
Fast, bias-free tracking of single
particles with variable size and shape

Andrew J. Berglund, Matthew D. McMahon, Jabez J. McClelland, and
J. Alexander Liddle

Center for Nanoscale Science and Technology, National Institute of Standards and
Technology, Gaithersburg, MD 20899

andrew.berglund@nist.gov

Abstract: We introduce a fast and robust technique for single-particle
tracking with nanometer accuracy. We extract the center-of-mass of an im-
age with a simple, iterative algorithm that efficiently suppresses background-
induced bias in a simplistic centroid estimator. Unlike many commonly used
algorithms, our position estimator requires no prior information about an im-
age and uses only simple arithmetic operations, making it appropriate for
future hardware implementation and real-time feedback applications. We
demonstrate it both numerically and experimentally, using an inexpensive
CCD camera to localize 190 nm fluorescent microspheres to better than
5 nm.
OCIS codes: (180.2520) Fluorescence microscopy, (100.2960) Image analysis
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1. Introduction

In single-particle tracking experiments, fluorescent molecules, quantum dots, metal nanoparti-
cles, and polymer microspheres are routinely localized on a 10 nm length scale, and in excep-
tional cases even on a 1 nm length scale, despite the much longer optical wavelength encoding
that information. This ability to track the nanometer-scale motion of small objects with opti-
cal microscopy has greatly improved our experimental access to nanoscale biological behavior
[1, 2, 3, 4] and microscale-to-nanoscale colloid interactions [5, 6, 7].

In most cases, particle tracking is accomplished by analyzing a series of digital images, for
example the output from a CCD camera. However, the analysis of these images presents a dif-
ficult data processing task, and a correspondingly large body of research has been devoted to
developing and testing particle-tracking software routines. When selecting an algorithm for
extracting the underlying position of a particle from a noisy image, researchers have been
forced to accept tradeoffs among accuracy, robustness, and speed. For example, it is gener-
ally accepted that the most accurate results can be achieved by fitting an image to a constrained
(usually Gaussian) instrument resolution function [8, 9, 10]. Unfortunately, the computational
complexity of such an algorithm renders it quite slow and therefore unavailable for real-time or
time-critical applications. Other algorithms offer much shorter execution times by incorporat-
ing prior knowledge of the image shape through masking [10] or spatial filtering [11]. However,
these methods are not robust to variations in the size or shape of the tracked object that might
arise when tracking an asymmetric object such as a nanorod or when a single particle diffuses
into and out of focus.

Moreover, recently developed experimental techniques for manipulating nanoparticles using
feedback control [12, 13, 14, 15, 16, 17] place stringent requirements on the speed and accu-
racy of particle-tracking routines. Because image processing is simply too slow, many particle-
tracking feedback controllers use photon counting signals rather than CCD imaging methods
to localize particles in real time. However, real-time control of multiple, spatially-separated
particles [18] demands an imaging method and will be directly enhanced by the development
of simple, fast, and accurate algorithms for localizing individual particles within subsections
of a larger image. Future experiments that combine nanometer-resolution particle localization
with real-time feedback control will enable new techniques for monitoring and engineering
structures at the nanoscale.

In this paper, we progress toward this goal of robust, real-time particle tracking by intro-
ducing a simple, fast estimator for extracting the center position of an object from an image
corrupted by noise, pixelation, and a constant (unknown) background. Our algorithm is a re-
finement of the simple centroid or center-of-mass (CM) algorithm, which is very fast to execute
but only provides an unbiased estimate when an object happens to lie exactly at the center of
the image. In the estimator algorithm developed here, we enforce this otherwise serendipitous
arrangement by iteratively testing whether an object lies at the image center and subsequently



refining the image window in order to better center the object. This procedure efficiently sup-
presses the estimator bias (exponentially in the number of iterations), resulting in a very fast,
unbiased localization algorithm with sub-pixel accuracy. It requires no input parameters and
makes no assumptions about the object shape, making it robust and effective for localizing
objects with varying sizes or complex shapes. Furthermore, the algorithm is computationally
simple and can be executed with a few lines of code. Its performance is comparable to or
exceeds full nonlinear least-squares minimization in many cases, while its execution time is
orders of magnitude shorter. For all of these reasons, our algorithm is a promising candidate for
implementation in signal-processing hardware for real-time applications.

