Identification of the dominant precession damping mechanism in Fe, Co, and Ni by
first-principles calculations
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The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenolog-
ical treatment of damping. This paper presents first-principles calculations of the damping param-
eters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measure-
ments. This agreement establishes the dominant damping mechanism for these systems and takes
a significant step toward predicting and tailoring the damping constants of new materials.

Magnetic damping determines the performance of
magnetic devices including hard drives, magnetic ran-
dom access memories, magnetic logic devices, and mag-
netic field sensors. The behavior of these devices can be
modeled using the Landau-Lifshitz (LL) equation [1]
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or the essentially equivalent Gilbert (LLG) form [2, 3].
The first term describes precession of the magnetization
m about the effective field Hog where v = guopup/h is the
gyromagnetic ratio. The second term is a phenomeno-
logical treatment of damping with the adjustable rate
A. The Gilbert form replaces this term with am x m
using the dimensionless damping constant o« = A/ym.
The LL(G) equation adequately describes dynamics mea-
sured by techniques as varied as ferromagnetic resonance
(FMR) [4], magneto-optical Kerr effect [5], x-ray absorp-
tion spectroscopy [6], and spin-current driven rotation
with the addition of a spin-torque term [7, 8].

Access to a range of damping rates in metallic mate-
rials is desirable when constructing devices for different
applications. Empirically, doping NiFe alloys with tran-
sition metals [9] or rare earths [10] has produced com-
pounds with damping rates in the range of = 0.01
to 0.8. A recent investigation of adding vanadium to
iron resulted in an alloy with a decreased damping rate
[11]. Unfortunately, the damping rate of a new mate-
rial cannot be predicted because there has not yet been
a first-principles calculation of damping that quantita-
tively agrees with experiment. The challenging pursuit
of new materials with specific or lowered damping rates
is further complicated by the expectation that, as device
size continues to be scaled down, material parameters,
such as A, should change [12]. A detailed understanding
of the important damping mechanisms in metallic ferro-
magnets and the ability to predictively calculate damping
rates would greatly facilitate the design of new materials
appropriate for a variety of applications.

The temperature dependence of damping in the tran-
sition metals has been carefully characterized through
measurement of small angle dynamics by FMR [13, 14].
While one might naively expect damping to increase

monotonically with temperature, as it does for Fe, both
Co and Ni also exhibit a dramatic rise in damping at low
temperature as the temperature decreases. These ob-
servations indicate that two primary mechanisms are in-
volved. Subsequent experiments [15, 16] partition these
non-monotonic damping curves into a conductivity-like
term that decreases with temperature like the conduc-
tivity and a resistivity-like term that increases with tem-
perature like the resistivity. The two terms were found
to give nearly equal weight to the damping curve of Ni.

A number of mechanisms for damping in these systems
have been proposed [14, 17-24]. See the review by Hein-
rich [25] for a more complete discussion. However, none
of the models have been shown to quantitatively agree
with measured values. The torque-correlation model
of Kambersky [17] qualitatively matches the data, but
has not been quantitatively evaluated in a rigorous fash-
ion. Here, we report first-principles calculations of the
Landau-Lifshitz damping constant according to Kamber-
sky’s torque-correlation expression. Quantitative com-
parison of the present calculations to the measured FMR
values [13] positively identifies this damping pathway as
the dominant effect in the transition metal systems. In
addition to presenting these primary conclusions, we also
describe the relationship between the torque-correlation
model and the more widely understood breathing Fermi
surface model [18, 21], showing that the results of both
models agree quantitatively in the low scattering rate
limit.

The breathing Fermi surface model of Kambersky pre-
dicts
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This model offers a qualitative explanation for the low
temperature conductivity-like contribution to the mea-
sured damping. The model describes damping of uniform
precession as due to variations Oe, /00 in the energies
€n,, Of the single-particle states with respect to the spin
direction 6. The states are labeled with a wavevector
k and band index n. As the magnetization precesses,
the spin-orbit interaction changes the energy of electronic



states pushing some occupied states above the Fermi level
and some unoccupied states below the Fermi level. Thus,
electron-hole pairs are generated near the Fermi level
even in the absence of changes in the electronic popula-
tions. The 7 function in Eq. (2) is the negative derivative
of the Fermi function and picks out only states near the
Fermi level to contribute to the damping. g is the Landé
g-factor and up is the Bohr magneton. The electron-hole
pairs created by the precession exist for some lifetime 7
before relaxing through lattice scattering. The amount of
energy and angular momentum dissipated to the lattice
depends on how far from equilibrium the system gets,
thus damping by this mechanism increases linearly with
the electron lifetime as seen in Eq.2. Since the electron
lifetime is expected to decrease as the temperature in-
creases, this model predicts that damping diminishes as
the temperature is raised.

