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Abstract

This tutorial article introduces the physics of spin transfer torques in magnetic devices. We provide an elementary discussion of
the mechanism of spin transfer torque, and review the theoretical and experimental progress in this field. Our intention is to be
accessible to beginning graduate students. This is the introductory paper for a cluster of “Current Perspectives” articles on spin
transfer torques published in volume 320 of the Journal of Magnetism and Magnetic Materials. This article is meant to set the
stage for the others which follow it in this cluster; they focus in more depth on particularly interesting aspects of spin-torque
physics and highlight unanswered questions that might be productive topics for future research.

1. Introduction

The electrons that carry charge current in electronic cir-
cuits also have spins. In non-ferromagnetic samples, the
spins are usually randomly oriented and do not play a role
in the behavior of the device. However, when ferromagnetic
components are incorporated into a device, the flowing elec-
trons can become partially spin polarized and these spins
can play an important role in device function. Due to spin-
based interactions between the ferromagnets and electrons,
the orientations of the magnetization for ferromagnetic ele-
ments can determine the amount of current flow. By means
of these same interactions, the electron spins can also influ-
ence the orientations of the magnetizations. This last effect,
the so-called spin transfer torque, is the topic of the follow-
ing series of articles. The goal of these articles is to provide
an introduction to the topical scientific issues concerning
the theories, experiments, and commercial applications re-
lated to spin transfer torques. These articles are written by
some of the leaders in the study of spin transfer torques
and we hope that they will be useful to beginning students
starting their study as well as of interest to experts in the
field.

The authors of the succeeding articles were asked to con-
sider the field from their particular point of view, and to
provide a “preview” – including discussion of interesting
unsolved problems – rather than merely a review of com-
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pleted work. Hopefully, when taken together these articles
provide a broad and representative view of where the field
is and where it may be going.

The goal of the present article is to provide basic back-
ground and context for the succeeding articles. We start
with a very brief history of the field and provide refer-
ences to background material. Then, in Section 2, we in-
troduce aspects of ferromagnetism that are important to
the discussion, particularly for transition-metal ferromag-
nets, and discuss how spin polarized currents arise. Section
3 describes how spin transfer torques can be understood
as resulting from changes in spin currents. Section 4 ex-
plains some of the issues associated with how spin transfer
torques affect magnetic-multilayer devices and tunnel junc-
tions. Section 5 describes how they affect domain walls in
magnetic nanowires. Finally, Section 6 introduces the suc-
ceeding articles in the context provided by the rest of this
article.

The first work to consider the existence of spin trans-
fer torques occurred in the late 1970’s and 1980’s, with
Berger’s prediction that spin transfer torques should be
able to move magnetic domain walls [1], followed by his
group’s experimental observations of domain-wall motion
in thin ferromagnetic films under the influence of large cur-
rent pulses [2,3]. The phenomenon did not attract a great
deal of attention at the time, largely because very large cur-
rents (up to 45 A!) were required, given that the samples
were quite wide – on the scale of mm. However, with ad-
vances in nanofabrication techniques, magnetic wires with
100 nm widths can now be made readily, and these exhibit
domain wall motion at currents of a few mA and below.
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Research on spin-transfer-induced domain wall motion has
been pursued vigorously by many groups since the early
days of the 21st century [4–8]. The present state of studies
of spin-torque-driven domain wall motion is described in
the articles by Beach, Tsoi, and Erskine, by Tserkovnyak,
Brataas, and Bauer, and by Ohno and Dietl.

Widespread interest in magnetic nanostructures began
in 1986 with the discovery of interlayer exchange coupling
[9–11]. Interlayer exchange coupling [12] is the interaction
between the magnetizations of two ferromagnetic layer sep-
arated by an ultrathin, non-ferromagnetic spacer layer. Of
particular interest was the discovery of antiferromagnetic
coupling in the Fe/Cr/Fe system by Grünberg et al. be-
cause it led shortly thereafter to the discovery of the Giant
Magnetoresistance (GMR) effect by Grünberg’s group and
Fert’s group [13,14]. Grünberg and Fert shared the 2007 No-
bel Prize in Physics for this discovery. GMR is the change
in resistance that occurs when the relative orientation of
the magnetizations in two ferromagnetic layers changes. For
example, when the magnetizations of two Fe layers sepa-
rated by Cr are antiparallel to each other as they are when
antiferromagnetically coupled, the sample has a relatively
large resistance. The magnetizations of the Fe layers can
be brought into parallel alignment by an external magnetic
field, and this decreases the resistance. At intermediate an-
gles, the resistance is also intermediate between these max-
imum and minimum values. See Fig. 1. The overall size of
the change in resistance is typically up to a few 10’s of per-
cent, which is “giant” compared to the≈ 1 % magnetoresis-
tance changes of pure magnetic metals by themselves (due
to anisotropic magnetoresistance [15]). Most of the early
work on GMR focused on the sample geometry in which
the current flows in the plane (CIP) of the multilayer sam-
ple. Another geometry, first explored in 1991 [16] has the
current flow perpendicular to the planes (CPP) of the mul-
tilayer and gives larger fractional resistance changes [17].
The CPP geometry is of particular interest in the present
context because spin transfer effects are more important
than they are in the CIP geometry.