The paper is organized as follows. In section 2, we examine the error in the CM estimator in
detail and show that this error can be estimated in real-time. In section 3, we define an iterative
“Virtual Window” CM (VWCM) algorithm that exploits this fact to eliminate the average error
in the CM estimator. In section 4, we present the results of extensive Monte Carlo simulations
of the new estimator, and in section 5 we apply the VWCM in our own particle-tracking exper-
iment. Finally, section 6 summarizes our results and provides an outlook for future applications
and refinements.

2. Bias in the Center-of-Mass Estimator

As mentioned in section 1, the center-of-mass (CM) estimator of an object’s position has many
desirable characteristics but significant drawbacks as well. It is simple, very fast to execute,
and provides an estimate with no assumptions about the shape or size of the underlying object.
Unfortunately, it is strongly biased by any background signal and exhibits poor noise rejection
outside the region of interest. In this section, we will derive the mean error, or bias, in the CM
estimator and show that this error can itself be estimated in real-time.

With the output of a CCD camera in mind, we define an image to be a two-dimensional
matrix of intensities S = S jk representing the total number of counts in pixel Pjk with width
∆ centered at location (x,y) = (x jk,y jk).1 We assume the underlying signal is drawn from a
Poisson distribution with spatially-dependent density NS(x,y)/∆2, which represents the point-
spread function of the optical system convolved with the shape of the fluorescent object in
units of counts per pixel area. For a general scenario, we can also include a background signal
with mean NB(x,y)/∆2 and (spatially-uncorrelated) variance σ 2

B(x,y)/∆2. The noise term may
represent scattered light or technical noise in the camera, with statistical properties (e.g. Poisson
or Gaussian distribution) absorbed into the definitions of NB and σ2

B . Mathematically, we can
now write the mean and covariance of the signal from a particle at position (x0 ,y0) as integrals
over each pixel:

〈
S jk

〉
=

∫∫

Pjk

dxdy
∆2

[
NS(x− x0 ,y− y0)+NB(x,y)

]
(1)

〈
S jkS j′k′

〉
=

〈
S jk

〉〈
S j′k′

〉
+δ j j′δkk′

∫∫

Pjk

dxdy
∆2

[
NS(x− x0 ,y− y0)+σ2

B(x,y)
]
.

(2)

Now consider the CM estimator of the object’s x-position x0 :

x̂CM =
∑ jk x jkS jk

∑ jk S jk
. (3)

1The pixel size ∆ and coordinates (x,y) are always considered in the object plane of the optical system, so that, for
example, ∆ is the actual CCD pixel size divided by the system magnification M.



The normalization factor (denominator) makes x̂CM a nonlinear function of the image S jk, how-
ever a linearized approximation is accurate to order N −1/2, where N = ∑ jk S jk is the total
number of counts in the image. The linearized approximation to Eq. (3) is

x̂CM =
1

〈N 〉∑jk
x jkS jk , 〈N 〉= ∑

jk

〈
S jk

〉
. (4)

We can now calculate the mean and variance of the centroid estimator for an image S jk satisfy-
ing (1):

〈
x̂CM

〉
=

1
〈N 〉∑jk

{
x jk

∫∫

Pjk

dxdy
∆2

[
NS(x− x0 ,y− y0)+NB(x,y)

]}
(5)

〈
x̂2

CM

〉−〈
x̂CM

〉2 =
1

〈N 〉2 ∑
jk

{
x2

jk

∫∫

Pjk

dxdy
∆2

[
NS(x− x0 ,y− y0)+σ2

B(x,y)
]}

. (6)

Eqs. (5)-(6) allow us to calculate the statistics of the centroid estimator for any underlying
image function NS(x,y) superimposed on a spatially-varying, Poisson- or Gaussian-distributed
background. The mean and mean-square errors (bias and variance) resulting from pixelation,
truncation, shot noise, and background noise can each be derived from these expressions.

