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Abstract
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The evolution of the surface profile during homoepitaxial growth of Fe(001) is stud-

ied by scanning tunnelling microscopy and reflection high energy electron diffraction. The

observed morphology exhibits a non-self affine collection of mound-like features that

maintain their shape but coarsen as growth proceeds. The characteristic feature separation

L is set in the submonolayer regime and increases with thickness,t, as .

During the coarsening phase, the mounds are characterized by a magic slope and a lack of

reflection symmetry. These observations are shown to be described by a continuum growth

equation without capillarity.
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The basic mechanisms of epitaxial growth onto flat single crystal surfaces have been

known for over fifty years[1]. In the absence of surface defects, growth occurs by the

nucleation, growth, and coalescence of two-dimensional (single atom height) islands.

Atoms from an external beam arrive at the surface, transfer the heat of condensation to the

substrate, and begin activated surface diffusion. Pairs of migrating atoms collide randomly

over the surface and may bind to form dimers. The dimers may or may not dissociate ther-

mally before other atoms diffuse to join them. Eventually, stable nuclei form that grow in

size as other atoms arrive and attach. Individual island growth continues until nearby

islands begin to impinge upon one another and coalesce. Layer completion occurs as

freshly deposited particles fill in the gaps between coalesced islands. In principle, this sce-

nario repeats for each layer so that the surface roughness varies periodically in time. But in

fact, shot noise in the deposition flux randomly induces nucleation of new stable nuclei on

top of existing islands before layer completion occurs. The progressive roughening of the

growth front implied by this picture has been the subject of numerous experimental and

theoretical studies in recent years [2,3]. Part of the impetus for many of these studies has

been the theoretical expectation [4] that noise-induced roughening during crystal growth

might lead to self-affine surfaces [5].

Very recently however, experimental data obtained from GaAs(001) [6], Cu(001)

[7], Ge(001) [8], and Pt(111) [9] has revealed that a completely different morphological

scenario can occur for homoepitaxy onto high quality single crystal surfaces. The surface

morphology here takes the form of a collection of fairly regular three dimensional mounds

characterized by a well-defined separation distance . The mere existence of the sin-

gle scale length  implies that these surfaces are not self-affine. According to Villain

[10], the origin of this behavior can traced to an intrinsic instability of the flat surface that

occurs in the island nucleation and coalescence regime whenever energy barriers to the

transport of diffusing atoms downward over step edges exceed the usual surface diffusion

barrier on a flat terrace. Since atoms on an incomplete layer that recoil from these barriers
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are more likely to encounter one another, the probability for the nucleation of daughter

islands onto incomplete parent islands (as sketched above) is enhanced. Repeated applica-

tion of this idea in successive layers leads to a wedding-cake island structure. Quantita-

tively, recent theoretical work [11,12] predicts that the characteristic length scale

increases as  due to capillary-induced coalescence events that eliminate smaller

mounds in favor of larger mounds. As coalescence occurs, the island size distribution

coarsens, i.e. the distribution becomes more dominated by larger islands at the expense of

smaller islands.

As a test of these ideas, we report a scanning tunnelling microscopy (STM) and

reflection-high-energy-electron diffraction (RHEED) study of the homoepitaxial growth

of Fe(001) at room temperature. For all thicknesses we observe a collection of mound-like

features with a characteristic separation. For thin layers, we find that the separation

between mounds is the original island spacing set in the sub-monolayer regime. On subse-

quent growth, we show that the characteristic separation increases (coarsens) with power-

law behavior,  [13]. A theoretical model without capillarity is proposed

that well describes these findings. The experiments were performed in an ultra-high vac-

uum system with facilities for thin film growth and measurements of the surface evolution

by STM and RHEED, as described previously [2]. The Fe films described in this study

were all grown at substrate temperatures of 20oC.

