the spontaneous firing rate o f the nuclear cell and kcN i s the
climbing fiber input-nuclear cell output transfer function. Substitution o f
(7) in (8) gives

fN = fc(kclrl - kp) i - f m k m ~ + XL(fml, - - . , fm~) +fo (9)
where k, i s the combined effect of kpN and kcp and fo i s the combined
effect of fop and YON.

Several interesting observations can be made from Eq. (9). First, the
output of the nuclear cell i s directly affected by mossy fiber input. Thus
the nuclear cell may be part of a reflex arc. Second, the strength of this
reflex arc i s modulated by patterns arriving on the mossy fibers corres -
ponding to patterns previously stored by climbing fibers. Third, the effect
o f climbing fiber activity fc on the nuclear cell depends on the factor
(kcN - kp); k, i s a negative quantity since kPN, the effect o f the Purkinje
on the nuclear cell, i s inhibitory, and kc,, the effect o f the climbing fiber
on the Purkinje, i s the inactivation response. Thus the factor  kc^ - k,)
i s always positive.

Since the climbing fiber pattern i s stored in the Xi pattern, the effect
o f the mossy fiber Xi pattern associated with the climbing fiber pattern
reinforces the climbing fiber’s effect on the nuclear cell. Thus, as learning
takes place, less and less input from the climbing fiber i s necessary to
produce the same amount of nuclear cell response.

Fourth, the effect of an input on mossy fibers through the function
Xi(fm,, . . ., fm,) i s a positive response. The Xi function in (7) decreases
the output of the Purkinje cell and hence in (9) increases the output o f
the nuclear cell.

V. IMPLICATIONS

I t i s reasonably certain that patterns o f activity on mossy fibers re-
present to the cerebellum the position, velocity, tension, and so on of the
muscles, tendons, and joints. This i s feedback information that i s required
to control precise or sequential movements, or both. This information
must modulate signals to the muscles to achieve precise movement under
varying load conditions. This feedback information must also be able to
generate the next command in a sequence of muscle commands in order to
produce sequential motor activity at a subconscious level. The functioning
o f the cerebellum, as hypothesized in this article, seems rather well suited
for either or both of these behaviors.
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Assume, for example, that the red nucleus sends a command C1

through the inferior olive and thence via climbing fibers through Purkinje
cells and nuclear cells to the muscles. At this time the muscles and joints
in their resting state are sending pattern M, to the cerebellum via mossy
fibers. Thus C, is imprinted on MI. Now when C, reaches the muscles,
they respond by moving to a new position. This generates a new mossy
fiber pattern M2. By this time a second command C2 i s sent from the red
nucleus. Command C, will be imprinted on Mz. In a similar manner C,
is imprinted on MB, C, on M4,and so on. This process may be continued
for a lengthy sequence of motor commands C,C2C3 * . . and resultingbody
positions M1MZM3 m a . . Upon repetition o f the sequence of motor
commands C1CzC3 * -, the signals from the red nucleus will be reinforced
at the nuclear cells by output from Purkinje cells responding to feedback
mossy fiber patterns M,MzM, - a. Upon each repetition more and more
of the muscle control can be assumed by the output o f the Purkinje cells,
and less attention is required by higher motor centers.

Once learning i s complete, the sequence of motor commands C,C,C,C4

can be elicited entirely from the Purkinje cells via the mossy fiber input
patterns M1M2M3Md. . -. Litt le input i s required from higher centers
except perhaps to initiate or terminate the sequence.

The theory so far has no means o f initiating or terminating such a
sequence. I t i s possible that this operation takes place in the intracerebellar
nuclei or outside the cerebellum altogether. Lack of detailed anatomical
and physiological data makes it difficult to conjecture how this function
is accomplished. However, it i s perhaps not unreasonable to speculate
that the Schiebel collaterals of climbing fibers to Golgi cells or stellate a
cells, or to both, may be related to initiation or termination o f sequence
generation in the cerebellar cortex. The Golgi cells control the mossy fiber
input pathway, which i s a vital link in sequence generation. Excitation
of Golgi cells via Schiebel collaterals could cut off mossy fiber input to
the cerebellum and terminate a sequence. Inhibition of Golgi cells by
Purkinje recurrent collaterals, on the other hand, would lower Golgi
inhibition, possibly in response to specific patterns. This might initiate
sequences upon certain key commands. Golgi cells may also have variable
synapses, since they possess both spine synaptic contacts with parallel
fibers and input from climbing fibers. However, more data are necessary
before confident predictions are possible on these points.

