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We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate that
unpolarized current flow from a non-magnet into a ferromagnet can produce a precession-type
instability of the magnetization. The fundamental origin of the instability is the difference in
conductivity between majority spins and minority spins in the ferromagnet. This leads to spin
accumulation and spin currents that carry angular momentum across the interface. The component
of this angular momentum perpendicular to the magnetization drives precessional motion that is
opposed by Gilbert damping. Neglecting magnetic anisotropy and magnetostatics, our approximate
analytic and exact numerical solutions using realistic values for the material parameters show (for
both semi-infinite and thin film geometries) that a linear instability occurs when both the current
density and the excitation wave vector parallel to the interface are neither too small nor too large.
For many aspects of the problem, the variation of the magnetization in the direction of the current
flows makes an important contribution.

I. INTRODUCTION

Recently, the phenomenon of giant magnetore-
sistance has been used to unambiguously detect
current-induced magnetization reversal in thin magnetic
heterostructures.1–3 These observations confirm theoret-
ical predictions4,5 that angular momentum can be trans-
ferred from current-carrying electrons to the magne-
tization of a ferromagnetic film. Earlier reports6 of
the observation of this so-called spin-transfer effect at-
tributed a magnetic origin (magnetization reversal, free
precession, or spin wave excitation) to anomalies seen in
transport measurements. All these experiments used a
ferromagnet/non-magnet/ferromagnet spin valve geome-
try because a “polarizer” ferromagnet was deemed nec-
essary to ensure that the electrons incident on the “an-
alyzer” ferromagnet from the non-magnet would carry a
spin-polarized current. Now, two new experimental facts
have appeared that bear directly on these issues. First,
current injection into a single ferromagnetic layer has
been observed to produce resistance anomalies very sim-
ilar to those seen in the spin valves.7 Second, microwave
emission has been detected in at least some spin valve
samples when spin-transfer resistance anomalies occur.8

Based on the foregoing, it is natural to inquire whether
magnetic precession occurs when an unpolarized cur-
rent flows (perpendicular to the interface) from a non-
magnetic metal into a ferromagnetic metal. We investi-
gate this question here by performing a linear stability
analysis of a presumptive current-induced precessional
state. Our approach to this problem of coupled trans-
port and magnetization dynamics derives from previously
published work by two of us. One earlier paper9 dis-
cussed the quantum mechanical origin of spin-transfer
torque at a ferromagnetic/non-magnetic interface. An-
other paper10 solved a matrix Boltzmann equation to
compute spin currents, spin accumulation, magnetoresis-

tance, and spin-transfer torques for multilayers. In the
present work, we study both single and multiple interface
geometries in the presence of an external magnetic field
(normal to the interface) strong enough to saturate the
magnetization (Figure 1). Magnetic anisotropy and mag-
netostatics are neglected for simplicity. Our approximate
analytic and exact numerical solutions reveal that an ini-
tial instability toward precession occurs when both the
current density and the excitation wave vector parallel
to the interface are neither too large nor too small. Oth-
erwise, Gilbert damping suppresses the instability. An
important feature of our model is that the magnetiza-
tion is permitted to vary in the direction normal to the
interface. Among other things, this means that preces-
sion can occur in the film geometry even when the two
interfaces are identical. Other systematic features of the
precessional state will be described in detail below.

Our results complement and extend previous theo-
retical studies of current-induced precession in mag-
netic films. In their pioneering work, Slonczewski4

and Berger5 used analytic model calculations to pre-
dict the critical current for the onset of precession in
spin valve structures with uniform but non-collinear mag-
netizations in the two ferromagnetic layers. Recent
work shows that the seemingly different answers they
obtained are not inconsistent.11 Two global studies of
precession and switching in single-domain spin valves12

and single-domain particles13 supplement the Landau-
Lifshitz-Gilbert equation with the spin-transfer torque
derived in Ref. 4. Bazaliy et al.14 relaxed the assump-
tion of uniform magnetization and studied the effect of a
legislated spin current flowing from a non-magnet into a
semi-infinite ferromagnet. They found that spontaneous
excitation of spin waves occurs when the current den-
sity is sufficiently large. Finally, we draw attention to
a very recent application15 of magnetoelectronic circuit
theory16 to study current-induced precession in an ultra-
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FIG. 1: The external magnetic field and particle current both
point in the positive z-direction for (a) a single-interface ge-
ometry; (b) a thin film geometry; and (c) an electron reser-
voir geometry. The interfacial areas are infinite in all cases.
In (b), the non-magnetic leads are semi-infinite in length. In
(c), the non-magnetic leads are attached to electron reservoirs
at equilibrium.

thin ferromagnetic film with uniform magnetization. For
unpolarized current densities above a critical value, the
authors predict that unstable spin wave modes exist only
for non-zero wave vectors parallel to the interface. Our
results confirm this prediction.
The calculations presented in this paper combine phe-

nomenological constitutive equations for the electric cur-
rent and the spin current (drift-diffusion equations) with
a Landau-Lifshitz-Gilbert equation generalized to include
spin-transfer torque. The boundary conditions at each
non-magnet/ferromagnet interface are chosen so that rel-
evant observables reproduce the results of a Boltzmann
equation treatment of the same problem. Using experi-
mental data to fix the parameters, we choose a value for
the electric current density, and solve for the interface
charge density (chemical potential discontinuity), spin
accumulation, and spin current assuming a precessing
magnetization with an amplitude and phase that depends
on the running variable z in Figure 1. The presumed pre-
cession is a legitimate mode of the system if the computed
spin-transfer torque balances the ferromagnetic exchange
torque at each interface.14 The mode is unstable (spon-
taneous excitation in the presence of a current) if the
imaginary part of the mode frequency is negative. The
mode is stable and uninteresting if Gilbert damping over-
whelms the effect of spin transfer.
The plan of this paper is as follows. In Section II,

we set down the basic definitions and equations of the
theory. Section III gives a qualitative picture of the origin
of the precessional instability. The boundary conditions
for the transport and magnetization equations are given
in Section IV. Sections V and VI present the details of the
calculation for a single interface geometry and a thin film

geometry, respectively. Section VII discusses our results.
Section VIII examines the effect of non-magnetic leads
using a reservoir geometry.15 Section IX discusses some
limitations of our model and suggestions for future work.
Section X is a summary. Appendix A derives the effective
exchange field for a bounded ferromagnet. The transport
boundary equations are derived in Appendix B.