In studying the GMR effect, Parkin et al. discovered in
1990 that the interlayer exchange coupling oscillates as a
function of the thickness of the spacer layer [18]. The oscil-
lations could be quite dramatic; up to sixty changes in sign
of the coupling were seen in single wedge-shaped samples
allowing the simultaneous study of a range of thicknesses
[19]. Comparison of the oscillations with calculations [20]
confirmed that this coupling was an exchange interaction
mediated by the electrons in the spacer layer and that the
oscillation periods were determined by the geometry of the
spacer layer’s Fermi surface.

In 1989, Slonczewski [21] calculated the interlayer ex-
change coupling for the case in which the spacer layer is
an insulating tunnel barrier. While there were no measure-
ments of exchange coupling across insulators at the time,
his article has two features of particular interest in regard
to spin-torque physics. First, Slonczewski calculated the
exchange coupling by determining the spin current flowing
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Fig. 1. Giant Magnetoresistance (GMR) of a multilayer film with

the structure (1.2 nm Co / 0.96 nm Cu)10. The measurement is
done with the current flowing in the sample plane at a temperature

of 4.2 K. The resistance is large near zero magnetic field where the

interlayer exchange coupling between adjacent Co layers aligns their
magnetizations antiparallel. The resistance decreases as an applied

magnetic field rotates the magnetizations to become parallel to each

other. RP is the resistance when the two magnetizations are parallel.
Data are courtesy of Jordan Katine.

through the tunnel barrier. A spin current flows even with
zero applied bias across the tunnel junction whenever the
magnetizations of the two electrodes are non-collinear, and
the source of the exchange coupling can be understood to be
the transfer of angular momentum from this spin current to
each magnet. The second feature of interest is that he con-
sidered the additional coupling that results when a voltage
is applied across the junction. This was the first calculation
of a spin transfer torque in a multilayer geometry with cur-
rent flowing perpendicular to the plane. However, there was
little immediate experimental follow-up, because the tech-
nology for making magnetic tunnel junctions at that time
was still rather primitive, and provided only tunnel barri-
ers that were too thick to permit the large current densities
needed to excite spin-torque-driven magnetic dynamics.

The papers most influential in launching the study of
spin transfer torques came in 1996, when Slonczewski [22]
and Berger [23] independently predicted that current flow-
ing perpendicular to the plane in a metallic multilayer can
generate a spin transfer torque strong enough to reorient
the magnetization in one of the layers. Since the metallic
magnetic multilayers used for GMR studies have low resis-
tances (compared to tunnel barriers), they could easily sus-
tain the current densities required for spin transfer torques
to be important. Slonczewski predicted that the spin trans-
fer torque from a direct current could excite two qualita-
tively different types of magnetic behaviors depending on
the device design and the magnitude of an applied mag-
netic field: either simple switching from one static magnetic
orientation to another or a dynamical state in which the
magnetization undergoes steady-state precession. His sub-
sequent 1997 patent [24] was remarkably far-seeing, provid-
ing detailed predictions for many of the applications that
are currently being pursued.

Measurements of current-induced resistance changes
in magnetic multilayer devices were first identified with
spin-torque-driven excitations in 1998 by Tsoi et al., for
devices consisting of a mechanical point contact to a
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Fig. 2. Comparison of magnetic switching at room temperature as
driven by applied magnetic fields and by spin transfer torques. (a)

Switching for an all-metal nanopillar sample consisting of the layers

20 nm Ni81Fe19 / 12 nm Cu / 4.5 nm Ni81Fe19, as the magneti-
zation of the thinner (free) magnetic layer is aligned parallel and

antiparallel to the thicker magnetic layer by an applied magnetic

field. (b) Spin-torque-driven switching by an applied current in the
same device, with a constant magnetic field applied to give zero to-

tal field acting on the free layer. (c) Switching for a magnetic tunnel

junction nanopillar sample consisting of the layers 15 nm PtMn /
2.5 nm Co70Fe30 / 0.85 nm Ru / 3 nm Co60Fe20B20 / 1.25 nm MgO

/ 2.5 nm Co60Fe20B20, as the 2.5-nm Co60Fe20B20 free layer is re-

versed by an applied magnetic field. (d) Spin-torque-driven switching
by an applied current in the same tunnel junction, with a constant

magnetic field applied to give zero total field acting on the free layer.
Data for (a) and (b) are from [146], and data for (c) and (d) are

courtesy of Jonathan Sun.

