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1 Introduction

Experiments in 1986 [1, 2, 3] demonstrated coupling between the magnetizations of two ferromagnetic layers separated
by a non-magnetic spacer layer. Subsequent discoveries in these systems, including giant magnetoresistance [4, 5], led
to an explosion in measurements and theories. The greatest interest has been in the simplest form of the coupling,

E

A
= −Jm̂1 · m̂2, (1)

called bilinear because the energy per area is linear in the directions of both magnetizations m̂i. With this form
of the interaction, positive values of the coupling constant J favor parallel alignment of the magnetizations and
negative values favor antiparallel alignment. The discovery [6] that the sign of J and hence the preferred alignment
of the magnetizations oscillates as the thickness of the spacer layer is varied accelerated the interest started by the
discovery of giant magnetoresistance. The sign has been observed to change as many as sixty times [7] as the spacer
layer thickness is varied between zero and eighty monolayers (see Fig. 3 below).
Chapter 2 of Ultrathin Magnetic Structures II, published in 1994, contains articles by Hathaway; Fert and Bruno;

Pierce, Unguris, and Celotta; and Parkin reviewing aspects of interlayer exchange coupling [8]. These articles were
written at a time of great evolution in our understanding. Shortly thereafter, a consensus developed on a theoretical
model that unified many of the existing models. Simultaneously, high precision experiments were carried out enabling
stringent tests of the theoretical models. In this chapter, I briefly summarize the situation that existed when these
previous articles were written and then focus on the model that developed and measurements that were made shortly
thereafter. For more details, see the earlier chapters [8] or other review articles [9, 10, 11, 12, 13, 14, 15].
By 1993, oscillatory interlayer exchange coupling had been measured in a large variety of systems. There had

been measurements of a number of related effects including biquadratic coupling and quantum well states. Progress
in growing high quality samples and measuring them accurately was evolving in parallel with the development of
theoretical models. Systematic studies of multilayers grown by sputtering, typically with Co as the ferromagnet,
had revealed oscillation periods in the range of 0.9 nm to 1.2 nm for V, Cu, Mo, Ru, Rh, Re, and Ir spacer
layers [16, 17, 18, 19, 20] and longer periods of 1.5 nm for Os [21] and 1.8 nm for Cr [16]. Studies on lattice-
matched systems grown by molecular-beam epitaxy (MBE) showed more complicated behaviors including much
shorter periods. Examples include Co/Cu [22, 23, 24], Cr/Fe [25, 26, 27], Ag/Fe [28], Au/Fe [29].
There had been progress toward addressing two issues complicating the comparison between theory and experi-

ment. One complication is the significant disorder that is present in real systems but absent in theoretical models. For
one form of disorder, namely thickness fluctuations, averaging the interlayer exchange coupling over the growth front
had been proposed [30] as a solution. Unfortunately, the growth front had not been measured and this correction
had not been made quantitative. Progress on treating other types of disorder, like interdiffusion, was still to come.
Another complication is that the thickness of the spacer layer can be both difficult to control and to measure with the
desired accuracy. The use of wedge-shaped spacer layers [23, 31, 25], in which the thickness varies continuously, had
been developed as a practical solution to this problem. Starting around the time the earlier reviews were written,
there were a number of high precision measurements on wedge samples in which the sample quality was measured.
These measurements have allowed stringent comparisons between theory and experiment.
Some samples had been shown to have a perpendicular alignment of the magnetizations [31, 32]. Phenomenolog-

ically, this alignment can be explained by the presence of a coupling between the magnetizations of the form

E

A
= −J2(m̂1 · m̂2)

2, (2)
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Figure 1: Critical spanning vectors for Cu in the 100 direction. The right panel shows a representation of the Cu
Fermi surface and a rectangular slice (solid line) through it. The necks in the (111) directions are indicated in gray.
The dashed lines indicate the bulk Brillouin zone. In the left panel, the rectangular slice from the right panel is
repeated periodically using an extended zone scheme. There, the heavy curves show the Fermi surface of Cu in that
slice. The white arrow gives a 1-dimensional reciprocal lattice vector in the interface direction. The gray arrows
give the critical spanning vectors. An equivalent pair of vectors is shown for both the long (l) and short (s) period
spanning vectors.

called biquadratic because it is quadratic in both of the magnetization directions. All measured values of J2 are
negative, favoring perpendicular orientation of the two magnetizations. Biquadratic coupling has a separate origin
from the bilinear coupling, in general coming from the presence of disorder [33]. In Section 4, I discuss this coupling
and several of the models that have been proposed to explain it.
In addition to measurements of the coupling, there had been measurements of magnetic multilayers using photoe-

mission and inverse photoemission [34, 35, 36, 37]. For these measurements, the sample consisted of a nonmagnetic
layer on top of a magnetic layer. Strong peaks in the photoemission intensity were identified as arising from quantum
well states. As the thickness of the top layer was varied, the quantum well states were observed to shift in energy. The
periodicity in thickness at which these states crossed the Fermi level established a connection between the quantum
well states and the interlayer exchange coupling.
By 1993, there were a number of theoretical models for interlayer exchange coupling. All gave the result that the

Fermi surface of the spacer layer material [38] determined the coupling periods. In metals, the Fermi surface is a sharp
cut-off in momentum space between filled states and unfilled states. In many contexts, the existence of this sharp
cut-off gives rise to spatial oscillations. Well-known examples include Friedel oscillations of the charge density due to
a localized perturbation and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities
[39]. The early models for oscillatory interlayer exchange coupling showed it to be an additional example.
The models showed that the critical spanning vectors of the Fermi surface of the spacer-layer material determine

the oscillation periods. A spanning vector of the Fermi surface is a vector parallel to the interface normal that
connects two points on the Fermi surface, one point having a positive component of velocity in the interface direction
and the other a negative component. A critical spanning vector is a spanning vector that connects two sheets of
the Fermi surface at a point where they are parallel to each other, see Fig. 1. For noble metal spacer layers, Bruno
and Chappert [40] found the critical spanning vectors of Fermi surfaces that had been previously determined in de
Haas-van Alphen measurements. The periods agree with the oscillations seen experimentally.
Since the spacer layer material is periodic, the Fermi surface is defined in a periodic Brillouin zone. After the

discovery of oscillatory coupling, there was some doubt about whether the coupling was a Fermi surface effect because
some early models ignored the lattice periodicity. The periods expected from free electron Fermi wave vectors are
much smaller than the typically observed periods of 0.9 nm to 1.2 nm. Several groups [41, 42, 43] pointed out that
aliasing would bring the periods into better agreement. Aliasing describes the result of periodically sampling an
oscillating function. Here, the oscillating function is the oscillatory coupling and the periodic sampling occurs at the
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Figure 2: Aliasing. For the long period critical spanning vectors, ql⊥, illustrated in Fig. 1, the solid and dotted curves
give the oscillations based on two equivalent choices for this vector. The squares gives the values of both curves
evaluated at the discrete layer thicknesses. At these points, the two curves are completely equivalent.

discrete layers thicknesses of nD0 where D0 is the individual layer thickness, and n is an integer. Figure 2 shows that
the oscillation determined by the long period spanning vector ql⊥ in Fig. 1 is equivalent to the oscillation determined
by |ql⊥ − g0| where g0 = 2π/D0 when both oscillations are evaluated at discrete layers z = nD0. The wave vector
g0 gives the appropriate length of the Brillouin zone in the interface direction. Some confusion can be avoided by
always reducing the spatial frequency to its smallest equivalent magnitude.
If models are based on different descriptions of the electronic structure, the critical spanning vectors of the Fermi

surface are different and the models predict different periods and different coupling strengths. When two models use
the same electronic structure for the spacer layer and hence predict the same periods, they predict different coupling
strengths if they use different descriptions for the electronic structure of the ferromagnetic layers.
In 1993, there was no consensus on the appropriate model for the interlayer exchange coupling because there

was no consensus on the appropriate description of the electronic structure of transition metal multilayers. In
the delocalized limit, all of the electrons are in band states. In the ferromagnet, the energy bands for majority
and minority electrons are split by the exchange interaction. In the localized limit, the electrons are grouped into
two sets, localized electrons that are spin polarized and delocalized electrons that couple to the localized magnetic
electrons. These two limits emphasize different parts of the physics that are necessary for a correct description of
ferromagnetism. One part is the hybridization between the electron states on different sites, and the other is the
electron-electron interaction which is predominantly local.
The limit of completely localized magnetism was represented by models, related to the RKKY interaction between

impurities, based on perturbative calculations of the s− d (or s− f) Hamiltonian. In these models [30, 40, 44, 45],
there are hybridized band states that interact with localized d states. The electron-electron interactions among the
d states give rise to the magnetism. A more sophisticated approach to this limit is the Anderson model [46, 47],
where the d levels become partially delocalized due to the hybridization with the s levels.
In the opposite limit of completely delocalized states, the simplest model is the free electron model [48, 49], which

has the virtue of being analytically solvable. In this approximation, the bands in the ferromagnet are shifted in
energy with respect to each other. The simplest case is to have the majority bands aligned with the bands of the
spacer layer and the minority bands shifted infinitely high in energy. This limit is frequently called the infinite-U
limit. Edwards et al. [50] carried out closely related calculations for simple tight-binding models. Because the Fermi
surfaces in tight-binding models are not spherical, their calculations make it clear that it is the critical spanning
vectors, and not just the Fermi wave vectors that determine the oscillation periods. After the earlier reviews were
written, a consensus developed that an accurate description of interlayer exchange coupling requires an accurate
Fermi surface for the ferromagnet. This requirement necessitates a delocalized description (see Section 3).
The rest of this chapter focuses on developments since the previous volume of this series was written. Section 2

describes growth of the samples and some of the experimental techniques used to measure the coupling. Section 3
presents the model used to describe the interlayer coupling. Predictions of this model are compared to experiment.
Disorder is discussed from an experimental point of view in Section 2 and from a theoretical point of view in
Section 3. Disorder can introduce other types of coupling into these systems, in particular biquadratic coupling.
Section 4 describes these other forms of coupling. Finally, Section 5 discusses calculations and measurements on
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specific systems including Co/Cu(100), Au/Fe(100), and Cr/Fe in terms of this model.