II. DEFINITIONS & BASIC EQUATIONS

In an earlier paper,9 we defined the fundamental vari-
ables of spin transport quantum mechanically and de-
scribed the various relations that exist among them.
Here, we proceed phenomenologically and decompose the
total number density of conduction electrons into major-
ity and minority contributions n = n↑ + n↓ so that the
current-induced deviations of these quantities from their
equilibrium values are related by

δn = δn↑ + δn↓. (1)

In the drift-diffusion approximation, the particle current
in the non-magnet is

jNM = (σ/e)E−D∇δn, (2)

where E is the electric field, σ is the conductivity, and
D is the electron diffusion constant. We speak of spin
accumulation in the non-magnet when the spin density

m =
h̄

2
(δn↑ − δn↓)m̂ (3)

is different from zero. Notice that we use the particle
current and the spin density as variables rather than the
charge current and the magnetization.
A so-called spin current density

QNMαβ = −D∇βmα (4)

flows in the non-magnet when the spin accumulation is
not uniform in space. In (4), the first index of QNMα,β
labels the αth Cartesian component of the electron spin
vector while the second index labels the βth Cartesian
component of the flow direction.
In the ferromagnet, we make explicit use of the

fact that there is no appreciable spin accumulation
or spin current in the direction perpendicular to the
magnetization.9,17 Accordingly, δm = (h̄/2)(δn↑ − δn↓)
is the spin accumulation so

M = (ms + δm)u (5)

is the total spin density. Here, u is a unit vector, ms =
h̄Ms/gµB, and Ms is the saturation magnetization. We
adopt a two-current model18 so jFM = j↑ + j↓ where

j↑ = (σ↑/e)E−D↑∇δn↑

j↓ = (σ↓/e)E−D↓∇δn↓, (6)

2



using an obvious notation for the conductivity and dif-
fusion constants of majority and minority spin electrons.
Combining all the above, the total particle current in the
ferromagnet is

jFM =
σ↑ + σ↓
e
E−

D↑ +D↓
2

∇δn−
D↑ −D↓
h̄

∇δm. (7)

The corresponding spin current density in the ferro-
magnet is

QFMαβ =
1
2 h̄uα(j↑ − j↓)β . (8)

Consistent with our neglect of transverse spin accumula-
tion in (5), this formula presumes that the spin part of
the spin current in a ferromagnet is always parallel to the
spin density. Then, using (6), we get

QFMαβ =
h̄

2

σ↑ − σ↓
e
uαEβ −

h̄

2

D↑ −D↓
2

uα∇βδn

−
D↑ +D↓
2

uα∇βδm. (9)

Textbooks show that the charge density inside a
current-carrying Ohmic conductor is zero (except within
a screening distance of an interface or free surface).
Therefore, we are justified to put δn = 0 in (2), (7), and
(9). We will also fix the current to be j = j0ẑ everywhere.
Using this fact in (7), we can eliminate E from (9) and
simplify the components of the ferromagnetic spin cur-
rent density that flow in directions longitudinal (z) and
transverse (⊥) to the interface normal. The result is

QFMαz =
1
2 h̄γ

puαj0 −Dzuα∇zδm

QFMα⊥ = −D⊥uα∇⊥δm, (10)

where γp = (σ↑ − σ↓)/(σ↑ + σ↓) is the degree of cur-
rent polarization desired by the ferromagnetic bulk, Dz =
(D↑σ↓+D↓σ↑)/(σ↑+σ↓) is an effective longitudinal spin
diffusion constant, and D⊥ =

1
2 (D↑ +D↓) is an effective

transverse spin diffusion constant.
The equation of motion for the spin density in

the non-magnet is a continuity equation for the spin
accumulation.9 Taking account of distributed spin-
transfer torque, spin flip scattering and torque from the
external magnetic field, we find

ṁα +∇βQ
NM
αβ + γ [m×Hext]α +

mα

τsf
= 0, (11)

where τsf is the spin-flip scattering time in the non-
magnet and γH = (gµB/h̄)B. The equation of motion
for the spin density in the ferromagnet is the Landau-
Lifshitz-Gilbert equation supplemented by a term to ac-
count for spin-transfer torque as in (11). Specifically,

Ṁα +∇βQ
FM
αβ + γ [M×Heff ]α +

uαδm

τ̄sf
= 0, (12)

where τ̄sf is the spin-flip scattering time in the ferromag-
net. The effective field Heff accounts for the external
field, exchange, and damping:

Heff = Hext +
ω0l
2
ex

γms
∇2M−

α

γ|M|
Ṁ. (13)

Here, lex =
√
2Aex/µ0M2s is the exchange length in a

ferromagnet with spin stiffness Aex, ω0 = γMs, and α
is a phenomenological damping parameter. We ignore
magnetostatics, but for fields and magnetization perpen-
dicular to the interface, its main effect is to shift the
applied magnetic field by an amount Ms.

III. ORIGIN OF THE INSTABILITY

Two characteristic features of the spin current Qαβ
underlie the qualitative physics of current-induced pre-
cession. First, the structure of the spin-transfer torque
in (11) and (12) implies that the magnetization at the
z = 0 interface in Figure 1 feels a torque per unit area.
It is

Nst
A
= − lim

ε→0

ε∫
−ε

dz∇ ·Q = (QNM −QFM) · ẑ

� QNM⊥′z, (14)

where ⊥′ refers to the directions transverse to the fer-
romagnetic magnetization (z′ is the direction along the
ferromagnetic magnetization). The last line in (14) is
true because

QNMz′z = Q
FM
z′z (15)

and QFM⊥′z � 0 at the interface between a non-magnet
and a ferromagnet due to spin-filtering and other
effects.4,5,9,19

The second bit of information we need is a linear ki-
netic equation that relates the transverse spin current
at the interface, QNM⊥′z , to the interfacial densities of our
problem (charge accumulation, spin accumulation in the
non-magnet, and ferromagnetic spin accumulation). Of
these, for a static magnetization only the spin accumula-
tion m in (3) has a transverse component. Therefore, it
must be the case that

QNM⊥′z = bm⊥′ , (16)

where b is a constant. More detailed considerations (see
Appendix B) show that b > 0.
For simplicity, we will study (in this section) a time-
independent situation where electrons flow from a non-
magnet into a ferromagnet with a small amplitude, frozen
spin wave at the interface. That is, in (5), we let u =
ẑ+ u⊥ exp(iK ·R) where R and K are two-dimensional
vectors in the plane of the interface. This means that
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FIG. 2: (a) Cartoon of steady-state spin configuration when
K = 0; (b) spin accumulation and spin current when K = 0;
(c) solid curves: mz(x = 0, z) and mx(x = 0, z) when K = 0;
dashed curve: mx(x = 0, z) when K �= 0; (d) solid curves:
QNMzz (x = 0, z) and Q

NM
xz (x = 0, z) when K = 0; dashed

curve: QNMxz (x = 0, z) when K �= 0; (e) same as (b) when
K �= 0; (f) same as (a) when K �= 0. See text for details.

conduction electrons incident on the ferromagnet from
the non-magnet see a static magnetization

M =M
{
Re[u⊥e

iK·R], Im[u⊥e
iK·R], 1

}
. (17)

In the non-magnet itself, (4) and (11) with Hext = 0
combine to give

D∇2mα =
mα

τsf
(18)

for the steady-state spin accumulation in the non-
magnet. This is solved by

m =
{
Re[m⊥(z)e

iK·R], Im[m⊥(z)e
iK·R],mz(z)

}
, (19)

if

mz(z) = mz exp(z/lsf)

m⊥(z) = m⊥ exp(κz) (20)

with l2sf = Dτsf and l
2
sfκ
2 = 1 + l2sfK

2.