Let us now calculate the bias arising from a spatially-invariant, though noisy, background
signal with NB(x,y) = NB and σ 2

B(x.y) = σ2
B . We will assume that the particle is near the cen-

ter of the image and is not significantly truncated at the edges of the array. Introducing the
shorthand notation,

N∆
S (x jk− x0 ,y jk− y0) =

∫∫

Pjk

dxdy
∆2 NS(x− x0 ,y− y0)

and rearranging Eq. (5), we find that the average CM estimator error, the bias BCM , can be
written as

BCM ≡
〈
x̂CM − x0

〉

=
1

∑ jk N∆
S (x jk− x0 ,y jk− y0)

[
∑
jk

(x jk− x0)N
∆
S (x jk− x0 ,y jk− y0)+NB ∑

jk
(x jk−〈x̂CM 〉)

]
.

(7)

Let us now consider the different contributions to the bias in Eq. (7). The normalization factor
∑ jk N∆

S (x jk − x0 ,y jk − y0) represents the average number of detected counts from the particle
itself, and is only a weak function of x0 and y0 as long as the particle image is not strongly
truncated at the edges of the array. We may then denote this term by 〈NS〉 and neglect its
functional dependence on (x0 ,y0). The first term in brackets on the right-hand side of Eq. (7) is
a discretized analog of the continuous center of mass

∑
jk

(x jk− x0)N
∆
S (x jk− x0 ,y jk− y0)≈

∫∫ dxdy
∆2 xNS(x,y) = 0. (8)

The last integral is proportional to the x-coordinate of the center of mass of the image function
NS(x,y), which we assume to be 0 [this condition can always be enforced through the definition
of NS(x,y)]. Violations of the approximate equality in Eq. (8) correspond to estimator bias
arising from pixelation and truncation of the underlying image. Assuming these are negligible
for now, we are left with the following expression for the estimator bias

BCM ≈
〈NB〉
〈NS〉

(
x̄−〈x̂CM 〉

)
(9)
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Fig. 1. Cartoon illustration of the iterative VWCM algorithm operating on an image of
a particle with a constant background. The background biases the center-of-mass (CM)
estimate towards the center of the array. The first, biased centroid estimate (yellow) is
offset by δ1,x from the array center. At the second iteration, the window is truncated by an
amount 2δ1,x along x and a new centroid (blue) is calculated within this window. Where
part of a pixel is truncated by the “virtual window,” its value is scaled proportionally to
the relative area. At each iteration, the window is further adjusted until the center of the
window and the CM estimate coincide, giving a bias-free estimate of the particle position.

where 〈NS〉 and 〈NB〉 are the average number of signal and background counts in the entire
image, respectively, and x̄ is the geometric center of the pixel array, i.e. the unweighted average
x-coordinate. Eq. (9) reveals the key fact that the estimator bias is proportional to the difference
between the center of the pixel array x̄ and the average estimate 〈x̂CM 〉. The constant of propor-
tionality is the ratio of background to signal counts in the image. Recall that the estimator bias
is unknown to the experimenter, since the underlying particle position x0 is unknown. However,
the difference between the estimate x̂CM and the center of the pixel array can be calculated in
each shot of the experiment. In our algorithm described below, we exploit this fact in order to
form an online estimate of the bias then correct it by truncating the pixel window in order to
center the particle in the image array.