2 Experiment

2.1 Sample growth

To make measurements that quantitatively test our understanding of interlayer exchange coupling, it is important to
grow samples that are as close as possible to those assumed in theoretical treatments. These assumptions are usually
quite restrictive. A typical calculation of interlayer exchange coupling assumes that the ferromagnet and the spacer
layer are coherent, that is, they share a common lattice in the plane of the interface between them. Further, most
(but not all) calculations assume that there are no defects either at the interface or in the bulk. Growing samples
that approach this ideal is quite challenging. An alternative to eliminating defects is to quantify them. If the type
and distribution of defects is well measured, then the burden is on the theorists to treat the imperfect system rather
than the perfect one. However, it is also quite difficult to measure the defects in sufficient detail.
The first consideration in choosing an experimental system is to find a spacer layer that is close to lattice matched

with a transition metal ferromagnet, Fe, Co, or Ni. When thin enough, a metal layer frequently assumes the in-plane
lattice constant of the substrate on which it is deposited. This is coherent growth. As the thickness of the deposited
layers increases, the strain energy associated with its modified lattice structure becomes too large and the film relaxes
by introducing dislocations at the interface. To avoid dislocations, it is necessary to start with a pair of materials
that have very similar lattice constants. Unfortunately, there are very few.
The most commonly studied systems are Fe/Cr and Co/Cu. Cr and Fe, which both take the body-centered cubic

crystal structure, have less than one percent lattice mismatch, so can grow coherently to fairly large thicknesses.
Since they have the same crystal structure they can be studied in several interface orientations, particularly (100),
(110), and (211). Co naturally takes the hexagonal-close-packed (hcp) structure. However, when it grows on Cu, it
frequently grows in the face-centered-cubic (fcc) structure of Cu (pseudomorphic growth) with a lattice mismatch
of less than one percent, and so can also grow coherently to large thicknesses. Here also, a number of interface
orientations have been investigated, particularly (100), (110), and (111). However, in the (111)-orientation the
energy difference between fcc growth and hcp growth comes only from different stacking of hexagonal planes and
hence is very small. Both types of growth tend to occur, leading to extended defects between different regions and
very poor growth. For a review of growth in this system see [51].
Two other systems for which coherent growth can be achieved up to large thicknesses are Ag/Fe and Au/Fe.

At first glance, these pairs are not only poorly lattice matched, but they do not have the same crystal structure.
However, the (100) interface lattices of the noble metal and of the Fe differ by less than one percent, if the noble
metal lattices are rotated by 45◦ with respect to that of Fe [29, 52]. If the starting substrates are sufficiently flat, very
good growth can be achieved. However, the presence of steps leads to extended defects through the layer because
the growth is not pseudomorphic and the layer thicknesses are quite different.
Other material pairs have been studied. An interesting pair is Fe/Cu. For thin enough layers, Fe grows in

a face-centered-tetragonal structure (almost pseudomorphic) on Cu. Alternatively, Cu grows in a distorted body-
centered-cubic (bcc) structure on Fe for thin enough layers. Thus, it is possible to study interlayer exchange coupling
for bcc Cu [23, 28]. Transition metal spacer layers such as Fe/Pd [53], Fe/Nb [54], and Fe/Mo [55] have been grown
by MBE. The same quality of growth has not been achieved in these systems as in the systems with much smaller
lattice mismatch.
Even when the lattice mismatch is close to zero, the multilayers are still not perfect. The starting substrate is

never perfectly flat and the growth is never perfectly layer by layer, so there are always variations in the thickness
of the layers, typically called thickness fluctuations. If the growth front is measured, it is possible to account for the
variations of the spacer layer thickness when comparing theory and experiment by averaging over the contributions
from different thicknesses. However, when the interlayer exchange coupling has rapid oscillations, the measured
coupling is significantly modified by the thickness fluctuations. Even for reasonably good growth, thickness fluc-
tuations can completely obscure the experimental signature of short period oscillations in the coupling. For this
reason, it is desirable to grow the sample in a layer-by-layer mode to keep the growth front as narrow as possible.
Since layer-by-layer growth is determined by the competition between nucleation of islands and diffusion of deposited
adatoms, it tends to require higher substrate temperatures during growth. Unfortunately, higher growth tempera-
tures tend to promote interdiffusion at the interfaces. Such interdiffusion has been observed both for Cr growth on
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Fe [56, 57, 58, 59] and Fe growth on Cu [60]. Interdiffusion, which gives rise to scattering centers, is more difficult to
treat theoretically than thickness fluctuations. It also can be more difficult to measure.
In addition to the lattice matching between materials in the multilayer, the choice of substrate plays a large role

in the quality of the growth. If substrates of one of the materials in the multilayer are available, they are frequently
the best choice. Iron whiskers, which can be extremely flat [61], and copper single crystals are examples. However,
these choices are not appropriate for transport measurements, like giant magnetoresistance, because the substrate
provides a short circuit that prohibits any measurement of the transport properties of the multilayer. In this case,
insulating substrates like MgO or semiconducting substrates like Si or GaAs can be used. For these substrates, great
care is required to get really high quality growth. See [62] and [63] for descriptions of the complexity of growing a
Fe/Au multilayer on a GaAs substrate.
As mentioned in the introduction, the difficulties in growing samples with particular spacer-layer thicknesses and

in measuring those thicknesses are most easily addressed by growing wedge-shaped samples. To grow such samples,
a shutter between the sample and the evaporator is moved to expose different parts of the sample to different total
fluxes. After the wedge has been grown, Reflection High Energy Electron Diffraction (RHEED) (see Chapter 5 of
Volume I of this series for details) can be used to determine the thickness of the sample at various positions along
the wedge. RHEED is a commonly used technique for monitoring the quality and amount of growth. A high energy
electron beam is reflected from the surface at glancing angles. The resulting diffraction pattern is sensitive to the
details of the surface, in particular the presence of steps. If the growth is layer by layer, there are fewer steps when
layers are close to complete and more when the layer is half filled. In this case, the intensity of different spots in
the RHEED pattern oscillate with a period of one layer. In typical use, RHEED is used to monitor the thickness
of a film during growth. However, for wedge samples, it is typically used after growth, when the RHEED beam is
scanned along the wedge and the RHEED oscillations are monitored as a function of position to give the thickness
at that position, see Fig. 3.

2.2 Measurement techniques

Interlayer exchange coupling is not measured directly. Rather, some magnetic property of a sample, like its hysteresis
loop, is measured and the exchange coupling is inferred by comparing the measured property with a model. Some or
all of the parameters of the model, including the interlayer layer coupling constant, are varied until the predictions
of the model agree with the measurement. The reliability of the results depend on the accuracy of the model, in
particular whether it includes all of the physics necessary to describe the experiment. In addition to the interlayer
coupling, the models usually include the magnetic anisotropy of each of the layers. Typically, models assume coherent
rotation, at least within each layer, so that the intralayer exchange interaction does not play a role. Magnetostatic
effects are typically not included in the models. Hysteretic effects are usually ignored. That is, the “hysteresis loop”
is calculated from a global energy minimum so there is no hysteresis in the model. At the same time, hysteresis that
shows up in the measurement is averaged over to give a similar “loop” to compare to.
Measurements of interlayer exchange coupling fall into two broad classes. In the first class, the hysteresis loop (or

some part) is measured. For example, Parkin et al. first observed oscillatory interlayer exchange coupling [6] using
the giant magnetoresistance to determine the relative orientation of the magnetic layers. Here the resistance of the
film in zero field was compared with the resistance in large field. If the coupling is ferromagnetic, there is no change,
and if the coupling is antiferromagnetic the change can be substantial. The field required to saturate the resistance
is used to estimate the strength of the antiferromagnetic coupling.
One technique commonly used to measure the hysteresis loop is the Magneto-Optic Kerr Effect (MOKE) (see

Chapter 4 of Volume II of this series for details or [64]). MOKE can be used in an imaging mode by scanning the
focused spot of a laser across the surface or by imaging a wide area of illumination. It is not particularly surface
sensitive and has the advantage that it is sensitive to the magnetic state of both layers. Using the sensitivity to both
layers, MOKE images [31] have directly identified perpendicular alignment of two layers.
Another imaging technique that has contributed significantly to understanding interlayer exchange coupling is

Scanning Electron Microscopy with Polarization Analysis (SEMPA) (see Chapter 2 of Volume II of this series for
details). Since this technique is based on measuring secondary electrons, it is generally not used with an applied
field, limiting it to studies of the remnant state. On the other hand, it has greater spatial resolution than optical
techniques like MOKE, and can be used on smaller wedges, requiring smaller areas of sample perfection. Since it
can only measure the remnant state, SEMPA has not been used to measure coupling strengths, but it has been used
to determine the sign of the coupling for enough oscillations of the coupling to allow high precision measurements of
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Figure 3: SEMPA image of coupling in Fe/Au/Fe with geometry and RHEED. A schematic view of the wedge-
shaped sample is shown at the top of the figure. The approximate dimensions give an indication of the very small
slope of the wedge. Immediately below is a SEMPA image of the magnetization of the Fe overlayer. White and
black indicate parallel and antiparallel alignment to the substrate, and hence ferromagnetic and antiferromagnetic
coupling. Below that is a line scan through the image and then a measurement of the RHEED intensity along the
wedge. The oscillations are used to determine the thickness of the spacer layer along the wedge. Examination of the
oscillations indicate that the slope of the wedge is not constant, but the wedge is slightly curved. The RHEED and
the magnetization curves have been corrected for this curvature, but the image has not, hence the variation of the
lines connecting the image with the line scan.
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the periods.
The other class of measurements is based on determining the curvature of the energy with respect to small

variations in the magnetization direction. Two such techniques are Ferromagnetic Resonance (FMR) and Brillouin
Light Scattering (BLS) (see chapter 3 of Volume II of this series for details of both). In a multilayer structure, certain
resonances, whether as a function of field at fixed frequency (FMR) or frequency at fixed field (BLS), depend on on
the strength of the interlayer coupling. The resonance positions can be used to determine the coupling.