We begin our analysis with the right side of the top
panel in Figure 2. This shows a spin pattern in the fer-
romagnet that is spatially uniform (K = 0). In panel
(b), just below, the arrow labeled m reiterates the infor-
mation conveyed by the diffusing spins on the left side
of panel (a). Namely, the spin accumulation in the non-
magnet is everywhere anti-parallel toM. To understand
this, we note first that QFMzz > 0 on account of the first
term in (10).20 Therefore, to satisfy (15), there must be
a collection of spins in the non-magnet (polarized paral-
lel to M) flowing from left to right toward the interface.
We interpret this, equivalently and consistently with the
diffusive solutions (20) graphed as solid curves in panel
(c), as a flow of anti-parallel spins away from the inter-
face into the non-magnet. Qualitatively, we imagine that
spins diffuse into the non-magnet after being “imprinted”
in the anti-parallel direction by the ferromagnet. Ran-
domly walking spins (including those that happen to dif-
fuse back to the interface) only encounter spins parallel
to the themselves because all imprinting was done by fer-
romagnetic spins that are parallel. From (14) and (16),
Nst = AQ

NM
⊥′z = 0 because m⊥′ = 0. There is no driving

force for precession when the ferromagnetic magnetiza-
tion is uniform. On the other hand, the spin currents
QNMzz and Q

NM
⊥z are both non-zero [solid curves in panel

(d)] becauseM is not normal to the interface.
The situation changes markedly when the magnetiza-

tion M varies along the interface (K �= 0) [right side of
Figure 2(f)]. As before, spins diffuse into the non-magnet
after being imprinted in the direction anti-parallel to the
local ferromagnetic magnetization. However, because the
imprinting ferromagnetic spins now differ in their trans-
verse directions, spins diffusing in the non-magnet typi-
cally encounter spins whose transverse component differs
from their own. The net effect is a reduction in the trans-
verse spin accumulation [dashed curve in panel(c)]. The
effect is greater farther away from the interface because
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FIG. 3: (a) Interfacial spin current and spin for current flow
from the non-magnet into the ferromagnet. This diagram is
the same as Figure 2(e); (b) Same as (a) except that the
current flows from the ferromagnet into the non-magnet.

the transverse diffusion is superimposed on longitudinal
diffusion away from the interface. From (4), there is
a corresponding increase in the transverse spin current
near the interface [dashed curve in panel (d)]. Compared
to panel (b), the spin accumulation vector m in panel
(e) bends closer the negative z-axis and thus acquires
a positive component perpendicular to M. Therefore,
from (14) and (16), the vectors QNM and Nst appear as
sketched in panel (e). The indicated torque tends to ro-
tate M away from the interface normal. That is, Nst
tends to increase the amplitude u of the incipient spin
wave assumed at the beginning of the discussion. This
is the fundamental origin of the precessional instability.
Thus, in contrast to the common spin-valve geometry, we
have here a single ferromagnet that both generates a spin
current and is acted on by that spin current.
Two additional qualitative points emerge form the dis-

cussion above. First, if the current j0 reverses direc-
tion, so electrons flow from the ferromagnet into the non-
magnet, (10) tells us that the sign of Qzz reverses.

20 The
direction of the spin accumulation reverses also so (4)
remains correct. The decrease in transverse spin accu-
mulation which rotates m toward the z-axis now implies
that the direction ofNst reverses as well (Figure 3). This
torque tends to reduce the amplitude of the presumed
spin wave. We conclude that electron flow from a fer-
romagnet into a non-magnet tends to suppress a preces-
sional instability. This type of non-reciprocal behavior
with respect to the direction of current flow is a charac-
teristic feature of spin-transfer phenomena.4

Finally, we remark that the presence of a second “po-
larizer” ferromagnetic film upstream in Figure 2 tends
to enhance the precessional instability. Even the K = 0
mode can become unstable as long as the magnetization
of the polarizer is not collinear with the magnetization
of the “analyzer”. This is so because, in that case, the
electrons incident on the z = 0 plane carry a spin current
with a non-zero component in a direction perpendicular
to M. As a practical matter, this means that the criti-
cal current for the onset of precession is lower when two

ferromagnets are present than for the case of a single
ferromagnet studied by us.

IV. BOUNDARY CONDITIONS

A quantitative solution of our problem requires bound-
ary conditions for the transport and magnetization equa-
tions set down in Section II. One of these arises because
the exchange interaction is effective right up to the sur-
face of a bounded ferromagnet. For the thin film ge-
ometries of Figure 1, we show in Appendix A that an
exchange torque density nex = −γM×HS exists where

HSex =
ω0l
2
ex

γms
[δ(z)− δ(z − t)] ∂zM. (21)

This shows that a localized torque acts on each inter-
face in Figure 1(b). For the single interface geome-
try, the δ(z − t) term is absent. Spin wave calculations
for bounded ferromagnets21 eliminate the surface torque
produced by (21) by imposing the boundary condition
∂zM = 0 at each interface. For our problem, the spin-
transfer torque (14) also acts at each interface. This dic-
tates that we determine the spin wave modes by impos-
ing a zero net torque requirement at each interface.14 The
specific boundary condition is

Nex +Nst = 0. (22)

where Nex is the exchange torque density nex integrated
over an infinitesimally thin pillbox as in (14).
A distribution of charge/spin current where the spins

precess at a complex frequency ω = ωR + iωI is a mode
of the system if (11) is satisfied in non-magnetic regions,
(12) is satisfied in ferromagnetic regions, and (22) is sat-
isfied at every interface. When ωI > 0, the mode is sta-
ble and uninteresting because its amplitude never grows
large enough to be observed. True current-induced pre-
cession corresponds to modes with ωI < 0.
Of course, the currents must also be consistent with

the spin-dependent scattering that occurs at the interface
between a magnet and a non-magnet. Previously, two of
the present authors10 addressed this issue by imposing
scattering boundary conditions on a 2× 2 matrix Boltz-
mann equation and computing all observables from the
semi-classical distribution functions g↑(k, r) and g↓(k, r).
In this paper, we apply boundary conditions to the ob-
servables directly in a manner that is consistent with this
Boltzmann equation treatment.
We show in Appendix B that the boundary conditions

obtained in this way take the form of a set of linear kinetic
equations which relate the interfacial currents to the in-
terfacial densities. Here, we quote a form that is valid for
small amplitude precessional motion around Hext = Hẑ.
That is, we assume (here and in all subsequent work)
that u = ẑ+ u⊥ with u⊥ � 1:

j0 = δn0[w0(X↑ +X↓)] + 2h̄
−1mz[w0(X↑ −X↓)]

5



− 2h̄−1δm[X↑w↑ −X↓w↓]

QNMxz = uxQ
NM
zz + w0(mx − uxmz)

QNMyz = uyQ
NM
zz + w0(my − uymz)

QNMzz = 1
2 h̄δn0[w0(X↑ −X↓)] +mz[w0(X↑ +X↓)]

− δm[X↑w↑ +X↓w↓]. (23)

The constant

w0 =
AFS

(2π)3h̄

[
1

2

∂n

∂µ

]−1
, (24)

where AFS is the area of the Fermi surface projected onto
the interface. The constants w↑ and w↓ are defined sim-
ilarly with the densities of states per spin ∂n↑/∂µ↑ and
∂n↓/∂µ↓. Finally,

Xσ =
1− Rσ
4Rσ

, (25)

where R↑ = |R↑|2 and R↓ = |R↓|2 are the squares of
the majority and minority electron reflection amplitudes
averaged over the Fermi surface. The appearance of the
interfacial charge accumulation δn0 on the right side of
(23) is not inconsistent with our earlier statement that
δnNM = δnFM = 0 in the bulk. There is a resistance
associated with the interface whenever Rσ �= 0. The
corresponding voltage drop may be thought of as arising
from a dipole layer of charge difference δn0 localized at
the interface.
We note in closing that if u⊥ were zero (M ‖ ẑ), the

second and third boundary conditions in (23) reduce to
(16). Appendix B demonstrates that the terms propor-
tional to u⊥ in (23) account for the fact thatM is slightly
tilted away from the interface normal.