metallic multilayer [25], and in 1999 by Sun in mangan-
ite devices [26]. Observation of magnetization reversal
caused by spin torques in lithographically defined samples
occurred shortly thereafter [27,28]. Fig. 2 shows compar-
isons between spin-torque-driven magnetic switching and
magnetic-field driven switching for a metallic multilayer
and a magnetic tunnel junction. Phase-locking between
spin-torque-driven magnetic precession and an alternat-
ing magnetic field was detected in 2000 [29] and direct
measurements of steady-state high-frequency magnetic
precession caused by spin torque from a direct current
were made beginning in 2003 [30–32]. Figure 3 shows an
example of voltage oscillations due to spin-torque-driven
magnetic precession. The article by Berkov and Miltat
describes some of these results and shows to what extent
it is currently possible to make a detailed comparison be-
tween theory and experiment. The article by Silva and
Rippard discusses some of the open questions pertaining to
spin-torque-driven precession in the point-contact sample
geometry.

At the same time that interest was beginning to grow
regarding spin transfer torques in metallic multilayers, so
was the interest in magnetic tunnel junctions, starting with
the observation in 1995 of substantial tunnel magnetore-
sistance (TMR, the difference in resistance between paral-
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Fig. 3. Voltage oscillations produced by steady-state precession of

the magnetic free layer in a nanopillar sample, in response to the
spin transfer torque from a 8.4 mA current step. The sample had the

layer structure 8 nm Ir20Mn80 / 4 nm Ni80Fe20 / 8 nm Cu / 4 nm

Ni80Fe20, with the direction of the exchange bias from the Ir20Mn80

layer oriented 45◦ from the easy axis of the upper Ni80Fe20 free

layer. The measurement was made at a temperature of 40 K using

a sampling oscilloscope [32].

lel and antiparallel orientation for the electrode magneti-
zations of a magnetic tunnel junction) at room tempera-
ture [33,34]. Most of the early studies used aluminum ox-
ide as a tunnel barrier. Since aluminum oxide barriers are
heavily disordered it is difficult to study them theoretically.
In 2001, Butler et al. and Mathon and Umerski calculated
the tunneling properties of the Fe/MgO/Fe system [35,36],
which can be lattice-matched and potentially well-ordered.
They found that the symmetry of the system and the rele-
vant electronic states lead to the possibility of an extremely
large TMR. In 2004, values of TMR greater than those ob-
served for aluminum oxide barriers were published [37,38]
and the values of TMR demonstrated experimentally have
continued to increase rapidly until this day.

Techniques have now been developed to make both alu-
minum oxide and MgO tunnel barriers sufficiently thin to
support the current densities needed to produce magnetic
switching with spin transfer torques [39–41]. Work is un-
derway to investigate spin-torque-driven precession in tun-
nel barriers, as well. One reason for the interest in spin-
torque effects in tunnel junctions is that tunnel junctions
are better-suited than metallic magnetic multilayers for
many types of applications. Tunnel junctions have higher
resistances that can often be better impedance-matched to
silicon-based electronics, and TMR values can now be made
larger than the GMR values in metallic devices. The science
and technology of spin transfer torques in tunnel junctions
are discussed in the articles by Katine and Fullerton and
by Sun and Ralph.

The possibility of commercial application has been
a strong driving force in this field from the beginning.
Grünberg [42] filed a German patent for applications of
GMR in 1988 even before the effect was published in the
scientific literature, and the phrase “giant magnetore-
sistance” now appears in over 1500 US patents. Devices
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based on the GMR and TMR effects have already found
very widespread application as the magnetic-field sensors
in the read heads of magnetic hard disk drives, and a non-
volatile random access memory based on magnetic tunnel
junctions has recently been introduced. Slonczewski’s 1997
patent [24] for devices based on spin transfer torques has
been referenced by 64 subsequent patents. Applications of
spin transfer torques are envisioned using both types of
magnetic dynamics that spin torques can excite. Magnetic
switching driven by the spin transfer effect can be much
more efficient than switching driven by current-induced
magnetic fields (the mechanism used in the existing mag-
netic random access memory). This may enable the pro-
duction of magnetic memory devices with much lower
switching currents and hence greater energy efficiency and
also greater device density than field-switched devices. The
steady-state magnetic precession mode that can be excited
by spin transfer is under investigation for a number of
high-frequency applications, for example nanometer-scale
frequency-tunable microwave sources, detectors, mixers,
and phase shifters. One potential area of use is for short-
range chip-to-chip or even within-chip communications.
Spin-torque-driven domain wall motion is also under in-
vestigation for memory applications. Parkin has proposed
a “Racetrack Memory” [43] which envisions storing bits
of information using many domains arranged sequentially
in a magnetic nanowire and retrieving the information by
using spin transfer torques to move the domains through
a read-out sensor. The article by Katine and Fullerton
discusses in detail the opportunities and challenges for
potential applications.