3 Physical mechanism for bilinear coupling

In 1993, a model for interlayer exchange coupling [65, 66, 67] based on spin-dependent reflection at interfaces provided
a framework to unify previous models for exchange coupling. This model is closely related to the model of Mathon
et al. [68], formulated in terms of normalized spectral densities. Since the electron states in 3d transition metals are
strongly hybridized, a delocalized description is necessary to accurately compute the interface reflection amplitudes.
This fact led to a consensus that a delocalized description of the electronic structure of the 3d transition metals is
more appropriate for models of interlayer exchange coupling. In this section, I present the model that led to this
consensus.
First, the necessity of a delocalized description of transition metal ferromagnetism raises the question that fre-

quently starts many discussions of interlayer exchange coupling: Is the coupling RKKY? The answer depends on
what is meant by RKKY. If the most general sense is meant, that the oscillations of the coupling are due to the
sharp cut-offs in momentum space due to the Fermi surface of the spacer layer, then the answer is yes. If the more
restrictive sense is meant, that a perturbative treatment of an s − d Hamiltonian gives an adequate description of
transition metal ferromagnetism, then the answer is no. The model I describe below is an RKKY model in the first,
general sense, but not in the second, more restrictive sense.
From Eq. (1), the interlayer coupling constant is given by the difference in energy between the antiparallel

alignment of the magnetizations and the parallel alignment

J =
1

2A
(Eanti − Epar). (3)

Computing the interlayer exchange coupling is reduced to computing the energy difference between two configura-
tions. Some calculations of interlayer exchange coupling evaluate these total energies directly using the local-spin-
density approximation (LSDA) [69, 70] or various tight-binding models [71, 72]. Because the exchange coupling is
much smaller than the total electronic energy for either alignment, it can be difficult to converge these calculations
numerically.
Calculation of the energy differences in Eq. (3) can be significantly simplified by using the “force theorem.” First,

let me stress the difficulty of carrying out self-consistent calculations of the total energies in (3) to sufficient accuracy
to make the energy difference meaningful. The difficulty arises from treating the electron-electron interaction, even
though it is only in mean field theory. The force theorem provides a way to avoid these self-consistent calculations.
It states that the energy difference between two configurations is approximately given by the difference in the single
particle energies in the two configurations. One simply develops approximations for the potential and then computes
the sum of the single particle energies for each configuration. This approach ignores any explicit calculation of the
electron-electron interactions. The force theorem states that if the approximations for the potential are good enough,
the difference in energy of the single-particle-energy sums is very close to the difference in the fully self-consistent
energies. Fortunately, it is fairly simple to develop good enough approximations for the potential because of the
short range of the screening in metals. For thick enough layers, the potential in the middle of each layer can be
treated as independent of the rest of the system and the potential near each interface as independent of the other
interfaces. Thus, a good approximate potential for a multilayer can be constructed piece-wise from much smaller
systems. Alternately, the potential can be found for the case of parallel alignment and then simply modified to give
an approximate potential for antiparallel alignment.
Another feature of the force theorem is its pedagogical value. In the rest of the section, I develop a model for

interlayer exchange coupling based on differences in the single particle energies. The force theorem allows me to
ignore (to a good approximation) the complications of the electron-electron interactions.
The calculation is further simplified when spin-orbit coupling is neglected. Then, since the magnetizations are

collinear for both the antiparallel and the parallel alignments, the majority and minority spins do not interact, and
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Figure 4: Quantum wells used to compute interlayer exchange coupling. On the right, the two panels give typical
band structures for free electron models of interlayer exchange coupling. On the left, the four panels give the quantum
wells for spin up and spin down electrons for parallel and antiparallel alignment of the magnetization. The gray
regions designate the occupied states.

each can be computed separately. At this point, the calculation has been reduced to computing the single particle
energies for the four quantum wells shown schematically in Fig. 4. The appropriate sums and differences of the
energies give the interlayer exchange coupling.
For a simple trilayer, in which both ferromagnetic layers are semi-infinite, all the sums of single particle energies

are infinite. However, the infinite contributions from the two ends cancel out. It is important to treat this cancellation
correctly, which is most easily done by considering the “cohesive energy” of each quantum well. The cohesive energy
is the energy required to make the quantum well out of its bulk constituent materials. For a quantum well with total
ferromagnetic thickness L and spacer layer thickness D the cohesive energy is

∆Eqw
A

=
Etot

A
− LεFM −DεNM, (4)

where ε is the energy density of each bulk material that makes up the layers. When using the force theorem, the
energy densities are just the single particle energy densities.

3.1 Quantum well states due to spin-polarized reflection

Electrons reflect from interfaces between two materials. For free electron models, the interface is a simple (spin-
dependent) step in the potential and the reflection amplitudes are straightforward to compute. For real material
interfaces, such a calculation is not so straightforward, but it is still feasible [73, 74, 75, 76].
In trilayers, electrons reflect from both interfaces and the multiply reflected waves interfere with each other. The

amplitude for one round trip in a spacer layer of thickness D is eikDRRe
ikDRL, where e

ikD is the phase accumulated
on one traversal of the spacer and RR/L are the reflection amplitudes from the right and left interfaces. The amplitude
for two round trips is the same quantity squared. For all possible round trips the total amplitude is

∞∑
n=1

[ei2kDRRRL]
n =

ei2kDRRRL

1− ei2kDRRRL
. (5)

The denominator becomes small and there is constructive interference whenever 2kD + φR + φL = 2nπ, where n is
an integer and φR/L = Im[ln(RR/L)] is the change in the phase of a reflected electron. The constructive interference
inside the spacer layer gives rise to resonances, frequently referred to as quantum well states. Whenever the reflection
probability is one, these quantum well states are true bound states. Otherwise they are like bound states that are
broadened by transmission into the ferromagnetic layers. When the reflection amplitude is close to one, |R| ≈ 1, the
resonances are sharp and when the reflection amplitude is close to zero, they are broad. For a free electron model,
these are shown schematically in Fig. 5.
As the thickness D of the spacer layer is varied, the resonances and bound states shift in energy. If there is a

resonance at the Fermi energy at a thickness D, then resonances cross the Fermi energy whenever the thickness is
D + 2nπ/2kF, where kF is the Fermi wave vector of the spacer layer and n is an integer. This periodic crossing of
the Fermi energy by quantum well resonances is the origin of the oscillations in the interlayer exchange coupling. In
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Figure 5: Evolution of quantum well resonances with spacer layer thickness. The three panels illustrate the bound
states (lines) and resonances (fuzzy ellipses) for quantum wells of increasing thickness. The arrows indicate how each
resonance evolves as the thickness is increased.

this 1-d model, the Fermi surface consists of two points, k = ±kF. The period is determined by the spanning vector
of the Fermi surface, 2kF.
For closely related samples, these quantum well states have been seen in photoemission and inverse photoemission.

For reviews, see [77, 78]. In these experiments, one of the ferromagnetic layers is left off so that the density of states
in the spacer layer could be measured. Since the reflection amplitude from the surface is different from the interface
with the ferromagnet, the resonances are sharper and slightly displaced in energy compared to the quantum well.
Nevertheless, the peaks seen in the photoemission spectra of these samples show the expected behavior as a function
of energy and thickness. In addition, the quantum well resonances seen in photoemission cross the Fermi level with
the same periodicity as is found for the interlayer coupling in related trilayers. Since the reflection at the interface
with the ferromagnetic layer is spin dependent, the quantum well states are spin dependent [79].
The quantum well states affect the density of states in trilayer, and hence the cohesive energy of the quantum

well. The change in the density of states of the quantum well for each spin, defined similarly to the cohesive energy
of the quantum well [14], is

∆n(E,D) = −
1

π
Im

[
d

dE
ln
(
1− ei2kDRRRL

)]
. (6)

The derivative of the ln gives a factor that is the multiple scattering amplitude in the quantum well, Eq. (5). The
cohesive energy of the quantum well is the sum of the single particle energies or equivalently, the integral over the
change in the density of states

∆Eqw = −

EF∫
−∞

dE(E − EF)∆n(E,D). (7)

For the time being, this is a one-dimensional model, so there is no factor of the area. This expression can be integrated
by parts to give

∆Eqw =
1

π
Im

EF∫
−∞

dE ln
(
1− ei2kDRRRL

)
(8)

This result is valid for the case when there is only one state going in each direction in the spacer layer. For the more
general case, see [66, 80].
For fixed thickness, the integrand in Eq. (8) oscillates rapidly through the energy dependence of k. All of these

oscillations cancel out in the integration, except those close to the Fermi energy, where there is a sharp cut-off. The
only contribution is from a range of states near EF of width proportional to h̄vF/D, where vF is the Fermi velocity.
Over this energy range, the energy dependence of RR/L can be ignored and the wave vector can be assumed to vary
linearly with energy, k ≈ kF + E/(h̄vF), so that in the limit of a thick spacer layer

lim
D→∞

∆Eqw =
h̄vF

2πD

∑
n

1

n
Re
[
(RRRL)

nei2kFnD
]
. (9)
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Including the full energy dependence gives terms with higher order in D−1, called preasymptotic corrections [81, 82].
When the reflection amplitudes are small only the first term in the sum over n contributes, giving

lim
D→∞

∆Eqw ≈
h̄vF

2πD
|RRRL| cos [2kFD + φR + φL] . (10)

The higher powers of the reflection amplitudes give higher harmonics of the oscillation. They change the shape and
weakly change the amplitude without changing the period. In the asymptotic limit, the cohesive energy for this
one-dimensional model decays like one over the spacer-layer thickness, and oscillates with a period set by the (one-
dimensional) Fermi spanning vector 2kF with a strength that goes like the product of the two reflection amplitudes.
The cohesive energy decays because the energy range of states that contribute without cancellation decreases as
h̄vF/D.
The interlayer exchange coupling is then the sum and difference of the cohesive energies for the four different

quantum wells seen in Fig. 4. All four quantum wells have cohesive energies that oscillate with the same period
because their oscillation period is determined by the Fermi surface spanning vector of the spacer layer material. The
oscillations do not cancel because they have different amplitudes and possibly phases. For this one-dimensional case,
in the large D, small R limit, the result is

lim
D→∞

J ≈
h̄vF

4πD
Re
[
(R↑R↓ + R↓R↑ −R

2
↑ −R

2
↓)e
i2kFD

]
≈ −

h̄vF

4πD
Re
[
(R↑ −R↓)

2ei2kFD
]
. (11)

Here, I have assumed that the reflection amplitudes are the same for the left and right interfaces but they depend on
whether the spin is majority (↑) or minority (↓). The first form above shows the contribution for each of the quantum
wells, the two asymmetric quantum wells for antiparallel alignment of the magnetizations minus the majority and
minority quantum wells for parallel alignment. The second form shows that the interlayer exchange coupling depends
on the spin dependence of the reflection amplitudes.

3.2 Critical spanning vectors

Real multilayers are three dimensional, not one dimensional. However, if the interface is coherent and there are
no defects, the multilayer is periodic in the two directions parallel to the interface. Then, the crystal momentum
parallel to the interface, K, is conserved. In this case, the problem simplifies to a two-dimensional set of independent
one-dimensional quantum wells. This simplification is the reason that all (to my knowledge) theoretical treatments
of interlayer exchange coupling assume coherent interfaces. For an ideal interface, the cohesive energy (now per area)
is just the integral over the interface Brillouin zone (IBZ) of a series of one-dimensional quantum well energies.