V. SINGLE INTERFACE GEOMETRY

We showed in Section III that spin-transfer torque
can induce a precessional instability. To discover if it
actually does so requires a full solution of the coupled
transport/magnetization dynamics equations with their
boundary conditions. In particular, we need convenient
formulae for the interfacial torques that enter (22). For
the single interface geometry of Figure 1(a), a suitable
precessional ansatz for the magnetization in the non-
magnet is

m = {Re[m⊥(z)Φ], Im[m⊥(z)Φ],mz(z)} (26)

where Φ = ei(K·R+ωt). The corresponding ansatz in the
ferromagnet is

u = ẑ+ u⊥(z)Φ, (27)

so from (5),

M = M(z) {Re [u⊥(z)Φ] , Im [u⊥(z)Φ] , 1} (28)

where

M(z) = ms + δm(z). (29)

A. Interfacial Spin-Transfer Torque

To find the spin-transfer torque, we substitute (26) and
(28) into the longitudinal component of the equations of
motion (11) and (12). The solutions are [cf. (20)]

mz(z) = mz exp(z/lsf) (30)

and

δm(z) = δm exp(−z/l̄sf) (31)

with l̄2sf = Dz τ̄sf . These are used in the longitudinal
component of (4) and (10) to get the interfacial relations

QNMzz = −(D/lsf)mz = Qzz (32)

and

QFMzz =
1
2 h̄γ

pj0 − (Dz/l̄sf)δm = Qzz. (33)

The previous two equations, together with the first and
last (longitudinal) boundary conditions in (23), deter-
mine the four interfacial quantities δn0, mz, δm, and Qzz
in terms of j0, γ

p, D/lsf , Dz/l̄sf , X↑, X↓, w0, w↑, and
w↓. In particular, all four are proportional to j0, and thus
change sign when the current reverses as argued earlier.
Returning to (26), we choose Hext = H ẑ, so the trans-

verse component of (11) is solved by

m⊥(z) = m⊥ exp(κz), (34)

where κ satisfies

l2sfκ
2 = 1 + l2sfK

2 + iτsf(ω − γH) (35)

rather than the formulae quoted after (20). Using (34),
the transverse component of (4) yields

QNM⊥z = −Dκm⊥ (36)

while the transverse boundary conditions in (23) are

QNM⊥z − u⊥Q
NM
zz = w0(m⊥ − u⊥mz). (37)

From these, we can solve for the four interfacial quan-
tities QNM⊥z and m⊥. The spin-transfer torque follows
straightforwardly from (14) when we follow Appendix B
and express QNM⊥′z in unprimed coordinates (z-axis paral-
lel to the interface normal) rather than primed coordi-
nates (z’-axis parallel to M):

Nst
A
= QNM⊥z − u⊥Q

NM
zz = u⊥Λ

κlsf − 1

κlsf + Λ
Qzz. (38)

The constant Λ = w0lsf/D.
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B. Interfacial Exchange Torque

The torque produced by the surface exchange field (21)
over an area A at z = 0 is computed by integrating the
torque density −γM ×HSex over an infinitesimally thin
pillbox as in (14). The result is

Nex
A
= −
ω0l
2
ex

ms
M× ∂zM = −i

ω0l
2
ex

ms
M2(z)u′⊥ (39)

because

ẑ× u⊥ = iu⊥ (40)

corresponds to a 90◦ rotation of the vector u⊥. Since the
function M(z) in (29) is known at this point, the only
unknown in (39) is u′⊥ = ∂zu⊥(z)|z=0.
We determine u′⊥ numerically by integrating the

transverse component of the Landau-Lifshitz-Gilbert
equation (12) inward from z =∞ to z = 0. The equation
of interest is

0 = {iω + αω − iγH}u⊥

+
1

M(z)

{
1
2 h̄γ

pj0 −DzM ′(z)
}
u′⊥

+ i
ω0M(z)l

2
ex

ms

{
u′′⊥ + 2

M ′(z)

M(z)
u′⊥ −K

2u⊥

}
.(41)

The first term in brackets comes from the Ṁα, damping,
and external field terms. The second term in brackets
comes from the spin-transfer torque in the bulk of the
ferromagnet due to the spatial variation of the magneti-
zation. The third term in brackets is the bulk exchange
torque. On account of (31), the spin flip term u⊥δm/τ̄sf
in (12) cancels a piece of the spin-transfer torque. To
derive (41), we have used (40) repeatedly and exploited
the identity

∇2(Mu) = u∇2M + 2∇M · ∇u+M∇2u. (42)

Very far from the interface, M(z) → ms and (41) re-
duces to

0 = (iω + αω − iγH − iω0K
2l2ex)u⊥

+ 1
2 h̄γ

p(j0/ms)u
′
⊥ + iω0l

2
exu

′′
⊥. (43)

This equation is solved by u⊥(z) = u⊥ exp(−p z) where
(Re p > 0),

p lex = −i
Ω

2ω0
±
1

2ω0

√
−Ω2 − 4ω0∆, (44)

and ∆ = ω − iωα− γH − ω0K2l2ex, where

Ω =
h̄γpj0

2lexms
. (45)

This solution is used to start the inward integration of
(41). We note in passing that if α = K = 0 and q = ip,
(44) simplifies to

ω(q) = γH + ω0l
2
exq
2 − Ωlexq. (46)

This is (essentially) the dispersion relation derived by
Bazaliy and co-workers14 for bulk spin waves in the pres-
ence of a specified spin current. An instability occurs
(ω goes negative) when the current is large enough that
Ω2 > 4ω0γH . If we take µ0H = 1 T, this gives a charge
current density J0 = |e|j0 > 10×109 A/cm2, which is an
order of magnitude larger than the interfacial instabilities
we discuss below.
It is now straightforward to search for precession-type

instabilities. For given values of current j0, external mag-
netic field H , and transverse wave vector K, we search
through complex frequency (ω = ωR+ iωI) space looking
for modes. That is, situations where (22) is satisfied us-
ing (38) for the interfacial spin-transfer torque and (39)
for the interfacial exchange torque. If ωI < 0, the mode
is linearly unstable against precession. A suitable initial
guess is the zero-current surface spin wave frequency

ωs =
γH + ω0l

2
exK

2

1− iα
. (47)

VI. THIN FILM GEOMETRY

As in the previous section, the search for current-
induced precessional instabilities in the thin film geome-
try of Figure 1(b) begins by solving the longitudinal part
of the problem. The spin accumulation decays exponen-
tially into the non-magnetic leads so at the left (z = 0)
and right (z = t) interfaces, we have the analog of (32)
for the interfacial spin currents:

QLzz = −
DLs
lLsf
mLz QRzz = −

DRs
lRsf
mRz (48)

The superscript on the diffusion constants and on the
spin flip lengths allows us to assign different material
properties to the leads and thus to the interfaces.15

The z-dependences of the spin accumulation and the
spin current in the ferromagnetic film are linear combina-
tions of exp(±z/l̄sf). Straightforward algebra yields the
interfacial relations

QLzz = γ
pj0

−
Dz

l̄sf

[
δmL coth(t/l̄sf)− δm

Rcsch(t/l̄sf)
]

QRzz = γ
pj0

−
Dz

l̄sf

[
−δmR coth(t/l̄sf) + δm

Lcsch(t/l̄sf)
]
.