The typical surface morphology observed in homoepitaxial growth of Fe at 20oC

consists of a mosaic of mounds, as shown in Fig. 1(a) for a 10 monolayer film. The mound

configuration develops in the earliest stages of growth and continues through multilayer

growth up the maximum thickness investigated of 600 monolayers. The mound spacing is

initially equal to the separation of two-dimensional islands observed at submonolayer cov-

erages originally studied by the two of us [2,14],i.e. the nucleated islands in the earliest

stages of growth form a template for the multilayer growth stage due to the step edge bar-

rier for diffusion. An additional characteristic of the surface morphology in Fig. 1(a) is the
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absence of reflection symmetry in the plane defined by the mean height. This is clearly

seen in the contour plot shown in Fig. 1(b) where channels are observed to run through the

collection of mounds.

To quantify the mound characteristics we examine the height-height correlation

function, , whereh(r ) is the height relative to the mean height, obtained

from the STM images and shown in Fig. 2. We characterize the average mound height by

the root-mean-square value of the height fluctuations, , and define the

mound separation, , whererc is the position of the first zero crossing of

. From Fig. 2 we observe both an increase in the mound height with increas-

ing thickness and an increase in the mound spacing. The mound separation,L, is shown in

Fig. 3 as a function of thickness. For thickness less than ~ 3-5 monolayers the separation is

equal to the initial nucleated island separation. The feature separation increases slowly as

the film thickness increases. By contrast, the slope that the mounds make with respect to

the surface plane rapidlysaturates to a “magic” slope as growth proceeds (see Fig. 3). A

measure of this slope is given by the ratio of mound height to lateral size,

, and is shown in Fig. 3. The saturated value corresponds to angle of

, as determined from the peaks in histograms of the slopes measured by STM.

A second independent observation of a characteristic separation of mound-like fea-

tures in the surface morphology is seen in RHEED measurements of the (0,0) diffraction

profile where a splitting of the diffraction peak into two satellite peaks is observed [2]

(inset to Fig. 2). The decrease in the peak splitting of the satellite peaks with increased

layer thickness is evidence for coarsening of the mound features. The mound separation,

defined as , where∆ is the peak splitting, is shown as a function of thickness in

Fig. 3. We find that  from the RHEED measurements and 2rc from the correlation

functions agree as measures of the characteristic mound separation. Using these two data

sets, we obtain a coarsening exponent of  [13]from a linear least squares fit to
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the logarithm of the feature separation against the logarithm of the thickness for thickness

≥ 20 monolayers and≤ 600 monolayers.

We performed a numerical study of a phenomenological, continuum equation of

motion to help interpret our experimental results. This approach has the great virtue that it

focuses attention on general thermodynamic and kinetic features of the problem rather

than on atomistic details that distinguish one material from another [10]. In the absence of

desorption and void formation in the bulk, the surface height profile  satisfies a

continuity equation,

, (1)

that involves a mass current parallel to the surface. The deposition rate does not appear

becauseh is the height relative to the mean height. For the present problem, we suggest

that the appropriate current is the surface current,

, (2)

where  is the local surface slope. Before identifying each term, we remark that

Eq. (2) is notable mostly for a term that isabsent. This is the near-equilibrium current

 that was identified many years ago by Mullins [15] as arising from cap-

illary-induced surface smoothening by surface diffusion. This term is invariably present in

equations of motion intended to describe epitaxial growth [6,9,11,12,16]. But it cannot be

present here because the previously established [14] absence of thermal detachment of

atoms from step edges of Fe(001) at T=20oC implies that local equilibrium cannot be

established between diffusing atoms and the growing solid.

The second term in Eq. (2) is a destabilizing, mound inducing, uphill current that

was shown by Villain [10] to be present whenever energy barriers inhibit the downward

transport of atoms over step edges relative to surface diffusion on a flat terrace. Recent

Monte Carlo simulations of our present data determine the step edge diffusion barrier on

h r t,( )
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Fe(001) [17]. The third term in Eq. (2), essentially introduced by Siegert and Plischke

[12], saturates the rapid increase in local slope induced by theαm term to the value

. This we identify as the magic slope. The microscopic origin of this term

is unclear (Refs. [11] and [12] discuss some candidate mechanisms) but our data clearly

speaks for the presence of a term with its properties.