There are several books that can provide more back-
ground information for this set of articles on spin trans-
fer torques. One resource is the four volume series Ultra-
thin Magnetic Structures edited by Heinrich and Bland
[44]. These volumes contain articles on almost all aspects
of magnetic thin films and devices made out of them. An-
other useful book, written at a more pedagogical level, is
Nanomagnetism: Ultrathin Films, Multilayers and Nanos-
tructures, edited by Mills and Bland [45]. The three vol-
ume series Spin Dynamics in Confined Magnetic Structures
edited by Hillebrands, Ounadjela, and Thiaville covers dy-
namical aspects of magnetic nanostructures [46]. The five
volume set, Handbook of Magnetism and Advanced Mag-
netic Materials, edited by Kronmüller and Parkin, covers
the entire field of magnetism including the topics of interest
here [47]. Concepts in Spin Electronics, edited by Maekawa,
provides another recent overview [48]. Finally, The Journal
of Magnetism and Magnetic Materials published a collec-
tion of review articles including several on topics related to
magnetic multilayers in Volume 200 [49]. Specific chapters
in these books and other review articles on spin transfer
torques will be mentioned throughout this article.

2. The Basics of Ferromagnetism

The Origin of Ferromagnetism. Ferromagnetism occurs

when an electron system becomes spontaneously spin po-
larized. In transition metals, ferromagnetism results from a
balance between atomic-like exchange interactions, which
tend to align spins, and inter-atomic hybridization, which
tends to reduce spin polarization. An accurate accounting
of both effects is quite difficult [50–52]. However, a quali-
tative understanding is straightforward. In isolated atoms,
Hund’s rules describe how to put electrons into nearly de-
generate atomic levels to minimize the energy. Hund’s first
rule says to maximize the spin, that is, to put in as many
electrons with spins in one direction into a partially filled
atomic orbital before you start adding spins in the other
direction. The energy gain that motivates Hund’s rule is
that Pauli exclusion keeps electrons with the same spin fur-
ther apart on average, thereby lowering the Coulomb re-
pulsion between them. This energy is called the atomic ex-
change energy. In accordance with Hund’s first rule, essen-
tially all isolated atoms with partially filled orbital levels
have non-zero spin moments. Non-zero values of orbital an-
gular momentum can also contribute to the magnetic mo-
ment of isolated atoms. In solids, on the other hand, elec-
tron states on neighboring atoms hybridize and form bands.
Band formation acts to suppress the formation of magnetic
moments in two ways. First, hybridization breaks spher-
ical symmetry for the environment of each atom, which
tends to quench any orbital component of the magnetic
moment. Second, band formation also inhibits spin polar-
ization. If one starts with a system of unpolarized electrons
and imagines flipping spins to create alignment, then there
is a kinetic-energy cost associated with moving electrons
from lower-energy filled band states to higher-energy un-
occupied band states. As a result, most solids are not fer-
romagnetic. There are, of course, exceptions. For example
in materials with tightly bound 4f-orbitals, the hybridiza-
tion is so weak that those levels do become spin polarized
much as they do in the atomic state. The transition metal
ferromagnets iron, cobalt, nickel, and their alloys, having
partially filled d-orbitals, are the exceptions of particular
interest in these articles.

The transition metal ferromagnets have both strong ex-
change splitting and strong hybridization. The exchange
splitting can stabilize a spin-polarized ferromagnetic state,
even in the presence of band formation, by generating a self-
consistent shift of the majority-electron-spin band states
to lower energy than the minority-electron-spin states, so
as to more than compensate for the kinetic-energy cost as-
sociated with the formation of the polarization.

Models of Ferromagnetic materials. The local spin den-
sity approximation (LSDA) [53–56] accurately describes
much of the important physics in these systems. It treats
the atomic-like exchange and correlation effects in mean
field theory and treats the hybridization exactly. With-
out any fitting parameters it accurately predicts [57] many
of the properties of transition metal ferromagnets like the
magnetic moment. In this approach, the electron density
and spin density are the fundamental degrees of freedom
and the wave functions are formal constructs that allow
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calculation of the density. As such, there is no formal justi-
fication for using the LSDA wave functions as the physical
wave functions. However, the wave functions are a solution
to an accurate mean field theory (LSDA) and in practice
they can serve as a good approximation to the real wave
functions in many cases. Many calculations of spin transfer
torques are based on using the wave functions found from
the LSDA; see in particular the article from Haney, Duine,
Núñez, and MacDonald for examples.