∆Eqw
A

=
1

π

∫
IBZ

d2K

(2π)2
Im

EF∫
−∞

dE ln
(
1− ei2kz(K)DRR(K)RL(K)

)
(12)

In the small R, large D limits, integrating over energy as above gives

lim
D→∞

∆Eqw
A

≈
h̄vF

2πD

∫
IBZ

d2K

(2π)2
Re
(
ei2kFz(K)DRR(K)RL(K)

)
. (13)

Each parallel wave vector has a different one-dimensional Fermi surface given by kFz(K). For each parallel wave
vector, the energy integration gives an oscillation as a function of thickness with a period set by its Fermi surface
spanning vector, 2kFz(K).
For large D, the integrand oscillates rapidly as a function of K, through the K dependence of 2kFz(K). As is the

case above for the energy integration, the oscillations all tend to cancel out, except where there is a sharp cut-off.
For the parallel wave vector integration, these cut-offs occur where two sheets of the Fermi surface become parallel
in the direction of the interface normal, see Fig. 1. The vector connecting the two parallel points is called a critical
spanning vector. The projection into the interface Brillouin zone of the points where the Fermi surface sheets become
parallel is called the critical point. The regions of the Fermi surface close to the critical point have oscillations that
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Figure 6: Selection of critical spanning vectors. The right panel shows a slice through a free electron Fermi surface
and some spanning vectors. The left panel shows the oscillating functions from each of these spanning vectors (light
curves) and the integral over all of them (heavy curve). The peaks in the heavy curve come from constructive
interference among some of the light curves. Fewer and fewer of the light curves interfere constructively as the
thickness increases.

contribute in phase with each other, see Fig. 6. As the spacer layer thickness increases, the area of the Fermi surface
that contributes in phase decreases as κ/D, where κ is the radius of curvature of the Fermi surface at the critical
point. This behavior gives an additional factor of D−1 to the decay of the cohesive energy.
For thick spacer layers, the K dependence of the reflection amplitudes is ignored and the K dependence of kz is

expanded to quadratic order. The Fermi surface spanning vectors, q close to the critical point satisfy

q = 2kF +
1

κu
k2u +

1

κv
k2v (14)

where u and v are the principle axes of this paraboloid. For simplicity, I have taken the critical point to be at the
center of the Interface Brillouin zone. In the large D limit, the parallel wave vector integration in Eq. (13), reduces
to the form

∞∫
−∞

dx

∞∫
−∞

dyei(
x2

a +
y2

b +c) = πeic
√
|ab|eiχ. (15)

The final factor is eiχ = i, 1,−i for local minima (a > 0 and b > 0), saddle points (ab < 0), and maxima (a < 0 and
b < 0) respectively. Equation (13) becomes

lim
D→∞

∆Eqw
A

≈
h̄vFκ

8π2D2
Re
[
RRRLe

i2kFDeiχ
]
, (16)

where κ =
√
|κuκv| is the average radius of curvature of the Fermi surface difference at the critical point. For a free

electron Fermi surface it is just kF. Including the k dependence of the reflection amplitudes and higher order terms
in the expansion of q gives terms in the cohesive energy that decay as higher powers of D−1. These are additional
preasymptotic corrections [82].

3.3 Asymptotic form

Each critical spanning vector makes a contribution to the cohesive energy as in Eq. (16). The contributions from
each quantum well in Fig. 4 are added and subtracted to give the interlayer exchange coupling. With the critical
spanning vectors indexed by α, the interlayer exchange coupling takes its asymptotic form

lim
D→∞

J(D) ≈
∑
α

Jα

D2
sin(qα⊥D + φ

α)

≈
∑
α

h̄vα⊥κ
α

16π2D2
Re
[
(Rα↑ −R

α
↑ )
2eiq

α
⊥Deiχ

α
]
. (17)
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Interface Period (ML) Period (ML) Technique Reference
Ag/Fe(100) 2.38 5.58 dHvA [40]

2.37 ± 0.07 5.73 ± 0.05 SEMPA [86]
Au/Fe(100) 2.51 8.60 dHvA [40]

2.48 ± 0.05 8.6 ± 0.3 SEMPA [7]
Cu/Co(100) 2.56 5.88 dHvA [40]

2.60 ± 0.05 8.0 ± 0.5 MOKE [23]
2.58 to 2.77 6.0 to 6.17 SEMPA [87]

Cr/Fe(100) 11.1 dHvA [88, 89]
12 ± 1 SEMPA [25]
12.5 MOKE [90]

Cr/Fe(112) 14.4 dHvA [88]
15.4 MOKE [90]

Table 1: Comparison of oscillation periods measured in magnetic multilayers with those expected from the critical
spanning extracted from Fermi surfaces measured in de Haas-van Alphen measurements (dHvA).

where qα⊥ is the length of the critical spanning vector, e
iχα is the phase from the type of critical point (maximum,

minimum, saddle point), and φα is a phase determined by χα and the phases of the reflection amplitudes. The
effective Fermi velocity is defined as

2

vα⊥
=

1

|vrF⊥|
+

1∣∣vlF⊥∣∣ , (18)

where v
r/l
F⊥ are the components of the Fermi velocities in the interface direction for the right and left going states

at the critical point. Equation (17) differs by factors of two from other versions of the same result. These factors
depend on the definition of J , Eq. (1), and the definitions of vα⊥ and κ

α. Here, the latter two have been chosen
so that they reduce to vF and kF for free electron models. Also, in some versions the difference in the reflection
amplitudes is written ∆R = (R↑ −R↓)/2, which introduces additional factors of two.
The asymptotic form, Eq. (17) is the main result of this model. In common with previous models, it shows that

the oscillation periods of the interlayer exchange coupling are determined by the critical spanning vectors of the
Fermi surface. This model shows that the strength of the oscillation for each critical spanning vector is determined
by properties of the spacer layer Fermi surface, vα⊥, and κ

α, and by the spin difference in the reflection amplitudes. In
the context of this result, other models can be interpreted as different approximations for the reflection amplitudes.
In RKKY models, the reflection amplitudes depend on the spin-dependent scattering by the localized impurities. In
infinite-U models, the reflection amplitudes are either zero or one. In free electron models, they are determined by
scattering from potential steps.
Generally speaking, the reflection amplitudes in Eq. (17) are the reflection amplitudes for all of the material on

either side of the the spacer layer. Thus, if the ferromagnetic layers have a finite thickness, they should be the reflection
amplitudes for a finite thickness of the ferromagnet. If there is a capping layer, it affects the reflection amplitudes
as well. If the outer surfaces of the ferromagnetic layers are flat enough, there are resonances in the ferromagnet
(and capping layer) that cause the coupling to oscillate. Both have been seen experimentally [83, 84, 85]. Different
ferromagnetic layers, e.g. different thicknesses, can lead to differences between theoretical results and between
theoretical and experimental results.
When spacer layers adopt their bulk structure, their critical spanning vectors can be determined from the Fermi

surfaces that have been measured by de Haas-van Alphen experiments, as shown in Table 1. When compared with
periods determined from high precision measurements of wedge-shaped spacer layers with SEMPA, the agreement
is quite remarkable. The comparison of results for the long period of Cu(001) spacer layers is not as good as other
results. Possible reasons for this are discussed below. For the Cr spacer layer, the entries in the Table are only for
the long period. The periods extracted from the de Haas-van Alphen measurements for Cr are for the Fermi surface
pocket centered at the N -point in the Brillouin zone. Justification for this choice, in addition to the a posteriori
agreement in the Table, is discussed below.
While the agreement between the measured periods and the experimental Fermi surface properties is quite good,

the agreement between measured and calculated coupling strengths is not as good. I discuss several examples in Sec. 5.
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There are several reasons for the lack of agreement. On the experimental side, the oscillation periods are not affected
by disorder to lowest order, but the oscillation amplitudes are. Also, the highest precision measurements of the
periodicity were made with SEMPA on wedge-shaped samples. Since SEMPA is generally not compatible with applied
fields, SEMPA has not been used to measure coupling strengths. On the theoretical side, the experimentally measured
Fermi surfaces are not sufficient to compute the coupling strengths. There remain two theoretical approaches, both
of which have disadvantages. One approach is to go back to Eq. (3) and compute the total energies using the LSDA
or a tight-binding approach. The other approach is to compute the coupling strengths using Eq. (17) by calculating
the spin-dependent reflection amplitudes for realistic band structures. Such calculations also require the LSDA or a
tight-binding approach.
Formally, the LSDA is justified for computing total energies of different configurations, but not for computing

band structures or related quantities like reflection amplitudes. However, to study interlayer exchange coupling
it is useful to view LSDA as a single-particle approximation that treats the electron-electron interaction in mean
field theory. In this approach, LSDA does a good, but imperfect, job of predicting band structures for transition
metals. However, this approach makes it possible to connect the total energy calculations with the model calculations.
Hopefully, the discussion of the model has made it clear that the properties of the LSDA band structure (even though
it may not be formally justified) determine the results of the total energy calculations.
The differences between real Fermi surfaces and those calculated using the LSDA complicate the comparison

between theory and experiment. The results from total energy calculations cannot be compared directly to experiment
because the underlying Fermi surface gives oscillation periods that are at least slightly off. After several oscillations,
theory and experiment become out of phase and impossible to compare. On the other hand, very few measurements
are made for films thick enough that the asymptotic limit is reached. Comparison with the asymptotic results is
difficult when preasymptotic corrections are important.

3.4 Disorder

All measurements are made at finite temperature, T . A number of calculations [50, 67] have shown that the effect
of a thermal electron distribution in the spacer layer is to multiply each term in the asymptotic form, Eq. (17), by
the factor

2πkBTD/(h̄v
α
⊥)

sinh [2πkBTD/(h̄vα⊥)]
. (19)

For a typical free electron Fermi velocity (1.5 × 1015 nm/s) and a spacer thickness of D =4 nm, Eq. (19) is ap-
proximately 0.998 at room temperature (compared to 1 at zero temperature) and can frequently be ignored. This
correction accounts for the temperature dependence of the electrons in the spacer layer, but not the temperature
dependence of the ferromagnetic layers. The low-lying excitations of a ferromagnet are spin waves, which corre-
spond to time-dependent local rotations in the direction of the magnetization rather than its value. These rotations
change the relative orientation of the magnetizations on either side of the interface and hence change the net cou-
pling between them [91]. However, in most measurements, the measurement temperature is significantly below the
Curie temperature so there is not much spin wave excitation. Thus, it is often a good approximation to ignore the
temperature dependence of the bilinear coupling.
The simplest type of disorder to treat is the effect of thickness fluctuations. In many samples the spacing between

steps at the interfaces is in an intermediate regime. The spacing is large enough that the description of the coupling
for ideal interfaces holds for the regions between the steps. At the same time, it is small enough compared to the
intralayer domain wall widths in the ferromagnetic layers that the magnetization directions do not rotate significantly
between steps. The consequence of this slight rotation – biquadratic coupling – is discussed in Sec. 4. In this regime,
the effective bilinear coupling is given by the average of the couplings over the different thicknesses present in the
spacer layer. If the coupling for an ideal thickness of n layers of thickness D0 is J(n) and the probability of having
a thickness nD0 for a nominal deposited thickness of D is P (n,D), the effective coupling strength is

J(D) =
∑
n

P (n,D)J(n). (20)

If the width of the growth front is measured by scanning tunneling microscopy, x-ray diffraction or some other
technique, theoretical coupling strengths can be averaged to compare with measured strengths.
Steps are not only associated with thickness fluctuations, they are also scattering centers that cause diffuse

scattering, see Fig. 7. Steps are one type of interfacial defect, other types are dislocations that form to relieve

13



Interdiffusion and stepsBulk defect scatteringThickness Fluctuations
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Figure 7: Schematic types of disorder. The left panel shows a multilayer with thickness fluctuations in the spacer
layer. Several thicknesses are indicated, D0 is the thickness of an individual layer, D = 6.5 D0 is the average
thickness of the spacer layer, and n = 6 is the number of layers at one point. The middle panel shows an electron
wave reflecting from both interfaces. Scattering from a bulk defect reduces the amplitude, reducing the interference
and hence the amplitude of the quantum well state. The right panel shows a similar process for a defect located at
one of the interfaces.