Because the predicted damping rate is linear in the
scattering time the damping rate cannot be calculated
more accurately than the scattering time is known. For
this reason it is not possible to make quantitative com-
parisons between calculations of the breathing Fermi sur-
face and measurements. Further, while the breathing
Fermi surface model can explain the dramatic temper-
ature dependence observed in the conductivity-like por-
tion of the data it fails to capture the physics driving the
resistivity-like term. This is a significant limitation from
a practical perspective because the resistivity-like term
dominates damping at room temperature and above and
is the only contribution observed in iron [13] and NiFe
alloys [26].

Kambersky’s torque-correlation model predicts
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and we will show that it both incorporates the physics of
the breathing Fermi surface model and also accounts for
the resistivity-like terms. The matrix elements ', (k) =
(n,k|[o™, Hso]|m, k) measure transitions between states
in bands n and m induced by the spin-orbit torque.
These transitions conserve wavevector k because they de-
scribe the annihilation of a uniform precession magnon,
which carries no linear momentum. The nature of these
scattering events, which are weighted by the spectral
overlap an(k) = (l/ﬁ)fdwl n(wl)Ank(wl)AMk(wl)’
will be discussed in more detail below. The electron spec-
tral functions A, are Lorentzians centered around the
band energies €, and broadened by interactions with the
lattice. The width of the spectral function 7 /7 provides a
phenomenological account for the role of electron-lattice
scattering in the damping process. The n function is the
same as in Eq. (2) and enforces the requirement of spec-
tral overlap at the Fermi level.

Equation (3) captures two different types of scatter-
ing events: scattering within a single band, m =n, for
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FIG. 1: Calculated Landau-Lifshitz damping constant for Fe,
Co, and Ni. Thick solid curves give the total damping pa-
rameter while dotted curves give the intraband and dashed
lines the interband contributions. Values for A\ are given in
SI units. The right axis is the equivalent Gilbert damping
parameter and the top axis is the full-width-half~-maximum of
the electron spectral functions.

which the initial and final states are the same, and scat-
tering between two different bands, m #n. As explained
in [17] the overlap of the spectral functions is propor-
tional (inverse) to the electron scattering time for intra-
band (interband) scattering. From this observation the
qualitative conclusion is made that the intraband contri-
butions match the conductivity-like terms while the inter-
band contributions give the resistivity-like terms. Evalu-
ation of Eq. (3) is more computationally intensive than
that of the breathing Fermi surface model and until now
only a few estimates for Ni and Fe have been made [19].

We have performed first-principles calculations of the
torque-correlation model Eq. (3) with realistic band
structures for Fe, Co, and Ni. Prior to evaluating Eq. (3)



TABLE I: Calculated and measured [13] damping parameters. Values for A are reported in 10 s~

1 while those for « are

dimensionless. Values in the first four columns indicate minima of the calculated or measured curves. The last two columns
list calculated damping due to the intraband contribution from Eq. (3) and from the breathing Fermi surface model [12],
respectively. Values for \/7 are given in 10?2 s~2. Published numbers from [13] and [12] have been multiplied by 47 to convert

from the cgs unit system to SI.

Qcalc Acalc Ameas Acale/Ameas (A/T)intra (A/T)BFS
bee Fe (001) 0.0013 0.54 0.88 0.61 1.01 0.968
bee Fe (111) 0.0013 0.54 - - 1.35 1.29
hep Co (0001)  0.0011 0.37 0.9 0.41 0.786 0.704
fec Ni (111) 0017 2.1 2.9 0.72 6.67 6.66
fce Ni (001) 0.018 2.2 — — 8.61 8.42

the eigenstates and energies of each metal were found us-
ing the linear augmented plane wave method [27] in the
local spin density approximation (LSDA) [28-30]. De-
tails of the calculations for these materials are described
in [31]. The exchange field was fixed in the chosen equi-
librium magnetization direction. Calculations of Eq. (3)
presented in this paper are converged to within a stan-
dard deviation of 3 %, which required sampling (160)3
k-points for Fe, (120)? for Ni, and (100)? k-points in the
basal plane by 57 along the c-axis for Co. Electron-lattice
interactions were treated phenomenologically as a broad-
ening of the spectral functions. The Fermi distribution
was smeared with an artificial temperature. Results did
not vary significantly with reasonable choices of this tem-
perature since the broadening of the Fermi distribution
was considerably less than that of the bands. The damp-
ing rate was calculated for a range of scattering rates
(spectral widths) just as damping has been measured over
a range of temperatures.

The results of these calculations are presented in Fig. 1
and are decomposed into the intraband and interband
terms. The downward sloping line in Fig. 1 represents
the intraband contribution to damping. Damping con-
stants were recently calculated using the breathing Fermi
surface model [12, 21] by evaluating the derivative of
the electronic energy with respect to the spin direc-
tion according to Eq. (2). The results of the breathing
Fermi surface prediction are indistinguishable from the
intraband terms of the present calculation even though
the computational approaches differed significantly; the
agreement is quantified in Table L.