There are two simplified models of ferromagnetism that
are sometimes used to give descriptions of the physics of
spin transfer torques and for calculations. The first is the
free-electron Stoner model. This assumes that the electron
bands for spin-up and spin-down electrons have a relative
shift in energy due to an exchange interaction but oth-
erwise they both have a free-electron dispersion, ε(k) =
~2k2/(2m) + σz∆/2. Here σz is the Pauli spin matrix and
∆ is the exchange splitting. The second simplified model is
the s-d model. It was originally introduced [58] to describe
local moment impurities in a non-magnetic host. The “s”
electrons describe the delocalized conduction band states of
the host and the “d” electrons describe the localized mag-
netic states, which are weakly coupled to the s electrons.
Frequently, each d electron shell is treated as a local mo-
ment S, which interacts with the conduction-electron spin
density s through a weak local interaction −JS · s. Neither
the Stoner Model nor the s-d model are well-justified ap-
proximations for describing the transition-metal ferromag-
nets. See Fig. 4 for a comparison of the band structures of
these two models with a more realistic band structure for
Co computed using the LSDA. The simplified models can
be very useful for illustrating physical concepts, and some-
times for estimates, but they are far from realistic. The
band structure in transition-metal ferromagnets is consid-
erably more complicated than that of a single free-electron
band as assumed in the Stoner model. As for comparisons
to the s-d model, in real materials the hybridization within
the d bands and of the d bands with the s bands are quite
strong, and so the d electrons cannot be considered local-
ized. On the other hand, the s-d model is one of several
models that have been used to describe ferromagnetic semi-
conductors, like those discussed in the article by Ohno and
Dietl. In these systems, the Mn substitutions are believed
to act very much like local moments.

The origins of spin-polarized currents in magnetic de-
vices and the giant magnetoresistance (GMR) effect can
be understood as consequences of the difference in band
structures for the majority-spin and minority-spin states
in magnets, as predicted by LSDA calculations and illus-
trated in a over-simplified way by the exchange splitting in
the free-electron Stoner model. Spin-polarized currents can
come about because the spin-dependent electron properties
in ferromagnets allow magnetic thin films to act like spin
filters. Consider the example of Cr/Fe multilayers in which
GMR was first discovered. For electrons incident from Cr
into a Fe layer, minority spins have a greater probability
to be transmitted through the Fe film than majority spins,

due to differences scattering caused by the band-structure
mismatch at the interface and also due to band-structure-
induced differences in the strength of scattering from de-
fects and impurities in the Fe layer [59]. Therefore the cur-
rent transmitted through the Fe layer in a Cr/Fe/Cr device
is partially spin-polarized in the minority direction, while
the current reflected from the layer is partially polarized
in the majority direction. Many other factors can also af-
fect the ultimate polarization of the currents, including the
layer thickness and the spin flip scattering rates.

Once in a non-ferromagnetic metal like Cr or Cu, a spin-
polarized current persists on the scale of the spin diffusion
length, typically on the order of 100 nm or more in Cu and
about 5 nm in Cr. When two Fe layers in a Cr/Fe multi-
layer are spaced more closely than this and have parallel
magnetic moments, minority electrons have a high proba-
bility of being transmitted through both layers, resulting
in a relatively low overall device resistance even though
the majority electrons are scattered strongly. In effect, the
minority electrons “short out” the structure, giving a low
resistance. When nearby magnetic layers have antiparal-
lel moments, both majority and minority electrons scatter
strongly in either one layer or the other, and the result-
ing resistance is higher. This is the origin of GMR. Other
combinations of normal metals and magnetic layers can act
similarly, although for combinations like Cu/Co or Cu/Ni
it is the majority electrons that are more easily transmitted
through the magnetic layer, rather than the minority elec-
trons [59,60]. A number of different theoretical approaches
have been used to calculate the transport properties of mag-
netic multilayers and their GMR [61–63]. These techniques
will be discussed in more detail in Section 4.

Micromagnetics. In order to describe the equilibrium
configuration of the magnetization in a ferromagnet, or the
dynamical response to an applied magnetic field or a spin-
transfer torque, it can be important to take into account
that the magnetization distribution may become spatially
non-uniform. Micromagnetics [64–66] is a phenomenologi-
cal description of magnetism on a mesoscopic length scale
designed to model such non-uniformities in an efficient way.
It does not attempt to describe the behavior of the moment
associated with each atom, but rather adopts a continuum
description much like elasticity theory. Its utility arises be-
cause the length scales of interest in magnetic studies are
frequently much longer than atomic lengths. Atomic scale
calculations become impractical in this case.

In equilibrium, the magnetization direction aligns itself
with an effective field, which can vary as a function of po-
sition. There are generally four main contributions to this
effective field: the externally applied magnetic field, mag-
netocrystalline anisotropy, micromagnetic exchange, and
the magnetostatic field. Each of the fields is most easily
described in terms of an associated contribution to the
free energy. The total effective field is then the functional
derivative of the free energy with respect to the magneti-
zation µ0Heff(r) = −δE/δM(r). The magnetocrystalline
anisotropy arises from the spin-orbit interactions and tends
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Fig. 4. Model band structures for ferromagnets. The solid red (dashed blue) curves give the majority (minority) bands along two high

symmetry directions through the Brillouin zone center, Γ. Panel (a) gives bands calculated in the LSDA for face-centered cubic (fcc) Co.
The dotted black curve shows what the energy of the s-p band would be if it were not hybridized with the d bands. The bars to the right of