3. Virtual Window Centroid Algorithm

In section 2, we found that the bias in the CM estimator x̂CM can itself be estimated in real time.
The central concept of our Virtual Window Center-of-Mass (VWCM) estimator is to use this
information to modify the image window in order to center it on the object and eliminate the
estimator bias. The procedure is iterative, such that at the nth iteration, we calculate the center
of mass x̂(n)

CM then modify the image array by eliminating a portion of the image near one edge,
effectively shifting the geometric center x̄(n) of the window. The update rule that defines our
iterative algorithm is to truncate the window at the nth iteration such that x̄(n+1) = x̂(n)

CM.
To see how eliminating a portion of the image shifts the array center, consider eliminating a

single row of pixels (width ∆) from the edge of an array. The center of the resulting (rectangular)
array is shifted by ∆/2 as a result. If our image resolution were infinitely fine, we could translate
the array center x̄ any desired amount by discarding arbitrarily small portions of the image at
one edge. Since we do not have infinitely fine resolution in practice, we may still approximate
a sub-pixel truncation of the array by weighting the pixels and pixel coordinates along one
edge of the image. For example, if we wish to translate the image array by a small amount
δ/2 < ∆/2, we simply multiply the pixel intensities S jk at the one edge by 1−δ/∆ and redefine
the coordinates along that edge by x jk → x jk + δ . This procedure approximates the truncation
of a region of width δ from the negative edge of the image, defining a virtual window shifted
by δ/2 as desired: x̄ → x̄± δ/2. To complete the algorithm, the user sets two termination
conditions, ε and nmax, such that the algorithm terminates when |x̄(n+1)− x̄(n)|/∆ < ε or the
number of iterations exceeds nmax. With these concepts, we can now precisely describe the
VWCM algorithm, displayed graphically in figure 1:

Virtual Window Center-of-Mass (VWCM) algorithm

1. Let the image S(1) = S and coordinates (x(1)
jk ,y(1)

jk ) = (x jk,y jk) correspond to the raw data.

2. Beginning with n = 1, Calculate the center-of-mass x̂(n)
CM from the image S(n) and coordi-

nates x(n)
jk :

x̂(n)
CM =

∑ jk x(n)
jk S(n)

jk

∑ jk S(n)
jk

.

Repeat for ŷ(n)
CM .

3. Define a new image S(n+1) and new coordinate system (x(n+1)
jk ,y(n+1)

jk ) by truncating the
previous image such that

x̄(n+1) = x̂(n) , ȳ(n+1) = ŷ(n).

For subpixel shifts, use the virtual window procedure described above.

4. Iterate until |x̄(n+1)− x̄(n)|< ε or n = nmax.

The update rule x̄(n+1) = x̂(n)
CM corresponds to a shift or distortion of the image that centers

the array on the current estimate of the particle position. Denoting the bias in the nth iteration
by B(n)

CM = 〈x̂(n)
CM〉− x0 , we find from Eq. (9) and the update rule x̄(n+1)

CM = x̂(n)
CM

B(n)
CM =

(
1

1+ 〈NS〉/〈NB〉
)n−1

B(1)
CM (10)



where 〈NS〉 and 〈NB〉 are the average number of counts arising from the signal and background
respectively. Eq. (10) shows that the bias in the VWCM algorithm tends exponentially to zero
with the number of iterations n. The convergence rate depends on the signal-to-background ra-
tio 〈NS〉/〈NB〉, but the algorithm requires no knowledge of this quantity. In fact, the algorithm
requires no input beyond the image S and pixel coordinates (x jk,y jk), and termination condi-
tions ε and nmax. Finally, note that the algorithm requires only simple arithmetic operations on
the image and is therefore very fast, particularly when the signal-to-background ratio gives a
satisfactory convergence rate.

4. Numerical Simulations

We performed extensive numerical simulations in order to confirm the predicted features of
the VWCM algorithm and compare its performance to other algorithms. For this test, we im-
plemented four algorithms in standard numerical analysis software. We chose to compare the
Gaussian fit, Gaussian mask [10], CM and VWCM. We included the Gaussian fit, because it
is generally assumed to provide superior accuracy, and the Gaussian mask and CM because
these are among the fastest executing algorithms and therefore most promising for real-time
implementation.