Several authors have noted that the lack of up-down reflection symmetry we observe

arises from a basic asymmetry in the equations of step propagation for terraces at the top

of mounds as compared to terraces at the bottom of mounds [9,11,18,19]. The last term in

Eq. (2) is merely the simplest one that qualitatively reproduces this effect. This brings us

finally to the first term in the surface current above. Such a term has been derived from a

local “corner” free energy in connection with facet growth [20]. But all thermodynamic

driving forces seem to be absent from the present problem. Instead, we believe an entirely

kinetic origin must be sought for this term which we justify here simply as the lowest

order linear term (beyond the absent capillary term) that will induce coarsening and pre-

serve  symmetry. A satisfactory physical derivation remains a challenge for the

future.

Numerical integration of Eq. (1) with Eq. (2) beginning with a random surface

yields a collection of mound structures that compare quite favorably with the experimental

data (Fig. 1(c)). We note that this agreement (as well as similar agreement with fine details

of the experimental correlation functions) is destroyed if the final, symmetry-breaking

term in Eq. (2) is omitted. As shown in Figure 3(b), the mounds both exhibit a magic slope

and coarsen as a power law in time with an exponent , very similar to that seen

in the experiment. We find that this exponent is insensitive to the presence or absence of

the symmetry-breaking term. Moreover, we have verified that  coarsening occurs if

our leading term in Eq. (2) is replaced by  [11,12] so that a crossover

from ~  to ~  is expected when bond breaking due to increased temperature or

strain becomes important. This connects our results to those of He et al. [21] and Thürmer
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et al. [22] who observed  coarsening forheteroepitaxial Fe/Au(001) and Fe/Mg(001)

respectively.
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Figures

Figure 1. (a) STM image of 10 monolayers of Fe grown on an Fe whisker at 20o C. The

image is 100 x 100 nm and the grey scale covers a range of 0.9 nm where white indicates

higher portions of the surface. Note the pattern formation of mounds. (b) Contour map of

a smaller 20 x 20 nm region from the left bottom corner in (a). Solid lines denote equi-

height contours with the heavy line at the mean height. (c) Contour plots of the calculated

surface height during growth. The parameters for the current, Eq. (2), are ,

,  and . The numerical integrations are done on

lattices with . The initial conditions are randomly chosen for

each site from a Gaussian distribution of width 0.01. The surface shown is at thickness,

.

Figure 2. Circularly averaged height-height correlation function versus distance obtained

from STM topographic images of Fe films grown on Fe whiskers at 20o C for thicknesses

of (a) 2.9; (b) 5.3; (c) 20.5; and (d) 134.6 monolayers. The inset shows the RHEED profile

through the (0,0) diffraction rod versus momentum transfer for film thicknesses of (a) 5.3;

(b) 20.5; (c) 50.7; (d) 101.4; and (e) 134.6 monolayers.

Figure 3. (a) Feature separation and ratio of RMS height to feature separation versus film

thickness. Left axis; feature separation,L, obtained from; (squares) 2rc, whererc is the 1st

zero crossing of the height-height correlation function, and (diamonds) , where∆ is

the splitting of the RHEED diffraction peaks obtained from the profiles in the inset in

Fig. 2. The solid line is the result of a least-square-fit to the STM and RHEED data points

for thicknesses≥20 monolayers yielding a slope of . The dashed line is the

island separation observed at 0.07 monolayer coverage [14]. Right axis; a measure of the

angle which the mounds make with the surface plane estimated by taking the mound

height as  and the lateral extent of the mound asrc. Fe evaporation rates

were ~1.5 ML/min (open symbols) and ~30 ML/min (filled symbols). (b) Feature
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separation and ratio of RMS height to feature separation from numerical solution of the

continuum equations. The feature separation and slope are derived from height-height

correlation functions as in (a). Parameters of the integrations are as in Fig. 1(c). Each point

is an average of 9 realizations. The solid line shows the least squares fit to the results for

thicknesses > 150 yielding a slope of .0.18 0.02±
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Figure 3
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