(a) show the width of the d bands and the shift between the majority and minority bands. The dashed arrows in (a) indicated the widths

of avoided level-crossings due to the hybridization between the s-p and d bands of the same symmetry along the chosen direction. Panel (b)
gives a schematic version of a Stoner model for a ferromagnet. The exchange splitting is larger than in (a) in order to produce a reasonable

size moment. The majority and minority Fermi surfaces are more similar to each other than they are for the LSDA model. Panel (c) gives a

schematic s-d model band structure. The current-carrying s-p bands have a very small splitting due to the weak exchange interaction with
the localized d-states. The majority and minority Fermi surfaces are almost identical.

to align the magnetization with particular lattice direc-
tions. Generally speaking the anisotropy field is a local
function of the magnetization direction and has a differ-
ent functional form for different lattices and materials. The
micromagnetic exchange [67] is the interaction that tends
to keep the magnetization aligned in a common direction,
adding an energy cost when the magnetization rotates as
a function of position. The magnetostatic interaction is a
highly non-local interaction between the magnetization at
different points mediated by the magnetic field produced
by the magnetization. Together, the four free energies can
be written

E =−µ0

∫
d3rHext ·M(r)− Ku

M2
s

∫
d3r(n̂ ·M(r))2 (1)

+
Aex

M2
s

∫
d3r

∑
α

(
∂

∂rα
M)2

−µ0

8π

∫
d3r

∫
d3r′M(r) · 3(M(r′) · x)x−M(r′)|x|2

|x|5
,

where x = r − r′, rα = x, y, z, Ms is the saturation mag-
netization, Aex is the exchange constant, and Ku is the
anisotropy constant. Here we have taken the specific exam-
ple of a uniaxial anisotropy with an easy axis along n̂. The
total effective field derived from Eq. (1) is

Heff = Hext +
2Ku

µ0M2
s

n̂(n̂ ·M(r)) +
2Aex

µ0M2
s

∇2M

+
1

4π

∫
d3r′

3(M(r′) · x)x−M(r′)|x|2

|x|5
. (2)

The atomic-like exchange, which drives the formation of
the magnetization and which is not explicit in these ex-
pressions, places a strong energetic penalty on deviations
of the magnitude of M(r) away from Ms. This interaction

is generally taken into account by treating M(r) as having
the fixed length Ms.

Magnetic Domains. The interactions within Eqs. (1)
and (2) can compete with one another in determining the
orientation of M as a function of position. Different inter-
actions can dominate on different spatial scales, with the
consequence that the magnetic ground state is often spa-
tially non-uniform, containing non-trivial magnetization
patterns even in equilibrium. The micromagnetic exchange
and magnetocrystalline anisotropy both represent rela-
tively short-ranged or local interactions. The micromag-
netic exchange tends to keep the magnetization spatially
uniform and the magnetocrystalline anisotropy can tend
to keep it directed in particular lattice directions. For the
energy functional above, with uniaxial anisotropy, those
directions are ±n̂. For the materials of interest for spin
transfer applications the magnetocrystalline anisotropy
is frequently weak and does not play an important role
(although there are exceptions [68,69]).

Anisotropies in spin transfer devices are more commonly
the result of the sample shape. Magnetostatic interactions
favor magnetization orientations aligned in the plane of
thin-film samples and along the long axis of samples with
non-circular cross-sections. Because of the dipole pattern of
long-ranged magnetic fields, the magnetostatic interaction
can also favor antiparallel alignment of the magnetization
in distant parts of a sample, and this can cause the magne-
tization pattern to become non-uniform. On short length
scales the magnetostatic interaction is relatively weak in
comparison to micromagnetic exchange. However the mag-
netostatic interaction is long-ranged so that it can even-
tually dominate in large enough samples. This causes the
magnetization pattern to depend on the sample size. For
magnetic thin-film samples smaller than about 100 nm to
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200 nm in diameter, the ground state is approximately (but
not exactly) uniform, with the micromagnetic exchange
dominating the magnetostatic interactions [70]. For sam-
ples slightly bigger than this, magnetostatic interactions
become more important and the ground state can be a vor-
tex state. For still larger samples, the magnetization pat-
tern may break up into regions which have different mag-
netic orientations but within which the magnetization is
roughly uniform. These regions are called domains [71].

The border region between domains is referred to as a
domain wall. Here the magnetization rotates over a rela-
tively short distance from one domain’s orientation to the
other’s. The more gradual is this rotation, the less the
cost in exchange energy. However, wider domain walls devi-
ate from the low-energy orientation for magnetocrystalline
anisotropy over a larger volume, and therefore cost more
anisotropy energy. The domain wall width is determined
by a compromise which minimizes the total energy of ex-
change + anisotropy, and can be characterized roughly by
the scale `DW =

√
Aex/Ku. This length is strongly ma-

terial dependent, ranging from ≈ 1 nm for hard magnetic
materials to more than 100 nm for soft magnetic materi-
als. In cases with weak anisotropy, domain wall widths are
determined by a competition between exchange and mag-
netostatic interactions. The domain wall width can also de-
pend on sample geometry, and in a narrow contact between
electrodes the wall width can be narrowed in proportion to
the contact diameter [72].