For the Gaussian fit, we used a function of the form

f (x,y) = Aexp

[
− (x− x0)2

2σ2
x

− (y− y0)2

2σ2
y

]
+B (11)

where x0, y0, σx, σy, A, and B were the fit parameters. For both the Gaussian mask (see Ref. [10]
for details) and the VWCM, we used termination conditions ε = 10−3 and nmax = 200. Finally,
we preprocessed every image array S passed to the algorithms by subtracting the minimum
value from the entire array. This simple procedure ensures that the counts in each pixel are
nonnegative (a prerequisite for the VWCM algorithm) and removes spuriously large offsets,
which severely degrade the CM algorithm, make the Gaussian fit more sensitive to its initial fit
conditions, and require more iterations to reach convergence in the VWCM.

A graphical summary of our simulations is shown in Fig. 2. In each case, we generated under-
lying count rate functions NS(x,y) corresponding to fluorescent objects with varying brightness,
shape and position, as described in the figure caption. We then integrated NS(x,y) over the pixel
coordinates to generate the pixelated rate N∆

S (x jk,y jk). For each image realization, an array of
Poisson-distributed random numbers was generated based on this rate. Finally, we added con-
stant Poisson-distributed background noise, with a rate determined by the user-defined signal-
to-background ratio 〈NS〉/〈NB〉. The pixel size was taken to be ∆ = 123 nm, corresponding to
our experiment (see section 5). For each type of object, we varied the position across a square
grid corresponding to one pixel, generating a set of 1000 images at each position. The underly-
ing object position was estimated for each image using the four algorithms, and each resulting
distribution is plotted in Fig. 2 as a circle centered at the mean estimated position with a radius
of one standard deviation (1σ ).

Note that the Gaussian fit requires an initial parameter set that strongly affects its conver-
gence, while the Gaussian mask requires a mask size and initial position guess in order to
execute. For each particular image, the Gaussian mask’s performance can be optimized by ad-
justing the mask size. Because robustness and automation are a key performance objective for
our algorithm development, in Fig. 2 we optimized the Gaussian mask for the tightly focused
image then used that mask shape for the remaining images without further “by-hand” adjust-
ment. In contrast to the Gaussian fit and mask algorithms, the VWCM accepts no input other
than the image matrix S and is reliable and easy to use in practice.
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Fig. 2. Simulation results showing the bias and localization accuracy achieved for 21×21
pixel images using the Gaussian fit (GF), Gaussian mask (GM), CM and VWCM algo-
rithms. For each image, the underlying position was varied over a grid of positions within
the center pixel (dashed line). The resulting distribution of positions is displayed as a circle
centered at the mean with 1σ radius as defined in the text. “N.C.” denotes instances when
the Gaussian fit and mask algorithms either failed to converge or had large errors with the
resulting 1σ circles larger than the pixel. Image details: The first four images represent the
(non-paraxial) point-spread function of a dipole emitter [19] with wavelength λ = 550 nm,
at depths z = 0 nm, 500 nm, 750 nm and 1000 nm imaged through a microscope with mag-
nification M = 60 and numerical aperture 1.2. The final image is a simple rod shape. Each
image has 〈NS〉= 〈NB〉= 5000 photons.
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CM
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Fig. 3. Positions of a single 190 nm fluorescent microparticle stepped in 100 nm increments
as estimated by the Gaussian fit (GF, black), CM (green), and VWCM (blue). Results are
plotted as in Fig. 2, but with 2σ radii for better visibility. Note the extreme distortion
introduced by bias in the CM algorithm. As a typical example, we quote the following
results for the upper left position: the bias along x (measured from the Gaussian fit estimate)
Bx, standard deviations along x (σx) and algorithm execution time (T ). GF: Bx = 0 nm, σx =
1.0 nm, T = 66 ms. CM: Bx = 127 nm, σx = 0.6 nm, T = 0.2 ms. VWCM: Bx =−1.3 nm,
σx = 2.2 nm, T =2.7 ms.