heteroepitaxial stress and interdiffused atoms. The effect of localized interdiffusion has been studied [92, 93, 94, 95,
96, 97], but, to my knowledge, the effect of extended defects, like steps and dislocations has not. Calculations that
treat interfacial disorder typically use either a periodic array of defects or the coherent potential approximation.
Inspection of the asymptotic formula, Eq. (17) can give a qualitative understanding of the effects of interdiffusion

and defect scattering. When the interdiffusion is localized to the interface, the properties of the spacer layer do not
change, so only the reflection amplitudes are changed. If the interdiffused atoms are far apart, they mainly contribute
to the incoherent scattering at the expense of the coherent scattering. This process reduces the reflection amplitudes.
The reduction can depend strongly on spin [98] and even on which part of the Fermi surface is involved [96]. As
the intermixing becomes greater, the interface starts to behave more like an averaged material and the incoherent
scattering from each defect can decrease. Bulk defects, on the other hand, affect the properties of the spacer layer,
and not the reflection amplitudes (at least to a first approximation). In the asymptotic formula, Eq. (17), the effect
of bulk scattering could be modeled by adding an imaginary part to the critical spanning vector. The imaginary part
comes from the reduction of the coherent part of the wave function due to incoherent scattering. One consequence
of incoherent scattering of either type is to reduce the importance of multiple trips through the spacer and hence
make the higher harmonics neglected in Eq. (10) less important.
The only type of bulk defect that has been treated theoretically is alloying in the spacer layer. The effect of

the defect scattering due to the alloying is usually of secondary interest. The main focus of the these studies is
to systematically vary the electronic structure, and hence critical spanning vectors, of the spacer layer to develop a
better understanding of the coupling. Comparison between measurements [52, 99, 100, 101, 102, 103] and calculations
[101, 102, 103, 104, 105] of the variation of the coupling periods as a function of composition gives evidence as to the
origin of the coupling. I discuss this point more below for the case of Fe/Cr.

4 Other coupling mechanisms

The behavior of magnetic multilayers can be controlled by other coupling mechanisms besides the bilinear coupling
discussed above. Of these, the most important are various forms of biquadratic coupling, Eq. (2). This section focuses
on the various extrinsic sources of biquadratic coupling. It also touches on other extrinsic coupling mechanisms.
There is an intrinsic source of biquadratic coupling that is directly related to the bilinear coupling [106, 107, 108].

Computing the full dependence on m̂1 · m̂2 of the model discussed in Section 3 rather than just the endpoints,
m̂1 · m̂2 = ±1, reveals that the coupling depends on higher orders of the angle between the magnetizations. It
turns out however, that the higher order terms are much smaller than the bilinear term, n = 1, and are generally
negligible. Further, the biquadratic contribution that comes from this expansion oscillates between favoring collinear
and perpendicular alignment of the magnetizations. In experiment, biquadratic coupling appears to always favor
perpendicular alignment. This discrepancy, and the small size of the intrinsic biquadratic coupling argue in favor of
an extrinsic origin for observed biquadratic coupling.
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4.1 Thickness-fluctuation biquadratic coupling

Typically, intralayer exchange coupling prevents the magnetization direction in the ferromagnetic layers from rotating
too rapidly in space. Thus, in the presence of variations in the spacer layer thickness, the bilinear coupling gets
averaged over the growth front as described in Eq. (20). However, the intralayer exchange is not infinite. The finite
intralayer exchange coupling gives a second consequence of thickness variations – biquadratic coupling.
In this section, I present a version of the result due originally to Slonczewski [11, 33] demonstrating the generation

of biquadratic coupling by thickness variations. The basic idea is quite simple. The biquadratic coupling is an effective
coupling due to fluctuations in the layer magnetizations around their average directions. There are regions of the
multilayer with different coupling strengths (due to different thicknesses). Since the intralayer exchange coupling
is strong enough that the layers each have well-defined average magnetization directions, each average direction is
determined by the coupling, the external field, and whatever anisotropies are present. With the average directions so
determined, regions where the coupling would tend towards greater alignment between the magnetizations balance
the regions where the coupling would tend towards less alignment. However, the intralayer exchange coupling is not
so strong that the system cannot lower its energy by allowing the magnetization in each region to rotate slightly away
from the average towards its preferred direction. It turns out that these fluctuations give the greatest energy gain
when the magnetizations are perpendicular and no gain when they are collinear. Thus, these fluctuations give an
effective interaction between the average magnetization directions that favors perpendicular alignment of the average
directions.
In the presence of thickness variations, the interlayer exchange coupling J(R) depends on the position R in the

plane of the interface. The average bilinear coupling is the average of the local bilinear coupling

J1 =
1

A

∫
d2RJ(R), (21)

where A is the area. The variations in the coupling give an effective biquadratic coupling between the average
magnetizations with the strength [109]

J2 = −
1

4A

∫
d2K

(2π)2
J(K)J(−K)

AexK
, (22)

where Aex is the intralayer exchange coupling constant, K = |K|, and J(K) is the Fourier transform of the interlayer
exchange coupling constant

J(K) =

∫
d2ReiK·R(J(R)− J1). (23)

Equation (22) can be more easily understood in simple limits.
Consider the simple model in which the spacer layer consists of parallel strips of width L with alternating thick-

nesses and hence coupling strengths Jn and Jn+1, see Fig. 8. For this model, the relative angle of the magnetizations
is θ = θ0 + δθ sin(πx/L), where δθ is the size of the fluctuations. Over the region from 0 to L, where the coupling
is Jn, the energy change due to the fluctuations is proportional to Jnδθ. Over the region from L to 2L, the sine
function changes sign and the energy change due to the fluctuations is proportional to −Jn+1δθ. The net coupling
energy per area due to the fluctuations is proportional to −δJ δθ, where δJ = Jn − Jn+1. Fluctuations in the right
direction lower the energy of the system. The energy gain is balanced by the cost in intralayer exchange energy
because the magnetization now varies spatially. Since the intralayer exchange coupling depends on the square of the
gradient of the magnetization, for this simple model, it is proportional to (Aex/L) δθ

2. Combining the changes due
to the fluctuations for the interlayer exchange coupling and the intralayer exchange and finding the minimum with
respect to the amplitude of the fluctuations gives δθ ∝ −δJ/(Aex/L). For this fluctuation amplitude, the change in
the energy per area due to the fluctuations gives the strength of the biquadratic coupling

J2 ∼ −
(δJ)2L

Aex
. (24)

This form is also found from (22) by inserting the specific form of J(R).
While (24) is quite simple, its qualitative features generalize to more realistic situations. In real systems, the

stripes are replaced by arbitrary-shaped terraces of different thicknesses, still, there is usually a characteristic length
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Figure 8: Thickness variations and biquadratic coupling. For a trilayer in which the thickness of the spacer layer
varies periodically between n and n + 1 layers, the heavy arrows show the local variation in the magnetization
direction. In the regions with an n-layer thick spacer, in which the coupling is taken to be antiferromagnetic, the
magnetizations rotate a little away from each other. For the n+1-layer thick regions, in which the coupling is taken
to be ferromagnetic, they rotate toward each other.

scale L that determines the biquadratic coupling. The biquadratic coupling strength increases when this length scale
increases because the fluctuations can get larger. However, if the terraces get too large, the fluctuations get large
enough that the average direction loses its meaning. Also, more than two thicknesses are generally present in the
growth front, but that just introduces an effective ∆J . The coupling increases as the difference in the coupling for
the different terraces get larger. The differences tend to be largest when the coupling is oscillating rapidly, that
is when there is short period coupling. The coupling gets weaker as the intralayer exchange interaction increases
because exchange suppresses the fluctuations in magnetization direction that lower the energy.
The form for the biquadratic coupling in Eq. (22) has been derived for semi-infinite ferromagnetic layers. In the

opposite limit, in which the thicknesses of the upper and lower ferromagnetic layers, tU/L, are thinner than the length

scale of the important fluctuations, L, an additional factor of K−1(t−1U + t
−1
L )/2 should be included in the integrand

of the coefficient of the biquadratic coupling. The biquadratic coupling gets stronger as the films become thinner
because the exchange-energy penalty gets smaller, allowing the fluctuations to get larger. In this limit, the result for
the simple model, Eq. (24) gets an additional factor of (L/tU) + (L/tL).
While short period oscillations in the bilinear coupling favor the generation of biquadratic coupling, short period

coupling is not necessary. In fact, the bilinear coupling does not even need to change sign to give a biquadratic
contribution to the coupling. This last point may seem surprising, because on first glance it does not appear that
there is any frustration in the system. However, when the applied field is such that the magnetizations are not
collinear, there is still a balance between regions that would rotate closer to perpendicular and those that would
rotate further away.
Finally, to be in the limit that the average magnetization direction is well defined, the biquadratic coupling must

be weaker than the absolute value of the unaveraged bilinear coupling. However, the biquadratic coupling can be
stronger than the averaged bilinear coupling when couplings of different sign are present in the growth front, because
the effective bilinear coupling is averaged over the growth front.
Strong evidence for this mechanism of biquadratic coupling comes from wedged Cr spacer layers on Fe whiskers

[110]. Cr has a short period bilinear coupling that is almost commensurate with the lattice. There is a node in
the short period coupling when the number of layers is n0 ≈ 24 where the coupling strength behaves roughly like
Jn ∼ (n − n0)(−1)n [30, 110]. In samples that show these short period oscillations, regions of parallel alignment
are separated from regions of antiparallel alignment by regions of perpendicular alignment. If we assume perfect
layer by layer growth, the average bilinear coupling varies linearly between complete layers. Somewhere between
the two thicknesses of complete layers the coupling goes through zero. Near this thickness, the biquadratic coupling
dominates the averaged bilinear coupling. The width of this region is roughly determined by the strength of the
biquadratic coupling at the halfway point divided by the slope of the linearly varying bilinear coupling. For bilinear
coupling that goes to zero near the node, the width of the biquadratically coupled regions goes to zero linearly around
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the node in the coupling, W ∼ |n− n0|.
If the sample is grown at a lower temperature, the thickness fluctuations are greater and the short period bilinear

coupling is obscured. A long period coupling reveals itself. In the regions where the long period coupling goes through
zero, the average bilinear coupling also varies linearly, but with a slope that is not related to the short period coupling.
In this case, the width of the transition region goes to zero quadratically near the node in the otherwise obscured
bilinear coupling, W ∼ (n − n0)2. Within experimental uncertainty, both the linear and quadratic variation of the
transition widths are observed in the appropriate samples [110].