The circuit described can also function as a modulator o f conscious
motor activity on climbing fibers. Assume that a sequence of motor
commands from higher centers C,C2C3 * - - had been imprinted on a series
of mossy fiber patterns M1M2M3 - - . as before. If the muscles upon receipt
of conscious command C1 were to encounter greater than usual resistance,
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this would delay or prevent the appearance o f M2 at the cerebellum, and
instead a pattern Mi would appear, signaling the existence of extra-
ordinary resistance to motion. The pattern Mi would modify pattern C,
in a manner different from M,, perhaps calling for additional force or
some other modification. What M; produces i s governed by what pre-
viously had been imprinted onMi.If previously C;, an additional force
command, had been imprinted on Mi, the C; would be substituted for
C, automatically whcn the Mi feedback signal was received instead of the
usual M2. By this means a sequeuce o f conscious commands can be
modified at the reflex level by cerebellar activity. This perhaps i s the means
by which motor activity such as running or skating can be under conscious
control in a general sense but under reflex feedback control at the individual
muscle level.

The implication, then, is that climbing fibers carry from higher centers
control patterns that are to b e stored. In this form the cerebellar memory
becomes a form of conditioned reflex. If the climbing fibers are cut, we
would expect deficiencies primarily in conscious motor control and further
conditioning. This may in some measure account for data of Mettler [12],
which noted a lack of obvious severe effects when climbing fibers were cut.

Marr [Illsuggests an interesting analogy of the cerebellum as a
language translator between data in the cerebrum and command sequences
needed by the muscles. The cerebellum thus becomes analogous to a com-
puter compiler that translates source language instructions into machine
language instructions for execution by the machine hardware. Following
the same analogy, the cerebellum becomes a subroutine library in which
subroutines can be stored from above and cycled from below.

VI. PREDICTIONS

The theory o f cerebellar function set forth in this article makes possible
a numbzr of predictions that are subject to experimental verification:

1. Parallel fibers do not f ire in coordinated beams in a conscious active
animal, but rather in a widely scattered, apparently random fashion.

2. One percent or less parallel fibers are active simultaneously, and this
activity level i s quite constant.

3. Parallel fiber synapses with dendritic spines on Purkinje cells, basket
cells, and stellate cells are modifiable synapses.

4. The Purkinje cell response can be conditioned by climbing fiber
inputs. Climbing fiber spikes are the unconditioned stimulus (US). Mossy
fiber activity patterns are the conditioned stimulus (CS). The climbing
fiber inactivation response i s the unconditioned response (UR).
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5. The conditioning mechanism i s a three-way coincidence between
the inactivation response, a cell spike due to parallel fiber excitation, and
parallel fiber synaptic activity.

6. Parallel fiber synapses on Purkinje cells, basket cells, and stellate b
cells are weakened by incorrectly firing during climbing fiber activity.

7. Climbing fibers are essential for acquisition of certain types o f
motor skills, and for cerebellar feedback control o f conscious motor
activity. They are less necessary for conditioned reflex behavior.

8. Some of the mechanisms hypothesized in the cerebellum will almost
certainly also occur in other parts o f the brain. The expansion recoding
system; the imprinting of patterns from specific fiber inputs onto synapses
of nonspecific fibers; the use o f laterally coursing inhibitory interneurons
to achieve both positive and negative synaptic weight adjustment; the
weakening of synaptic weights during training to achieve convergence ;
these are all basic principles o f data processing likely to occur elsewhere
in the nervous system.
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