(49)

The four equations in (48) and (49), together with the
two longitudinal boundary conditions in (23) at each in-
terface, determine the eight quantities δnL0 , δn

R
0 ,m

L
z ,m

R
z ,
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δmR, δmL, QLzz, and Q
R
zz in terms of the physical param-

eters of the model. Finally, because it is used in the
integration of (41), we record that

M(z) = ms + δm
Lcsch(t/l̄sf) sinh[(t− z)/l̄sf ]

+ δmRcsch(t/l̄sf) sinh(z/l̄sf). (50)

Up to an overall sign, the spin transfer and exchange
torques are still given by (38) and (39). Therefore, at the
right interface, we choose u⊥ arbitrarily and compute u

′
⊥

so that (22) is satisfied at that interface. This provides
the initial condition for the integration of (41) toward z =
0. Then, the search through complex frequency space for
solutions that satisfy (22) at the left interface proceeds
as described earlier. As initial guesses, we use the zero-
current frequencies of the spin wave modes of the film:

ωn =
γH + ω0l

2
ex[(nπ/t)

2 +K2]

1− iα
. (51)

VII. RESULTS & DISCUSSION

The numerical results presented in this section are
based on converged solutions of the transport and mag-
netization equations using material parameters derived
directly from experiment or from first-principle electronic
structure calculations (Table I).

A. Single Interface Geometry

The top panel of Figure 4 illustrates the regions of
linear instability as a function of applied charge current
J0 and wave vector K parallel to the interface for the
single interface geometry (top panel of Figure 1). An
initial state of current induced precession occurs inside
each contour labeled by a choice of external magnetic
field H . We emphasize that every contour forms a closed
loop in the J0−K plane. That is, for a fixed value of J0,
the instability region is bounded by a lower and an upper
critical wave vector and, for a fixed value ofK, the insta-
bility region is bounded by a lower and an upper critical
current density. Note also that the instability occurs only
for rather small values of external magnetic field. We will
see in the next subsection that thin films support preces-
sion for much larger values of H . In addition, it appears
that the upper critical field is very sensitive to the param-
eters that describe the system. A systematic exploration
of parameter space is prohibitive, but we note that the
choices lsf = 1000 nm and lsf = 15 nm give regions of
instability for H > 2 T.
The bottom panel of Figure 4 is the same as the top

panel except that we have replaced the full transverse
Landau-Lifshitz-Gilbert equation (41) by

0 = {iω + αω − iγH}u⊥

Parameter Value Ref.

ρ(Cu) 6 nΩm 22

ρ↑ 40.5 nΩm 22

ρ↓ 109.5 nΩm 22

lsf(Cu) 450 nm 23

l̄sf(Co) 59 nm 24

AR↑ 0.117 fΩm2 22

AR↓ 0.903 fΩm2 22

AFS 580 nm−2 25

∂n/∂µ 6.23 eV−1nm−3 26

∂n↑/∂µ↑ 8.17 eV−1nm−3 26

∂n↓/∂µ↓ 31.6 eV−1nm−3 26

Aex 2× 10−11 J/m 27

Ms 14.46 × 105 A/m 28

γ(Co) 1.9×1011 s−1T−1 29

γ(Cu) 1.75×1011 s−1T−1 25

α 0.01 30

D 4.1× 1016 nm2s−1

Dz 1.7× 1015 nm2s−1

τsf(Cu) 2.4× 10−11 s

τ̄sf(Co) 2.0× 10−12 s

γp 0.46

ω0 3.465 ×1011 s−1

lex 3.9 nm

2ms/h̄ 143.6 nm−3

w0 11.4 × 1014 nms−1

w↑ 8.7× 1014 nms−1

w↓ 2.25 × 1014 nms−1

X↑ 1.90

X↓ 0.24

TABLE I: Material parameters for Cu/Co. The values above
the horizontal line were taken from experiment or first-
principles calculation. The values below the line were cal-
culated using equations given in the text, σ = 1/ρ, and the
Einstein relation e2σ = D∂n/∂µ.

+
1

ms

{
1
2 h̄γ

pj0 −DzM ′(z)
}
u′⊥

+ iω0l
2
ex

{
u′′⊥ −K

2u⊥
}
. (52)

This approximation neglects the ferromagnetic spin ac-
cumulation δm(z) in the exchange interaction and re-
tains only its gradient variation in the bulk spin-transfer
torque. Evidently, these omissions make no difference to
the qualitative features of the diagram.
According to Figure 4, no precession occurs if either

the current density, the magnetic field, or the parallel
wave vector gets too large. We expect the instability
to disappear when the Gilbert damping overwhelms the
effect of the spin transfer torque. Therefore, since the
damping parameter α enters the theory only in the com-
bination αω [see (52)], we anticipate that the mode fre-
quency is an increasing function of j, H , and K.
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FIG. 4: Regions of instability for the single interface geom-
etry of Figure 1(a). Each contour gives the region in J0-K
space within which instabilities occur for an series of applied
fields (labeled on each contour). The top panel gives the re-
sults for the full calculation in the ferromagnet. The bottom
panel gives the results if the effect of spin accumulation on
the exchange interaction is ignored.

To check this, we approximate the spin current in the
second line of (52) by its value at the interface to get

0 = {iω + αω − iγH}u⊥

+
1

ms

{
1
2 h̄γ

pj0 −Dzδm(0)/l̄sf
}
u′⊥

+ iω0l
2
ex

{
u′′⊥ −K

2u⊥
}
. (53)

This linear equation, like (43), is solved by u⊥(z) =

u⊥ exp(−p z). Therefore,

u′⊥(0)

u⊥(0)
= −p, (54)

with p given by (44) but with (45) replaced by

Ω =
h̄γpj0/2−Dzδm(0)/l̄sf

lexms
=
h̄γ′pj0

2lexms
. (55)

On the other hand, replacing κ by K in (38) (large K
approximation) and M(0) by ms in (39), the mode con-
dition (22) gives

u′⊥(0)

u⊥(0)
= −i

QzzΛ

ω0l2exms

Klsf − 1

Klsf + Λ
= −i

QzzΛ
′

ω0l2exms
. (56)

Equating (54) to (56) gives an estimate of the spin wave
mode frequency ω = ωR + iωI. We find

ωI = αωR

ωR =

{
j20

ω0l2exm
2
s

[
γ′pΛ′

(
Qzz

j0

)
+ Λ′2

(
Qzz

j0

)2]

+ ω0l
2
exK

2 + γH } ×
1

1 + α2
. (57)

The second line in (57) confirms our expectation about
the behavior of the mode frequencies and thus rational-
izes the topology of Figure 4. Moreover, this analytic
formula for ωR agrees quantitatively with the real part of
the mode frequencies we find from our numerical solution
of the full equations of motion. Unfortunately, (57) also
predicts ωI > 0. That is, (53) predicts only stable spin
waves. These modes are unstable in the full solution of
(52), but only barely so (ωI is negative but very small
in magnitude). In fact, the stability or instability of a
given mode turns out to be an extremely sensitive func-
tion of the phase of u′⊥(0)/u⊥(0) and the factorM

′(z) in
(52). The latter is determined by the ferromagnetic spin
flip length l̄sf . We conclude that variation of the magne-
tization with the longitudinal variable z is an essential
ingredient for instability to occur in the single-interface
geometry.