4.2 Pin-hole coupling

The simplest coupling that competes with the interlayer exchange coupling is the coupling due to the presence
of pinholes. A pinhole, in this context, is a break in the spacer layer giving direct exchange coupling between
the two ferromagnetic layers. Since there is direct contact between the ferromagnetic layers, pin-hole coupling is
ferromagnetic. Historically, early attempts to separate ferromagnetic layers by a non-magnetic layer were frustrated
by the presence of pinholes. It was the observation of antiferromagnetic coupling in 1986 [1] that gave convincing
evidence that some coupling besides pin-holes was dominant. Even when pin-hole coupling does not dominate the
bilinear coupling, it can cause biquadratic coupling when the bilinear coupling is antiferromagnetic [111]. This
mechanism is closely related to the thickness-fluctuation-induced biquadratic coupling, but requires an appropriate
distribution of pinholes rather than a distribution of thicknesses with appropriate couplings.

4.3 Magnetostatic coupling

Magnetostatic interactions make two types of contributions to the properties of magnetic multilayers, macroscopic
and microscopic. The main macroscopic contribution is a demagnetizing factor that gives a strong anisotropy to keep
the magnetizations in plane. Since other macroscopic magnetostatic effects are negligible on thin film samples, all
macroscopic magnetostatic effects are typically replaced by an effective uniaxial anisotropy that pushes the moments
in plane. On the other hand, in patterned thin film samples, with reduced lateral dimensions, the macroscopic
magnetostatic interactions can become quite important.
There are two coupling mechanisms that arise from magnetostatic interactions on a microscopic scale. Both are

related to the roughness of the thin films. A ferromagnetic coupling, originally described by Néel [112], is frequently
called “orange peel” coupling [113, 114, 115, 116, 117]. More recently, Demokritov et al. [118] demonstrated that
roughness and magnetostatic interactions can give a biquadratic coupling. Both of these couplings come from the
fringing fields that exist outside the surface due to roughness.
When a surface is rough, there are magnetic poles at the surface because the intralayer exchange is strong

enough to prevent the magnetization from rotating and following the surface profile. A useful limit, at least from a
pedagogical point of view, is where the roughness of the interfaces is slowly varying and much smaller in amplitude
than the separation of the interfaces. Slowly varying implies that the local surface normal is always close to the
average surface normal. Then, it is possible to replace the magnetostatics of the rough interfaces by a distribution
of magnetic “charges” on a flat surface

σ(R) =M · n(R). (25)

Here, the magnetization M is assumed to be uniform, and the local normal to the interface n varies with local
(two-dimensional) position R on the surface. This surface charge density describes a flat approximation for a rough
interface. By analogy with electrostatics, the interaction between two such interfaces separated by a non-magnetic
spacer layer of thickness D is

E = µ0

∫
d2R

∫
d2R′

σU(R)σL(R
′)√

D2 + (R−R′)2
, (26)

where U(L) denotes the upper (lower) interface. Orange peel coupling arises in situations where the spacer layer has
a uniform thickness. In this case, frequently described as having conformal or correlated roughness, the interface
normals are locally opposite, nU = −nL = n. When there is no preferred direction to the roughness, the interaction
becomes [109]

J1 =
µ0M

2
s

4π

∫
d2K |n⊥(K)|

2 e
−KD

K
. (27)
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Figure 9: Orange peel coupling from correlated roughness. The left panel shows the fringing field outside a rough
surface of a material with a uniform magnetization. The pluses and minuses are the effective magnetic “charges.”
The middle panel shows how the fringing fields change in the presence of another interface with correlated roughness
for the case of parallel magnetizations. The right panels shows that for antiparallel magnetizations, none of the field
lines cross the center line, raising the field energy.

where n⊥(K) is the Fourier transform of the part of the local normal that is transverse to the average normal. Since
the magnetizations are assumed to be in-plane, only the transverse component contributes. This bilinear coupling is
the orange-peel coupling described by Néel.
Equation (27) can be made more intuitive by considering the case of sinusoidally varying interfaces, zL =

δ cos(2πx/L) and zU = D + δ cos(2πx/L), see Fig. 9. When the magnetization in one layer is perpendicular to
the corrugation, i.e. along x̂ in this case, there is ferromagnetic coupling to the other layer with strength

J1 ∼ µ0M
2
s

δ2

L
e−2πD/L. (28)

When the magnetization in one layer is along the corrugation, i.e. along ŷ, rather than perpendicular, there is no
coupling to the other layer. The dependence on the absolute directions of the magnetizations, rather than just the
relative orientation is a consequence of directionality of the roughness in this simple model. Fully isotropic roughness
gives a true ferromagnetic bilinear coupling. Since this coupling depends exponentially on the thickness of the spacer
layer, the dominant roughness will tend to have periods somewhat greater than the spacer layer thickness. As the
roughness increases, the coupling energy increases quadratically, just as the electrostatic interaction between two
equal charges increases as the square of the charges. Both the general expression and the model result break down
when the thickness of the spacer layer goes to zero because the roughness is no longer small compared to the spacer
layer thickness.
When the roughness is uncorrelated, the orange-peel coupling is zero, but there is still a microscopic magnetostatic

contribution to biquadratic coupling. In the limit that the magnetizations are uniform, the energy is independent of
the relative magnetization directions when the roughness is uncorrelated and there is no coupling. However, when
the intralayer exchange coupling is finite so that the magnetization directions can fluctuate, there will be biquadratic
coupling. Above, I argued that when thickness fluctuations give spatial variations in the bilinear coupling, fluctuations
in the magnetization direction can lower the energy. Here also, fluctuations in the magnetization direction can lower
the energy. In both cases, the fluctuations lower the energy the most when the two magnetizations are nominally
perpendicular.
Above a rough surface, magnetic charges give rise to a magnetic field which couples to the magnetization of the

upper film. The magnetic field due to roughness in the lower interface is

B(r) = µ0

∫
d2K

(2π)2
k

iK
eiK·Re−Kz

∫
d2R′e−iK·R

′

σL(R
′) (29)

where K is a two-dimensional wave vector in the plane of the interface and k = (K, i|K|) is a complex three
dimensional wave vector. The interaction between the rough lower layer and a semi-infinite upper layer is

E = −

∫
d2R

∞∫
D

dzMU(r) ·BL(r), (30)

Note that this interaction is not between the charges on the two interfaces, but between the charges on one interface
and the whole volume of the other layer. Responding to variations in BL(r), fluctuations in MU(r) lower the
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Figure 10: Biquadratic coupling from uncorrelated roughness. The fringing fields from the bottom, corrugated
surface couple to the perpendicular magnetization in the smooth upper layer giving small amplitude oscillations in
the magnetization direction.

magnetostatic energy at the expense of raising the exchange energy. The net lowering of the energy due to the
fluctuations is greatest when the magnetizations are perpendicular. Assuming that the roughness has no preferred
direction, the resulting biquadratic coupling has the form [109]

J2 = −
µ20M

4
s

64AexA

∫
d2K

(2π)2
e−2KD

K3
|n⊥(K)|

2
. (31)

This energy gives a biquadratic coupling that favors perpendicular alignment of upper and lower magnetizations. If
the upper surface is rough, there will be an equivalent contribution from the magnetic poles in the upper interface
coupling to the lower layer.
For a simple model with one corrugated interface, zL = δ cos(2πx/L), and one smooth interface zU = D, see

Fig 10, Eq. (31) gives

J2 ∼ −
µ20M

4
s Lδ

2

Aex
e−4πD/L (32)

provided the lower magnetization is perpendicular to the corrugation. This interaction favors very long period
roughness. When the ferromagnetic films have finite thicknesses, this contribution to the biquadratic coupling
becomes weaker, the opposite behavior from that found for the biquadratic coupling in Eq. (24). In the latter case,
the thinner ferromagnetic films allow the fluctuations to increase because the driving force for the fluctuations acts
only at the interface. On the other hand, in Eq. (31) the driving force for the fluctuations acts throughout film, so
that making the film thinner reduces the net effect of the fluctuations.
Evidence for this mechanism of biquadratic coupling comes from measurements of its thickness dependence [119]

in Fe/Ag/Fe samples grown on GaAs. The authors compared the experimental results with a model equivalent to
Eq. (31) and found good agreement using roughness parameters consistent with the measured roughness. Additional
evidence comes from the observation that for most wedges grown on Fe whiskers, biquadratic coupling dominates
in the thickest parts of the wedge [120]. Here, other mechanisms are expected to become weaker as spacer layers
become thicker. The magnetostatic coupling is dominated by long wavelength roughness making the exponential
damping less effective at limiting the coupling. For thick spacer layers, where other interactions have become small,
this form of biquadratic coupling is likely to be the dominant interaction.
A study of an amorphous spacer layer showed evidence for both orange-peel coupling and magnetostaic biquadratic

coupling [121]. For thin layers, the magnetizations of the two layers are parallel in the ground state, but as the
thickness of the spacer increases, the alignment crosses over to perpendicular. The authors were able to fit the
results to a combination of these two coupling measurements using a roughness consistent with that measured by
scanning tunneling microscopy.

4.4 Loose spins

Many measurements of biquadratic coupling show a very strong temperature dependence. On the other hand, the
bilinear coupling and the magnetization generally vary slowly with temperature, so that inserting their temperature
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dependence into the expressions for biquadratic coupling, Eq. (22) and Eq. (31), gives only weak dependence. Slon-
czewski [122] has developed a “loose spin” mechanism that does show a strong temperature dependence. While the
argument that the other types of coupling do not show a strong temperature dependence may be overly simplistic,
the loose spin model has been established in samples constructed specifically to test for it.
To produce a strong temperature dependence, Slonczewski postulates the existence of magnetic moments (spins)

that are only weakly coupled to the magnetic layers. There is no direct exchange coupling, only the indirect exchange
coupling mediated by the spacer layer electrons. These weakly coupled spins are paramagnetic. However, they see a
potential that is anisotropic due to their coupling to the magnetic layers

V (m̂) = JLM̂L · m̂+ JUM̂U · m̂, (33)

where L (U) refers to the lower (upper) layer. Note that the potential depends on the relative orientation of the
magnetizations of the two layers. To see the origin of biquadratic coupling, consider a zero-temperature, classical
treatment of the loose spin. At zero temperature, a classical spin will be in its minimum energy configuration. Since
the energy of the minimum depends on the relative orientation of the layer magnetizations, the loose spin contributes
an effective interaction between magnetizations which can be expanded in powers of the relative orientation

J =

∞∑
n=1

(−1)nNn
(JLJU)

n

(J2L + J
2
U)
n−1/2

(M̂L · M̂U)
n. (34)

The bilinear term, n = 1 favors either parallel or antiparallel alignment of the magnetizations depending on the
relative sign of JL and JU. The biquadratic piece always favors perpendicular alignment. The numerical factors Nn
are such that the bilinear term always wins. A single loose spin always gives a dominant bilinear coupling. However,
for a collection of loose spins, the signs of JL and JU can vary. In this case, the bilinear contributions may cancel
out, leaving a dominant biquadratic coupling.
At finite temperature, the fraction of the time each spin spends close to its minimum energy orientation depends

strongly on temperature. Its paramagnetic behavior gives a strong temperature dependence to the coupling, Eq. (34).
At temperatures high compared to the potential minimum, the spin will have an isotropic orientation distribution,
and the effective coupling mediated by the loose spin will go to zero. Since the loose spin is not directly coupled
to the magnetic layer, the temperature scale of the coupling will be much lower than the Curie temperature of the
magnetic layers.
The existence of this coupling mechanism has been tested in experiments in which magnetic atoms have been

intentionally introduced at low densities into the spacer layer [123, 124, 125]. Agreement with the loose spin model
was found in [125]; this experiment used the lowest density of loose spins. The authors speculate that the higher
densities used in the other publications obscured the behavior expected from the model.