In thin-film wires, typical of those used to study current-
induced domain wall motion, domain walls typically take
one of two structures, “transverse” walls or “vortex” walls.
On either side of the wall, the magnetization lies in-plane
and points along the length of the wire to minimize the
magnetostatic energy, and there is a net 180◦ rotation of the
magnetization at the wall. In a transverse wall, the magne-
tization simply rotates in the plane of the sample from one
domain to the other. However, the competition between the
micromagnetic exchange energy and the magnetostatic en-
ergy causes the wall width to be narrow (on the scale of the
exchange length, `ex =

√
2Aex/(µ0M2

s ) ≈ 4 nm to 8 nm,
where Aex is the prefactor of the micromagnetic exchange
in Eq. (1) and Ms is the saturation magnetization) on one
edge of the wire and wide (on the scale of the width of the
wire) on the other edge. A vortex wall is even more compli-
cated. Here, the magnetization wraps around a central sin-
gularity [73], the vortex core, giving a circulating pattern
to the magnetization. The competition between these two
wall structures is studied in Ref. [74]. Beach, Tsoi, and Er-
skine describe how the detailed structure of domain walls
plays a crucial role in their motion when they are driven by
either an applied magnetic field or a spin transfer torque.

Magnetic Dynamics in the Absence of Spin Transfer
Torques. When a magnetic configuration is away from equi-
librium, the magnetization precesses around the instan-
taneous local effective field. In the absence of dissipation,
the magnetization distribution stays on a constant energy
surface. In order to account for energy loss, Landau and

Lifshitz [75] introduced a phenomenological damping term
into the equation of motion and Gilbert [76] introduced a
slightly different form several decades later. Both forms of
the damping move the local magnetization vector toward
the local effective field direction:

Ṁ =−γ′0M×Heff −
λ

Ms
M× (M×Heff)

(Landau-Lifshitz)

Ṁ =−γ0M×Heff +
α

Ms
M× Ṁ,

(Gilbert) (3)

where γ0 is the gyromagnetic ratio, λ is the Landau-Lifshitz
damping parameter, and α is the Gilbert damping param-
eter. These two forms are known to be equivalent with the
substitutions, γ′0 = γ0/(1 + α2) and λ = γ0α/(1 + α2). In
spite of this equivalence, there has been an ongoing debate
about which is more correct. This debate has been rekin-
dled with the interest in current-driven domain wall motion
(one of the present authors is guilty of contributing to the
debate) and is mentioned in the articles by Tserkovnyak,
Brataas, and Bauer and by Berkov and Miltat. Part of the
fervor of the debate arises from the fact that it is not exper-
imentally testable. Appropriate equations of motion can be
formulated with either form of damping at the expense of
slight modifications to other terms in the equation of mo-
tion. This point is discussed further in Sec. 5. Note that
both the precession and damping terms rotate the magne-
tization, but do not change its length. This is consistent
with treating the magnetization as having a fixed length.

There have been many attempts to compute the damp-
ing parameters from models for various physics processes
[77]. Some mechanisms are intrinsic to the material, such as
those due to magnetoelastic scattering [78], and others are
considered extrinsic like two-magnon scattering from inho-
mogeneities [79]. It appears that a model due to Kambersky
[80] for electron-hole pair generation describes the domi-
nant source of intrinsic damping in a variety of metallic sys-
tems including the ferromagnetic semiconductors [81] and
transition metals [82] primarily of interest for spin trans-
fer torque applications. For a magnetic element in metallic
contact with other materials, there can also be a contribu-
tion to the damping from “spin-pumping” – the emission
of spin-angular momentum from the precessing magnet via
the conduction electrons [83–85].

Magnetization dynamics is most easily investigated us-
ing the macrospin approximation. The macrospin approx-
imation assumes that the magnetization of a sample stays
spatially uniform throughout its motion and can be treated
as a single macroscopic spin. Since the spatial variation
of the magnetization is frozen out, exploring the dynam-
ics of magnetic systems is much more tractable using the
macrospin approximation than it is using full micromag-
netic simulations. The macrospin model makes it easy to
explore the phase space of different torque models, and it
has been a very useful tool for gaining a zeroth-order un-
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derstanding of spin-torque physics. However, for many sys-
tems of interest, even ones with very small magnetic ele-
ments, the macrospin approximation breaks down. For a
full understanding of magnetic dynamics, a micromagnetic
approach is therefore necessary. The article by Berkov and
Miltat discusses some of the circumstances in which the
macrospin approach is and is not a reasonable approxima-
tion to the true dynamics.