Figure 5 shows the calculated field dependence of the
critical frequency ωcrit, the critical transverse wave vector
Kcrit, and the critical current density Jcrit, where preces-
sion first occurs in the single interface case. Consistent
with (57), all three are finite as H → 0. Otherwise, ωcrit
and Jcrit vary roughly linearly with field, as they do in
experiments performed on single films,7 until the instabil-
ity shuts off for large enough H . The order of magnitude
of the critical current (≈ 109 A/cm2) is also consistent
with the single film experiments (and roughly ten times
larger than the critical current seen in the trilayer pil-
lars studied in Ref. 1). Note, finally, that ωcrit deviates
systematically from the Larmor frequency γH .
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FIG. 5: Dependence on external magnetic field H of the criti-
cal precession frequency ωcrit divided by the Larmor frequency
(top panel); the critical parallel wave vector Kcrit (middle
panel); and the critical current density Jcrit (bottom panel)
for the single interface geometry of Figure 1(a).

B. Thin Film Geometry

We remarked at the end of Section III that the in-
terfacial spin torque associated with current flow from a
ferromagnet to a non-magnet is opposite in direction to
the interfacial spin torque associated with current flow
from a non-magnet to a ferromagnet. As pointed out by
Polianski and Brouwer,15 this implies that zero net spin
torque acts on a uniformly magnetized film attached to
identical leads at identical interfaces. Those authors used
leads of different lengths to break the mirror symmetry
of this geometry. We discuss that case in more detail in
the next section.

In our calculations for a ferromagnetic film sandwiched
between two semi-infinite, non-magnetic leads (middle
panel of Figure 1), the natural spatial variation of the
magnetization of the spin wave modes breaks the longi-
tudinal symmetry. Additional spatial variation arises be-
cause there is current-induced mixing amongst the modes
(Figure 6). As in the single-interface problem, the spatial
variation M(z) is essential for precession if we assume a
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FIG. 6: Current dependence of the spatial variation of the
magnetization for the three lowest spin wave modes of the
ferromagnetic thin film shown in the middle panel of Figure 1.
Solid curves are Mx(z). Dashed curves are My(z). There is
almost no mode mixing for J0 = 0.05 × 10

9 A/cm2.

symmetrical geometry where the scattering properties of
the two interfaces are identical. We do this here, even
though the formulae given in Section VI allow for a more
general, asymmetrical situation.
Figure 7 illustrates precessional instability diagrams

for a ferromagnetic film of thickness t = 40 nm. For
each value of external magnetic field, the integer that
labels each tear drop shaped region indicates the mode
that goes unstable in that region. Notice that the area
of the envelope in the J0 −K plane that encloses all the
H = 0.05 T teardrops is much larger than the area of
the H = 0.05 T instability region for the single-interface
problem sketched in Figure 4. The spin transfer torque is
roughly the same in the two cases, but it is much easier
to excite spin waves in the film because there is much
less ferromagnetic “mass” present to contribute to the
damping.
The field dependence of the critical current Jcrit is

shown in Figure 8 for several film thicknesses. A rela-
tively large current density is needed to excite the 10 nm
film because the symmetry breaking required to gener-
ate a net torque occurs only when the lowest frequency
spin wave mode (which has uniform magnetization in the
z-direction) is perturbed by current-induced mixing with
the next-highest spin wave mode (which has non-uniform
magnetization in the z-direction). This is shown by the
leftmost panel of Figure 6. We will use (55) as the char-
acteristic frequency associated with the driving current
and (51) to estimate the frequency splitting between the
n = 1 and n = 2 film modes. Setting these equal, we
get a field-independent estimate of Jcrit of the order of
109 − 1010 A/m2.
The critical current density decreases in Figure 8 as

the film thickness increases to 20 nm and then to 40 nm
because the mode splitting decreases in typical particle-
in-a-box fashion. We will refer to this below as a quantum
size effect. Then, beginning with the 40 nm film, a new
phenomenon occurs. For large enough H , the perturbed
n = 1 precession mode never goes unstable (there is no
tear drop labelled “1” in the H = 2 T panel of Figure 7).

10



0.0 0.6
0

1

2

K (nm-1)

J 0
 (

1
0

9
 A

/c
m

2
)

1
1

2

3

4

5

2

3

4

5

2

3

4

5

H=0.05 T H=1 T H=2 T

0.0 0.6 0.0 0.6

FIG. 7: Instability diagram for a t = 40 nm ferromagnetic
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mode that goes unstable in each region.

Instead, an upward tick in Jcrit occurs when the per-
turbed n = 2 spin wave mode begins to precess. For the
80 nm film, this phenomenon moves to lower values of
H and successively higher spin wave modes become the
first to become unstable. This transition of instability
from one mode to the next highest is responsible for the
jagged appearance of the Jcrit(H) curves for the thicker
films.
The nearly vertical line segment in Figure 8 is the
t =∞ single-interface result redrawn from the lowest
panel of Figure 5. It is smooth because the region of
instability for each mode becomes increasing small (as a
function of H) until, in the limit of a semi-infinite film,
every value of H leads to the linear instability of a differ-
ent precession mode of the film. This curve terminates
at a critical field Hcrit(t = ∞). The 120 nm film curve
shows that Hcrit(t) increases as the film thickness de-
creases from t =∞.
Finally, Figure 9 summarizes the thickness dependence

of Jcrit for three values of external magnetic field. For
H = 0.1 T, the critical current decreases monotonically
as t increases as the quantum size effect argument sug-
gests. However, to reach the t → ∞ limit (horizontal
arrow), Jcrit must eventually increase. As the H = 1T
and H = 3T curves show, this occurs in jumps each time
a mode becomes absolutely stable and the next highest
mode initiates the precession. Jcrit(t) oscillates in this
regime because the quantum size effect operates as long
as one particular mode is responsible for the instability.
The H = 1T and H = 3T curves in Figure 9 termi-

nate at a critical thickness tcrit(H) that decreases with
increasing magnetic field. This is consistent with the fact
that the semi-infinite ferromagnet only supports current-
induced precession for relatively small values of external
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FIG. 8: Critical current as a function of field for several
thicknesses of the ferromagnetic film in the geometry of Fig-
ure 1(b). The non-smooth behavior of the curves for the
thicker films is associated with transitions between instabili-
ties associated with different thin film modes.
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FIG. 9: Critical current as a function of ferromagnetic film
thickness for three values of external magnetic field in the
geometry of Figure 1(b). A jump occurs whenever a new mode
is responsible for the precession. The horizontal arrow is the
H = 0.1 T critical current for a semi-infinite ferromagnetic
film.

magnetic field.