4.5 Torsion model

If the spacer layer is antiferromagnetic, none of the models discussed above are sufficient to describe the coupling. For
ideal multilayers, the coupling is simply the result of the direct coupling from layer to layer in the antiferromagnet.
However, it is impossible to avoid thickness fluctuations so the coupling will be frustrated. Slonczewski introduced
the “torsion model” [11] to describe frustrated antiferromagnetic spacer layers.
The torsion model is based on the following model of the behavior for an ideal system of two ferromagnetic layers

separated by an antiferromagnetic spacer. All moments are assumed to remain in plane, and can be described by an
azimuthal angle φj . When the relative directions of the magnetizations in the ferromagnets are rotated way from
their minimum energy configuration, a spiral winds up in the antiferromagnet. For an n+1 layer spacer, taking n to
be even for the present, the minimum energy angles for the ferromagnetic layer are φL = φU. When the magnetization
of the top layer is rotated through an angle ∆φ , the magnetizations in the jth layer in the antiferromagnet are

φj = j
∆φ

n+ 2
+ φAFj . (35)

The first term gives the spiraling of the magnetization, and the second term, φAFj = 0, π for j even or odd,
gives the antiferromagnetic reversal from layer to layer. I have assumed that the exchange interaction between the
ferromagnetic layer and the antiferromagnetic layer is the same as the exchange between layers in the antiferromagnet.
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The exchange energy due to the spiral structure is −(n + 2)JAF cos(∆φ/(n + 2)). When n is large enough, a small
angle expansion of this energy gives a constant term plus

En+1 =
JAF

2(n+ 2)
(∆φ)2. (36)

For an n layer spacer, the minimum energy configuration has φL = φU + π. If the magnetization of the upper layer
is rotated so that it makes an angle ∆φ with respect to magnetization of the lower layer, the energy is

En =
JAF

2(n+ 1)
(π −∆φ)2. (37)

When n is large enough that this model does not break down, both of these energies vary quadratically in the rotation
angle rather than as the cosine of the rotation angle.
If the growth front has areas of thickness n and n+ 1, the coupling will be frustrated. In terms of the fractional

area of thickness n, θn, the net coupling energy is

J = θn+1
JAF

2(n+ 2)
(∆φ)2 + θn

JAF

2(n+ 1)
(π −∆φ)2 (38)

The quadratic dependence leads to different behavior in the presence of thickness fluctuations than was found for
the cosine dependence of the usual bilinear coupling. For the case of bilinear coupling, the net bilinear coupling can
dominate the biquadratic coupling giving parallel or antiparallel alignment. Such collinear alignment will persist up
to some finite amount of interfacial roughness. In the torsion model, any roughness leads to non-collinear coupling,
although the degree of non-collinearity can be small.
The torsion model is based on the assumption that nearest-neighbor direct exchange adequately describes the

coupling in the antiferromagnet and the coupling of the antiferromagnet to the ferromagnet. It has been shown
[126] that it is necessary to include many distant neighbors to describe the spin-wave spectrum of transition metal
ferromagnets. It is also clear that such a description is not adequate for an incommensurate antiferromagnet like Cr
[110, 127]. On the other hand, this model appears to describe Mn spacer layers well [128, 129, 130, 131, 132, 133, 134]
even though a simple nearest-neighbor-exchange model may not be valid.

5 Specific systems

In this section I discuss selected systems that illustrate many of the important issues in interlayer exchange coupling.
For a more complete comparison between theory and experiment, see [13]. For a comprehensive compilation of
experimental and theoretical results, see [15]. Both those reviews emphasize transition metal systems. For reviews
of work on rare earths, see [135, 136].

5.1 Co/Cu

One of the most extensively studied system is Co/Cu, particularly the (100) orientation. It exhibits many of the
difficulties encountered when comparing theory and experiment. In spite of these difficulties, a general consensus of
the theoretical behavior has emerged based on total energy calculations as well as asymptotic (and preasymptotic)
analyses [67, 69, 73, 74, 81, 82, 137, 138, 139, 140]. As is known from the analysis of the experimental Fermi surface
[40], there are two different critical spanning vectors, one associated with the interface zone center that gives a long
period oscillation, and one associated with the necks that gives a short period. In the asymptotic regime, the long
period oscillation is weak and the short period oscillation is relatively strong. However, for smaller thicknesses,
where most experimental measurements are made, preasymptotic corrections become very important and change the
asymptotic results quite dramatically.
At the critical point for the long period coupling, the reflection amplitudes for both spins are quite small, hence

the weak asymptotic coupling. However for parallel wave vectors close to the critical point, the minority-electron
reflection becomes close to unity, see Fig. 11. As mentioned above in the discussion following Eq. (13), the parallel
wave vectors around the critical point within a region ≈ κ/D contribute to the coupling. Thus as D becomes
smaller, the regions with strong reflection contribute to the long period oscillation with preasymptotic corrections,
which decay as higher powers of D−1. For thin spacer layers, the long period coupling strength is found to be
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Figure 11: Spin-dependent reflection from Co/Cu(001). The left and right panels show the Fermi surface of Cu
shaded based on the reflection probability from Co for majority and minority electrons respectively. The shading
scale is given at the top. The Fermi surfaces are projected into the Interface Brillouin zone. The middle panel shows
a slice through the Fermi surface and indicates the critical spanning vectors. The projection of the critical spanning
vectors are indicated by circles in the left and right panels.

substantial. In addition, since the parts of the Fermi surface making the dominant contribution to the oscillatory
coupling have shorter spanning vectors, the apparent period is changed for thin spacer layers as well. Such variation
in the periods are generally present, but become more important when the asymptotic coupling is weak and the
preasymptotic corrections are significant.
Different asymptotic corrections are important for the short period oscillation in the coupling. At the necks, the

reflection probability for the minority electrons is quite strong because there is a symmetry gap for the states in the
Co with the symmetry of those on the Cu Fermi surface. However, the gap is fairly narrow in energy. Since the
phase of the reflection amplitude changes by π as a function of energy when going from the bottom of a gap to the
top, the reflection amplitude (but not the reflection probability) has a strong energy dependence. Evidence for this
rapid variation of the phase of the reflection amplitude has been in in photoemission studies of Cu on Co [141]. In
carrying out the energy integration in Eq. (9), I have neglected the energy dependence of the reflection amplitude.
For thin layers, the phase variation of the reflection amplitude makes a substantial correction to the strength of the
coupling, typically reducing it.
From these theoretical arguments, analyzing experimental data in terms of the form Eq. (17) cannot be expected

to give meaningful results unless the spacer layer thicknesses are in the regime in which the asymptotic approximation
is valid. Most measurements [22, 23, 24, 87, 142, 143] are made in the opposite limit. In addition, the roughness
of the interfaces can apparently vary significantly from measurement to measurement, hence the sample-to-sample
variation found by Weber et al. [87]. The varying roughness and the importance of preasymptotic corrections explains
the wide variation in the measured periods for the long period oscillation given in Table 1. Due to the unmeasured
effect of interface roughness, it is not surprising that the measured values of the coupling strength are at least a
factor of three smaller than the equivalent theoretical results.

5.2 Au/Fe and Ag/Fe

As shown in Table 1, the periods measured for Au/Fe and Ag/Fe trilayers [86, 7] grown on Fe whiskers are in
remarkable agreement with those predicted from the experimental Fermi surface [40]. To measure the coupling
strengths, Unguris et al. [144] used MOKE to measure the coupling strength for Au/Fe on similar samples. The
samples were first characterized in zero field by SEMPA, including a measurement of the RHEED intensity oscillations
to determine the width of the growth front. Using the measured width of the growth front in their analysis, they were
able to correct for the averaging of the coupling due to roughness, Eq. (20). Fitting the measured coupling strength to
the asymptotic form Eq. (17), they determined the coupling strengths [145], JS/(1 nm)2 = 1.29 mJ/m2 ± 0.16 mJ/m2

and JL/(1 nm)2 = 0.18 mJ/m2 ± 0.02 mJ/m2. The coupling strength has been measured for Ag/Fe [146], but has
not been analyzed in terms of the asymptotic form.
There have been far fewer calculations of the coupling for Au/Fe than for Co/Cu [74, 96, 147, 148]. Calculations,

which predated the experimental results, of the asymptotic coupling strengths [74] gave 2.0 mJ/m2 and 1.1 mJ/m2 for
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Figure 12: Band structures of Co and Cu. The band structures are shown along the line in the (100) direction
through the critical point for the short period coupling. States along this line are either even (solid lines) or odd
(dotted lines) with respect to a mirror plane. The two do not couple to each other during reflection and transmission.
Thus, electrons at the Fermi energy in Cu see a symmetry gap if they have minority spin, and completely reflect.
The phase of the reflection amplitude varies by π from the bottom to the top of the gap. Since the gap is less than
2 eV, the phase variation is substantial.

the short and long periods respectively. The short period coupling strength is within a factor of two the experimental
result, but the long period coupling is about a factor of six larger. Recent total energy calculations [96] have cast
doubt even on this agreement for the short period coupling. These calculations were analyzed, like the experiment,
to extract the effective asymptotic coupling strengths. The extracted values [149], 3.4 mJ/m2 and 1.1 mJ/m2 were
considerably larger than the experiment for both periods.
There are several possible reasons for the discrepancy in the calculations of the short period coupling strength. At

the critical point for the short period, the reflection amplitudes are changing rapidly, which introduces two possible
reasons for disagreement. As there has not been an analysis of the preasymptotic corrections for this system, it may
be the total energy calculations are not in the asymptotic limit. More likely, the small errors in the Fermi surface
as computed in the layer matching calculation [74] may give much larger errors in the coupling due to the rapid
variation in the reflection amplitudes. If this explanation is correct, some uncertainty remains is both calculations
due to the small errors introduced by the local spin density approximation. Alternatively, the difference may be due
to the different treatment of the ferromagnetic layers, semi-infinite for the asymptotic calculation and finite for the
total energy calculation. However, total energy calculations [96] in which the ferromagnetic thickness is varied at
fixed spacer thickness do not show significant variation.
The common explanation for disagreement between theory and experiment, thickness fluctuations, does not apply

to the measurements on this system for two reasons. First, they have been accounted for in the extraction of the
coupling strengths from experiment. In addition, thickness fluctuations reduce the short period coupling more than
the long period coupling. But to bring the theoretical results into agreement with the measured results, the long
period strength needs to be reduced more than that of the short period. Optiz et al. [96] looked at the effect of
interfacial defects on the coupling. They found that Au atoms that are interdiffused into the top Fe layer suppress the
long period coupling much more strongly than the short period coupling. Such behavior could bring the theoretical
results into better agreement with experiment. Au “floating” on top of Fe during growth has been observed [150],
making it plausible that there is interdiffusion at the interface.
Other total energy calculations [147, 148] for this system have not been analyzed in terms of the asymptotic form

making it difficult to compare them with experiment or other calculations. Since the effective periods extracted
from [148] disagree by up to 10 % from the results of [96], it is difficult to compare total energies directly, because
the calculations get out of phase with each other. The authors find that the calculated peak positions and relative
heights agree well (overall heights disagree by an order of magnitude) with those measured for Au/Fe multilayers
grown on GaAs [29]. However, there is substantial disagreement between the results for samples grown on GaAs and
those grown on an Fe whisker.
There has been one calculation of the asymptotic coupling for Ag/Fe [74]. Since the experimental results [146]

have not been analyzed in terms of the asymptotic form, a detailed comparison is difficult. Roughly, the measured
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and calculated couplings are close in magnitude.