The breathing Fermi surface model could not be quan-
titatively compared to the experimental results because
the temperature dependence of the scattering rate has
not been determined sufficiently accurately. While the
present calculations also require knowledge of the scat-
tering rate to determine the damping rate, the non-
monotonic dependence of damping on the scattering rate
produces a unique minimum damping rate. In the same
manner that the calculated curves of Fig. 1 have a mini-

mum with respect to scattering rate, the measured damp-
ing curves exhibit minima with respect to temperature.
Whatever the relation between temperature and scatter-
ing rate, the calculated minima may be compared di-
rectly and quantitatively to the measured minima. Ta-
ble T makes this comparison. The agreement between
measured and calculated values shows that the torque-
correlation model accounts for the dominant contribution
to damping in these systems.

Our calculated values are smaller than the measured
values. Using measured g values instead of setting g =
2 would increase our results by a factor of (g/2)%, or
about 10 % for Fe and 20 % for Co and Ni. Other pos-
sible reasons for the difference include a simplified treat-
ment of electron-lattice scattering in which the scattering
rates for all states were assumed equal, errors associated
with using wave functions found from the mean-field lo-
cal spin density approximation (LSDA), and numerical
convergence (discussed above). Additionally, the extrac-
tion of damping rates from the measured linewidths re-
mains challenging for Fe and particularly for Co. Other
damping mechanisms may also make small contributions
[22-24].

Since the manipulations involved with the equation of
motion techniques employed in deriving Eq. (3) obscure
the underlying physics we now discuss the two scatter-
ing processes and connect the intraband terms to the
breathing Fermi surface model. The intraband terms in
Eq. (3) describe scattering from one state to itself by
the torque operator, which is similar to a spin-flip oper-
ator. A spin-flip operation between some state and itself
is only non-zero because the spin-orbit interaction mixes
small amounts of the opposite spin direction into each
state. Since the initial and final states are the same, the
operation is naturally spin conserving. The matrix ele-
ments do not describe a real transition, but rather pro-
vide a measure of the energy of the electron-hole pairs
that are generated as the spin direction changes. The
electron-hole pairs are subsequently annihilated by a real
electron-lattice scattering event.



To connect the derivatives de¢/d6 in Eq. (2) and the
torque matrix elements in Eq. (3) we imagine first point-
ing the magnetization in some direction Z. The only
energy that changes with the magnetization direction is
the spin-orbit energy Hg,. As the spin of a single parti-
cle state |) rotates along 6 about # its spin-orbit energy
is given by €(0) = (|e?°=? Hy, e~%=?|). The derivative
with respect to 6 is 9e(0) /00 = i{|e°=%[0, , Hy,)e t7=?)).
Evaluating this derivative at the pole (§ = 0) gives
0¢/00 = i(|[ox , Hso]|). Similarly, rotating the spin along
6 about § leads to de/d0 = i(|[o, , Hso)|). The torque
matrix elements in Eq. (3) are '™ = (|[o, Hsol|) =
(|low, Hsoll) —i(|[oy , Hsol|). Using the relations between
the commutators and derivatives just found the torque is
I'~ = —i(0¢/00), — (0¢/D0), where the subscripts in-
dicate the rotation axis. Squaring the torque matrix
elements gives |[['~|*> = (9e/86)2 + (0e/80)2. For high
symmetry directions (Je/08), = (0e/06), and we de-
duce |I'~|? = 2(0e/00)? demonstrating that the intra-
band terms of the torque-correlation model describe the
same physics as the breathing Fermi surface.

The monotonically increasing curves in Fig. 1 indi-
cate the interband contribution to damping. Uniform
mode magnons, which have negligible energy, may in-
duce quasi-elastic transitions between states with differ-
ent energies. This occurs when lattice scattering broad-
ens bands sufficiently so that they overlap at the Fermi
level. These wavevector conserving transitions, which are
driven by the precessing exchange field, occur primarily
between states with significantly different spin character.
The process may roughly be thought of as the decay of
a uniform precession magnon into a single electron spin-
flip excitation. These events occur more frequently as
the band overlaps increase. For this reason the interband
terms, which qualitatively match the resistivity-like con-
tributions in the experimental data, dominate damping
at room temperature and above.

We have calculated the Landau-Lifshitz damping pa-
rameter for the itinerant ferromagnets Fe, Co, and Ni as a
function of the electron-lattice scattering rate. The intra-
band and interband components match qualitatively to
conductivity- and resistivity-like terms observed in FMR
measurements. A quantitative comparison was made be-
tween the minimal damping rates calculated as a function
of scattering rate and measured with respect to temper-
ature. This comparison demonstrates that our calcula-
tions account for the dominant contribution to damping
in these systems and identify the primary damping mech-
anism. At room temperature and above damping occurs
overwhelmingly through the interband transitions. The
contribution of these terms depends in part on the band
gap spectrum around the Fermi level, which could be
adjusted through doping.
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