Overall, the VWCM is fast, accurate, and robust. None of the other algorithms we inves-
tigated shared this combination of properties: the Gaussian fit algorithm has excellent overall
accuracy and precision but is very slow and fails to converge in some cases; the Gaussian mask
algorithm is both fast and accurate for a known, nearly-Gaussian image shape but its perfor-
mance is significantly degraded when the mask is ill-suited to the object; the CM algorithm
is the fastest, but exhibits a severe bias towards the geometric center of the image array. As
displayed in figure 2, the VWCM completely eliminates the bias in the CM algorithm and per-
forms robustly for a variety of underlying object shapes and sizes. It is less accurate than the
Gaussian mask and Gaussian fit for tightly focused images within a large field but exhibits
comparable and in some cases dramatically improved accuracy for images that deviate from
Gaussian shape. Its execution time is typically a few times longer than the CM (corresponding
to the number of iterations n require to reach convergence) but 2 to 10 times shorter than the
Gaussian mask and 100 to 1000 times shorter than the Gaussian fit even with initial parameters
chosen favorably in order to minimize “runaway” unstable cases that do not converge at all.

5. Experimental Results

In order to test the VWCM algorithm in a realistic experimental setting, we tracked the motion
of microparticles using digital video microscopy. Our samples consisted of 190 nm diameter
fluorescent dye-labeled polystyrene microspheres dispersed and dried (immobilized) on a glass
cover slip. The sample was illuminated by a 488 nm solid-state laser, and fluorescence was
collected through a water-immersion objective (magnification 60x, NA 1.2) and separated from
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Fig. 4. VWCM position estimates (blue squares) for a binary aggregate of two microparti-
cles stepped in 100 nm increments parallel to the image plane and 1 µm increments out of
the focal plane. Approximately 30 images were taken at each position. Error bars represent
one standard deviation in the estimate positions, and are inside the data points for some
cases. The standard deviation along x ranged between 4.0 nm and 5.6 nm for this series.
The red circles are a guide to the eye, spaced at 100 nm intervals.

the excitation by a dichroic filter. Images were obtained with a CCD camera operating at 30
frames per second. Using a three-axis piezoelectric stage, we displaced particles with nanome-
ter precision, and for each image we located the object using the four algorithms discussed in
section 4.

In figure 3, we show the distribution of estimated particle positions when a single in-focus
particle was scanned in 100 nm increments over a 5×5 grid. At each point, approximately 30
images were captured and the resulting estimated position distributions are plotted as circles
with 2σ radius (for clarity). This type of data, consisting of in-focus images within a large field
of view, represents a “best-case” scenario for the Gaussian fit and mask algorithms (in both
accuracy and execution time), since the point-spread function for this case is well-approximated
by a Gaussian with constant shape. The data in the figure show that the VWCM eliminates the
bias in the CM and gives position estimates commensurate with the Gaussian fit and mask. The
latter algorithms are roughly two times more accurate than the VWCM for this in-focus case,
but the VWCM executes faster and with no input parameters.

To see how the VWCM performs with images of a more complex nature, we captured images
of an asymmetric aggregate of (most likely) two microspheres as it is moved outside the focal
plane of the microscope. This asymmetric, extended object was moved in 100 nm increments
over five steps while simultaneously defocusing by 1 µm at each step. The resulting images and
position estimates are shown in figure 4. Despite the complicated, asymmetric particle shape,
the VWCM algorithm tracks the particle motion with high fidelity. For data of this type, the
initial parameters for the Gaussian fit and the mask size for the Gaussian mask algorithm would



need to be tailored for each image in order to achieve satisfactory tracking. In contrast, the
VWCM requires no adjustment for these (or any other) images.

6. Conclusions

In this paper, we described a new algorithm for finding the center of mass of a compact image
while suppressing the bias due to a flat background. This VWCM algorithm iteratively centers
the particle in a “virtual window” where there is no bias. We demonstrated the VWCM both
numerically and experimentally, confirming its predicted simplicity and robustness. It is well-
suited for real-time applications in which particles of various sizes and shapes will be tracked
simply, robustly and accurately. In the future, we hope to extend our virtual-window method to
treat images with a sloped (non-constant) background.
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