5.3 Cr/Fe

The other intensively studied system is Cr/Fe, particularly the (100) orientation. Cr/Fe was the first transition metal
multilayer system to show interlayer exchange coupling [1], one of the first the show oscillatory interlayer exchange
coupling [6], and the first to show short period coupling [25, 26, 27]. Much of the interest In Cr/Fe is due to the close
lattice match between Cr and Fe, better than any other transition metal pair (excluding the noble metals discussed
above). In addition, Cr/Fe exhibits extremely complicated behavior, much of which arises from the presence of
spin-density-wave antiferromagnetism in the Cr. There have been three review articles [110, 151, 152] devoted at
least in part to this issue. It is interesting to read all three to compare the interpretation of the same symphony by
three different conductors.
In Cr, there are a number of competing phases: paramagnetic, commensurate spin-density wave, incommensurate

spin-density wave, and helical spin-density wave. The incommensurate spin-density wave can be longitudinal or
transverse. The order propagation vector can be perpendicular to the interface or in the plane of the interface. In
bulk Cr, the equilibrium phases are (in order of decreasing temperature): paramagnetic, transverse incommensurate
spin-density wave, and longitudinal incommensurate spin-density wave. The equilibrium phase is sensitive to alloying
and strain as well as coupling to one or more layers of ferromagnetic Fe. It can be very difficult to distinguish between
the different phases experimentally.
Taken at face value, many measurements of Cr/Fe are contradictory. However, it has become clear that the

differences arise from the sensitivity of the antiferromagnetic order in Cr to the presence of disorder, particularly at
the interfaces. It is possible to construct a consistent picture to explain much of the various behaviors, but it is very
difficult to check the picture with detailed theoretical calculations. Approaches, like model free energies [153], that
are capable of describing the temperature dependence of the antiferromagnetism in bulk Cr are not flexible enough
to realistically describe the behavior near defects. Calculations that can microscopically treat the effect of disorder,
like tight-binding approximations [71, 154, 155] or LSDA calculations [156, 157, 158, 159], are either not capable
of describing the bulk behavior (tight-binding) or far too computationally expensive to treat relevant system sizes
including defects (LSDA).
There are several measurements on this system that make it clear that the model discussed in Section 3 for

the interlayer exchange coupling is not adequate to describe the short period coupling in Cr/Fe multilayers. Anti-
ferromagnetism in the Cr has been seen directly by neutron scattering [160, 161]. The temperature and thickness
dependence of the coupling [25, 153] has established that the spin-density wave state plays a role in the coupling for at
least some systems. While many of the other measurements can be qualitatively understood, the lack of quantitative
test of the explanations leaves much of the behavior open to interpretation. I would expect that experiments that
test our understanding of Cr/Fe will give many more surprises. However, such experiments can be quite difficult.
Thickness fluctuations obscure the short period oscillations when samples are grown in less than optimal condi-

tions, frequently revealing a long period coupling [25, 26, 162]. The long period coupling is of interest because it is
the only well characterized oscillatory coupling in a lattice-matched system with something besides a noble metal as
a spacer layer. Cr has a complicated Fermi surface with a large number of critical spanning vectors [66, 88, 89, 163].
There have been a number of proposals for the origin of the long period coupling [101, 157, 164]. Based on asymptotic
coupling calculations, analysis of the Fermi surface measured in de Haas-van Alphen measurements, and studies of
alloyed spacer layers, a consensus has formed that the ellipsoids centered at the N -point of the Cr Brillouin zone
(see Fig. 13) are responsible for the coupling. The periods extracted from the de Haas-van Alphen measurements in
Table 1 are from the N -centered ellipsoids.
Studies [102, 103] of Cr1−xVx alloy spacer layers are based on the fact that this alloy modifies the electronic

structure (and hence the Fermi surface) without introducing so much bulk scattering that the interlayer exchange
coupling is eliminated. Then, the evolution of the period of the oscillatory coupling can be compared with the
calculated evolution of the Fermi surface. Both of these studies showed that the period decreased with V concentration
and that the only part of the Fermi surface that grew in an appropriate manner was the N -centered ellipsoid.
Further evidence favoring the N -centered ellipsoids was found in experiments [165] in which a Au layer was

inserted at one of the interfaces in an Fe/Cr multilayer. The long period coupling was dramatically reduced relative
to the short period coupling. The Au Fermi surface covers most of the Brillouin zone, overlapping most of the critical
spanning vectors of Cr Fermi surface, but it does not overlap the critical points for the N -centered ellipsoids. The
authors attribute the strong suppression of the long period coupling to the exponential decay of the quantum well
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Figure 13: Slice through the Cr Fermi surface. The left panel shows a representation of the Cr Fermi surface in
its paramagnetic state. The gray shaded parts are the ellipsoids centered at the N points. Also indicated is a slice
through the Fermi surface, which in turn is shown in the right panel. The gray shaded arrows are the critical spanning
vectors at the N-centered ellipsoids and the white arrows indicate the nested parts of the Fermi surface that give rise
to the spin density wave antiferromagnetism.

states in the gap.
The same oscillation period was observed in (112) oriented systems [90, 166] as in (100) oriented systems and

(110) textured systems grown by sputtering [6]. The similarity led to speculation that the oscillation did not originate
from Fermi surface properties. However, it turns out that asymptotic coupling calculations, analysis of the Fermi
surface measured in de Haas-van Alphen measurements, and studies of alloyed spacer layers all suggest that the
N -centered ellipsoids are the origin of the coupling in all three cases.

5.4 Fe/Si

While the model presented above has been derived specifically for metallic spacers layers, it has also been extended
to insulating or semiconducting spacer layers [67]. The oscillatory coupling is replaced by an exponentially decaying
coupling. However, because the preasymptotic corrections may be important, it is conceivable that the sign of the
coupling may change once or even twice as a function of spacer layer thickness. The idea of studying coupling
through an insulating layer started [167] a large effort in studying coupling through Si and related spacers layers.
Here, related refers to the fact the Fe and Si have a strong propensity [168, 169, 170, 171] to form silicides. Much
of the effort derives from the fact that many different spacers may develop when these materials combine. Because
different silicides can form, it can be very difficult to know what spacer layer is being measured.
There have been a large variety of effects measured. Coupling can be induced by light [172] or heat [173]. In some

structures, biquadratic coupling dominates [174, 175], while in some structures with FeSi spacer layers, an oscillatory
bilinear coupling has been observed [176]. In a series of nominally pure Si spacer layers a very strong, exponentially
decaying coupling decaying coupling has been measured [177], consistent with predictions for insulating spacer layers,
which was the original motivation for studying this system. There is apparently still significant disagreement between
results in different laboratories and more work needs to be done before these systems are well understood.

6 Summary

This review, written from a theorist’s point of view, has focused on the physical mechanisms for interlayer coupling
in magnetic multilayers. A simple physical picture for interlayer exchange coupling has evolved over the last decade.
Spin dependent reflection from the interfaces in multilayers sets up spin-dependent quantum well states. These
quantum well states evolve in energy as the thickness of the spacer layer is varied. As these states pass through
the Fermi energy, they fill or empty, changing the energy of the multilayer. These changes are periodic because
the quantum well states cross the Fermi energy with a period determined by the Fermi surface of the spacer layer
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material. At critical points of this Fermi surface, many quantum well states have the same period giving a net
oscillatory contribution to the energy. Since the reflection is spin dependent, the energy depends on the relative
orientation of the layer magnetizations, i.e., there is an energy difference between parallel and antiparallel alignment
of the magnetizations. This energy difference is just the interlayer exchange coupling. It has oscillatory contributions
with periods determined by the critical spanning vectors of the spacer layer Fermi surface and strengths determined
by the spin-dependent reflection at the interfaces.
This picture for the interlayer exchange coupling has been tested to an extent much greater than the related

RKKY coupling between magnetic impurities. For some systems, the periods have been measured to 3 % accuracy.
The measured periods agree with those expected from the critical spanning vectors of the Fermi surfaces measured
in de Haas-van Alphen experiments. The coupling strengths have been investigated by a number of theoretical
techniques and have been measured in carefully prepared samples. There is no completely satisfactory comparison
between theory and experiment because there is no system in which a complete characterization of the structure,
including all of the defects, has been made. However, enough is understood about the likely defects and their effect
on the coupling to give confidence that the physics is correctly described.
While defects confound our ability to compare theory and experiment for the bilinear coupling, they are the

origin of biquadratic coupling. Biquadratic coupling, which derives from several mechanisms, appears to be present
to some degree in all magnetic multilayers. Two mechanisms arise from interfacial roughness. In one case interfacial
roughness gives rise to fluctuations in the strength of the bilinear coupling. In the other it gives rise to an oscillating
magnetic field outside the interface. In both cases, the system can lower its energy by allowing the magnetization of
the layers to fluctuate in response to the roughness induced variations. The system can lower its energy the most
when the two magnetizations are perpendicular to each other, giving an effective coupling that favors perpendicular
alignment of the magnetizations.
The study of interlayer exchange coupling has flourished for the past decade and a half. We have developed a clear

physical description of the coupling and have successfully compared its predictions with high quality measurements.
While very successful, the comparison between theory and experiment is not complete and interesting issues still
remain. Successfully addressing these issues requires measuring the coupling in systems that are as close to perfect as
possible and then quantitatively measuring all the defects that remain. On the theoretical side, it requires explicitly
treating the measured defects. Both aspects of understanding defects are quite difficult and require substantial effort.
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