VIII. EFFECT OF FINITE LEADS

Polianski and Brouwer15 studied current-induced mag-
netization precession for the geometry depicted in the
lowest panel of Figure 1. The unequal length leads
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that break the symmetry of the problem are each at-
tached to an electron “reservoir”. By definition, the elec-
trochemical potential takes its equilibrium value inside
each reservoir. Therefore, the spin accumulation (a non-
equilibrium property) must go smoothly to zero when we
enter each reservoir from the adjacent lead. These au-
thors also fixed the magnetization of the ferromagnetic
film to be uniform in the z direction.
In this section, we study this reservoir geometry us-

ing our formalism, both with and without the additional
restriction to uniform longitudinal magnetization in the
ferromagnet. Our expectation is that the approximations
of Ref. 15 will be adequate if the ferromagnetic film thick-
ness t is less than the exchange length lex.
Let the non-magnetic leads have lengths tL and tR as

shown in Figure 1(c). It is straightforward to check that
the solution of (11) in, say, the right lead that satisfies
the reservoir boundary condition of zero longitudinal and
transverse spin accumulation at z = t + tR gives at the
interface

mz(t) = m
+
z

(
exp[−tR/lsf ]− exp[t

R/lsf ]
)

m⊥(t) = m
+
⊥

(
exp[−κtR]− exp[κtR]

)
. (58)

The corresponding spin current (4) is

Qzz(t) = (Dm
+
z /lsf)

(
exp[−tR/lsf ] + exp[t

R/lsf ]
)

Q⊥z(t) = (κDm
+
⊥)
(
exp[−κtR] + exp[κtR]

)
. (59)

These can be recast as a relation between the spin accu-
mulation and the spin current at the interface:

Qzz(t) = −
D

lsf
mz(t) coth(t

R/lsf)

Q⊥z(t) = −κDm⊥(t) coth(κt
R). (60)

These formulae are the same as those used previously ex-
cept for multiplicative factors depending on the length of
the leads. We recover (32) and (36) in the limit tR →∞.
Very similar results apply to the left lead and interface.
The modified spin currents (60) can be inserted into

the solution of the longitudinal spin accumulation and
then the boundary conditions for the interfacial spin
torque. Wherever D appears explicitly (i.e. lsf and κ
are not affected) it can be replaced by D times the factor
given above. Otherwise, the full calculation for the reser-
voir geometry proceeds as outlined in previous sections.
Figure 10 illustrates results for two films with tL = ∞.
The tR = 450 nm is weakly lead asymmetric in the sense
that the factor coth(tR/lsf) in (60) takes the value 1.3.
The tR = 45 nm film is strongly lead asymmetric because
coth(tR/lsf) has the value 10.
From relatively small values near t = 0 (see below),
Jcrit in Figure 10 increases initially as the film thick-
ens due to increased damping from the additional ferro-
magnetic material. This trend continues until the low-
est mode of uniform magnetization becomes absolutely
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FIG. 10: Critical current as a function of ferromagnetic film
thickness in the asymmetrical geometry of Figure 1(c) with
tL = ∞. The dashed curves are a uniform magnetization
approximation. The solid curves are the results of the full
calculation. The breaks in the solid curves correspond to the
onset of precession from successively higher film modes. The
external field is H = 3 T .

stable and the next higher spin wave mode initiates pre-
cession. Thereafter, the t dependence of the critical cur-
rent density is determined by a competition between the
quantum size effect (which tends to decrease Jcrit at t in-
creases) and increased damping (which tends to increase
Jcrit as t increases).

A comparison of Figure 9 with Figure 10 shows that
the very thin film limit of Jcrit depends very sensitively
on the asymmetry of the leads. When the leads have
equal length (Figure 9), the spin current and torque come
exclusively from the DzM

′(z) term in (41). This implies
a large critical current density because a large amount of
energy is needed to mix the modes when t→ 0 [see (51)].
By contrast, the critical current density is relatively small
when the leads have unequal length (Figure 10) because
(even if the magnetization is uniform) there is incomplete
cancellation between the (oppositely signed) spin transfer
torques generated at the two ends of the ferromagnet.15

Figure 11 shows that Jcrit actually increases exponentially
with tR when tL =∞.

We now consider an approximation to these full calcu-
lations that forces the magnetization in the ferromagnetic
film to be uniform in the z direction. This occurs auto-
matically in our numerical work if the exchange length
lex and the spin diffusion length l̄sf are made much larger
than any thickness t of interest. The results are shown as
dashed curves in Figure 10. As expected, the full and ap-
proximate calculations agree quantitatively only when t
is smaller than or approximately equal to the true Co ex-
change length of 3.9 nm (see Table I). The agreement for
t = 10 nm is somewhat accidental because (as the break

12



0 450 9000

0.01

0.10

1.00
J c

ri
t 
(1

0
9
 A

/c
m

2
)

tR (nm)

H=0.1 T

H=3 T

FIG. 11: Log-linear plot of critical current in the geometry of
Figure 1(c) as a function of tR when tL = ∞. The thickness
of the ferromagnetic film is t = 2.5 nm.

in the curve indicates) the precession at this thickness is
not associated with a state of uniform magnetization in
the longitudinal direction.
On the other hand, Figure 10 shows that for our choice

of parameters, the uniform magnetization approximation
gets relatively better (for t 
 lex) as the lengths of the
two leads become more dissimilar. Qualitatively, this oc-
curs because there are two sources of net spin transfer
torque in this problem: the longitudinal asymmetry of
the leads and the longitudinal asymmetry of the magne-
tization. If the first dominates the second (strong lead
asymmetry), it does not really matter which mode goes
unstable and the uniform magnetization approximation
will be acceptable. If the second dominates the second
(weak lead asymmetry), the mode identity is crucial and
the approximate calculation fails badly.

IX. LIMITATIONS & FUTURE DIRECTIONS

In experiment, the large current densities required to
produce current-induced precession are achieved using
point-contact, nanowire, or nanopillar geometries where
conductor dimensions in the direction perpendicular to
the current flow are “necked-down” from micron-scale
dimensions to hundred nanometer-scale dimensions. The
reservoir geometry of Figure 1(c) is an approximate way
to model this behavior within the context of a strictly
one-dimensional calculation. Nonetheless, it remains true
that we have ignored the fact that the current only acts
over a small area. The small area is either a small part
of a large film, or a small finite element. In both cases,
we have ignored the behavior of the current at the edges.
For a point contact geometry, we have ignored how

the current spreads into the film, how the variation in

the magnetization decays into the film both laterally and
in the interface direction, and how these interact. For
a nanowire or nanopillar geometry, we have ignored the
behavior of the current at the edges. Clearly, these three-
dimensional effects will need to be considered if calcu-
lations of the sort presented here are ever to be truly
predictive in the sense of device design.
Our calculations take no account of magnetostatics.

The necessary computations are a bit complex because
the magnetic self-energy is a non-local function of the
spin density. It is true that the dominant effect can be
modeled as reducing the applied field by 4πMs, but the
known effects of magnetostatics on spin-wave dispersion
suggest the possibility of other effects for the present
problem. We also ignore any intrinsic anisotropies
present in real materials, such as magnetocrystalline
anisotropy, anisotropic exchange, or anisotropic damp-
ing. These anisotropies can be important for small ap-
plied fields.
More significantly, we have focused exclusively on

the initial, linear instability of a current-carrying nano-
magnet toward precession. In reality, non-linear effects
cut off the exponential growth of the mode amplitudes
we find. This means that the final magnetic dynamical
state may have little in common with simple precession,
particularly for magnets whose size significantly exceeds
an exchange length. To our knowledge, little or nothing
is known about spatially inhomogeneous magnetic states
of this type in the present context.
Finally, we have performed all of our calculations at

zero temperature. An extension to finite temperature
clearly would be interesting in light of recent experiments
on thermally activated magnetic reversal induced by a
spin-polarized current.31

X. SUMMARY

We have combined a drift-diffusion description of
transport with a Landau-Lifshitz-Gilbert description of
magnetization dynamics to demonstrate that unpolar-
ized current flow from a non-magnet into a ferromagnet
can produce a precession-type instability of the magne-
tization. Neglecting magnetic anisotropy and magneto-
statics, our numerical calculations show (for both single-
interface and thin film geometries) that a linear insta-
bility occurs when both the current density and the ex-
citation wave vector parallel to the interface are neither
too small nor too large. The critical current density gen-
erally increases with increasing magnetic field until the
instability is quenched. Compared to the single-interface
geometry, the film geometry supports a precessional in-
stability over a much larger range of external magnetic
field. In general, a particular spin wave mode initiates
the instability when the mode just below it (in energy)
becomes absolutely stable against current-induced pre-
cession.
In a lead-film-lead geometry, it is necessary to break
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mirror symmetry to generate precession because equal
and opposite spin transfer torques are generated at the
two ends of the ferromagnetic film. In our model, the
required symmetry breaking is provided by spin wave
modes of the film whose magnetization varies along the
direction of current flow. If the magnetization is artifi-
cially constrained to be longitudinally uniform, asymme-
try must be introduced in the length or properties of the
leads or in the scattering properties of the two interfaces.
When the spin wave mode asymmetry generates the spin-
transfer torque, the critical current density first decreases
(a quantum size effect) and then slowly increases (as suc-
cessive modes become stable against precession) as the
film thickness increases. When interface or lead asymme-
try dominates the spin transfer torque, the critical cur-
rent is small (compared to the mode-dominated regime)
and slowly increases due to increased damping as the film
thickness increases.
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Appendix A: Exchange Magnetic Field

The total exchange energy of a semi-infinite ferromag-
net that extends from z = zL to z = zR is

Eex =
Aex

m2s

∫
d2R

∫ zR
zL

dz (∂αM)(∂αM). (61)

The quantity ms occurs here because M denotes spin
density rather than magnetization. Focus on the α =
z component and let M → M + η. This induces the
variation

δEex =
2Aex
m2s

∫
d2R

∫ zR
zL

dz (∂zη) · (∂zM). (62)

Integrating by parts gives

δEex =
−2Aex
m2s

∫
d2R

[∫ zR
zL

dz η · ∂2zM− [η · ∂zM)]
∣∣∣zR
zL

]
(63)

or

δEex =
−2Aex
m2s

∫
d2R

∫ zR
zL

dz η ·
{
∂2zM

+ ∂zM [δ(z − zL)− δ(z − zR)]} . (64)

The exchange field Hex = −γ−1(δEex/δM). Therefore,
since η ≡ δM,

Hex =
2Aex
γm2s

{
∂2zM+ ∂zM [δ(z − zL) − δ(z − zR)]} .

(65)

The α = x and α = y components of (61) do not generate
surface terms so (65) generalizes to

Hex =
2Aex
γm2s

∇2M

+
2Aex
γm2s

[δ(z − zL)− δ(z − zR)] ∂zM. (66)

Appendix B: Transport Boundary Conditions

The interfacial boundary conditions (23) for the drift-
diffusion equations (2), (4), (7), and (9) can be derived
most convincingly by averaging the boundary conditions
for the semi-classical distribution functions g↑(k, r) and
g↓(k, r) used in a Boltzmann equation treatment of spin
transport.32 A simpler alternative is to proceed phe-
nomenologically and write kinetic equations that connect
the currents to the densities. Temporarily, we assume
that the ferromagnetic magnetizationM =Mu is paral-
lel to the interface normal, i.e., parallel to the z-axis.
In linear approximation, the longitudinal particle cur-

rent that flows through the interface for each spin type
is

j↑ = k↑(µ
NM
↑ − µFM↑ ) = 1

2k↑(a0δn
NM
↑ − a↑δnFM↑ )

(67)

j↓ = k↓(µ
NM
↓ − µFM↓ ) = 1

2k↓(a0δn
NM
↓ − a↓δnFM↓ ).

Here, k↑ and k↓ are kinetic coefficients, µ
NM
↑ ,µ

NM
↓ ,µ

FM
↑ ,

and µFM↓ are electrochemical potentials, and a0, a↑, and
a↓ are twice the inverse density of states per spin at the
Fermi level for electrons in the non-magnet and for ma-
jority and minority electrons in the ferromagnet, respec-
tively. Using (67), the same algebra that led from (6) to
(7) now yields

j = j↑ + j↓

= (k↑ + k↓)a0δn
NM − (a↑k↑ + a↓k↓)δn

FM

+
2

h̄
(k↑ − k↓)a0mz −

2

h̄
(a↑k↑ − a↓k↓)δm. (68)

The physical charge accumulation δn0 at the interface
can be partitioned arbitrarily between δnNM and δnFM.
If we choose δn = δnNM and δnFM = 0, the boundary
condition for the particle current becomes

j = (k↑ + k↓)a0δn0 + 2h̄
−1(k↑ − k↓)a0mz

− 2h̄−1(a↑k↑ − a↓k↓)δm. (69)

In exactly the same way, we derive the boundary condi-
tion for the longitudinal spin current from

Qzz = j↑ − j↓
= 1

2 h̄(k↑ − k↓)a0δn+ (k↑ + k↓)a0m

− (a↑k↑ + a↓k↓)δm. (70)
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FIG. 12: The z-axis of unprimed coordinate system is per-
pendicular to the material interface. The z-axis of the primed
coordinate system is parallel to the magnetization M.

Equations (69) and (70) reproduce the first and last
boundary conditions in (23) if we use the Boltzmann
equation treatment of the boundary conditions32 to make
the choice

kσ =
AFS

(2π)3h̄

1− Rσ
4Rσ

. (71)

We stated the boundary condition for the transverse
spin current in Section III, leaving a constant of propor-
tionality b unspecified in (16). As above, we choose this
constant for consistency with the Boltzmann equation
treatment32. The result is

QNM⊥z =
AFS

(2π)3h̄
a0m⊥, (72)

where AFS is the area of the Fermi surface projected onto
the interface. The reflection coefficients in (71) do not ap-
pear in (72) despite the fact that spins can rotate into the
transverse direction upon quantum mechanical reflection
or transmission at an interface. This is so because the
rotation effect disappears after Fermi surface averaging.9

Tserkovnyak and co-workers33 discuss another contri-
bution to QNMαβ due to “spin-pumping” from an adjacent
ferromagnet. When the magnetization is time-harmonic
with frequency ω, the time derivative of the magneti-
zation can have a component that is transverse to the
magnetization and there is an additional term in (72)

QNM⊥z =
AFS

(2π)3h̄
a0m⊥ +

AFS

(2π)3
h̄ω

2
u⊥, (73)

For our choice of parameters, this new term is numeri-
cally much smaller than the other term except for high
frequencies and low currents. Nevertheless, we have re-
tained it for all the calculations presented here.

As a final step, we must take explicit account of the fact
that M is tilted slightly away from the interface normal
ẑ. This is not difficult if we define a a new coordinate
system x′y′z′ where ẑ′ points along M (Figure 12). In
that case, for example,

QNM⊥′z =
AFS

(2π)3h̄
a0m⊥′ , (74)

replaces (72) as the boundary condition for the transverse
spin current. However, because the direction of u⊥ in
Figure 12 varies along the interface when the excitation
wave vector K �= 0, it behooves us to evaluate (74) using
the original, interface-referenced coordinates xyz.

The transformation law between the xyz and x′y′z′

coordinate systems (Figure 12) simplifies considerably
when u⊥ � 1, as is the case for our problem. Then,

A′x = Ax − u⊥Az
A′y = Ay − u⊥Az

A′z = Az , (75)

for any vector A that lies close to the z axis, This rule
shows that (74) is indeed identical to the transverse
boundary conditions stated in (23). It also shows that
the longitudinal boundary conditions stated above are
unaffected by the fact that u⊥ �= 0.
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