For analyses of magnetic domain wall dynamics, there
is a different simplified description that can sometimes be
useful for qualitative understanding, as an alternative to
full micromagnetic calculations. The Walker ansatz [86] re-
stricts the variation in the domain wall to uniform transla-
tions, uniform rotations out of plane, and in some versions a
uniform scaling of the wall width. For the simplest version,
the dynamics of the domain wall can then be described by
two degrees of freedom. The article by Beach, Tsoi and Er-
skine discusses when this approximation is valid and when
it is not for current-induced domain wall motion.

In some situations it is useful to consider the dynamics of
a magnetic sample in terms of the normal modes of the sys-
tem, known as spin waves or magnons, instead of directly in-
tegrating the equations of motion at every point on a closely
spaced grid designed to model the sample, as is usually done
in micromagnetic calculations. A spin wave is a small am-
plitude oscillation of the magnetization around its average
direction. In macroscopic magnetic systems, the spectrum
of spin waves is essentially continuous as a function of fre-
quency, but when thin-film magnetic elements are shrunk
to the scale of 100 nm in diameter, the spin wave spectrum
becomes measurably discrete [87]. In fact, the recent de-
velopment of spin-transfer-driven ferromagnetic resonance
has made it possible to measure the frequencies of these
normal modes within individual nanostructures [88,89]. In-
terestingly, calculations show that uniform precession, of
the type assumed in the macrospin approximation, is gen-
erally not a true normal mode because the magnetostatic
field is generally not uniform across the sample. An analy-
sis in terms of the normal modes can provide a strategy for
simulating magnetic dynamics that is more efficient than
standard micromagnetic simulations and somewhat more
accurate than the macrospin approximation. The dynam-
ics of a magnetic excitation can be approximated by ex-
panding the excitation using a finite set of normal modes
as a basis set, and determining the time dependence based
on the dynamics of the individual modes and their non-
linear couplings, rather than by integrating the full equa-
tion of motion directly. In cases when the lowest-frequency
most-spatially uniform normal mode dominates the mag-
netic dynamics, the results are typically very similar to the
predictions of the simplest macrospin descriptions. The rel-
evance of the spin wave modes is discussed in the articles
by Berkov and Miltat and by Sun and Ralph.

3. Spin Current, Spin Transfer Torque, and
Magnetic Dynamics

Thus far we have discussed the dynamics of magnets
in the absence of the spin transfer torque. Spin transfer
torques arise whenever the flow of spin-angular momentum
through a sample is not constant, but has sources or sinks.
This happens, for example, whenever a spin current (cre-
ated by spin filtering from one magnetic thin film) is filtered
again by another magnetic thin film whose moment is not
collinear with the first. In the process of filtering, the second
magnet necessarily absorbs a portion of the spin angular
momentum that is carried by the electron spins. Changes in
the flow of spin angular momentum also occur when spin-
polarized electrons pass through a magnetic domain wall
or any other spatially non-uniform magnetization distribu-
tion. In this process, the spins of the charge carriers rotate
to follow the local magnetization, so the spin vector of the
angular momentum flow changes as a function of position.
In either of these cases, the magnetization of the ferromag-
net changes the flow of spin angular momentum by exerting
a torque on the flowing spins to reorient them, and there-
fore the flowing electrons must exert an equal and opposite
torque on the ferromagnet. This torque that is applied by
non-equilibrium conduction electrons onto a ferromagnet
is what we will call the spin transfer torque. Its strength
can be calculated either by considering directly the mutual
precession of the electron spin and magnetic moment dur-
ing their interaction (an approach discussed in the article
by Haney, Duine, Núñez, and MacDonald) or by consider-
ing the net change in the spin current before and after the
interaction (the approach we will emphasize).

Our discussion in this Section will consist of two parts.
First we will consider how it is that a spin-polarized current
can apply a torque to a ferromagnet. This will be straight-
forward – since a torque is simply a time rate of change
of angular momentum, considerations of angular momen-
tum conservation can be used to relate the spin transfer
torque directly to the angular momentum lost or gained
by spin currents. We will use two simple toy models to il-
lustrate some of the physics involved in this process. The
second part of our discussion will describe how to incorpo-
rate the spin transfer torque into the equation of motion
for the magnetization dynamics. This step of the argument
will involve some more-subtle points, related to the connec-
tion between the magnetization of a ferromagnet and its
total angular momentum. To explore these points fully, we
will consider how one might derive the equation of motion
for the magnetization, dM/dt, within a rigorous quantum
mechanical theory.

Definition of the Spin Current Density. The primary
quantity on which we will focus our interest will be the spin
current density Q. This has both a direction in spin space
and a direction of flow in real space, so it is a tensor quan-
tity. For a single electron, the spin current is given classi-
cally by the outer product of the average electron velocity
and spin density Q = v⊗s. For a single-electron wavefunc-
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tion ψ, the spin current density may be written

Q =
~2

2m
Im(ψ∗σ ⊗∇ψ), (4)

where m is the electron mass, and σ represents the Pauli
matrices σx, σy, and σz. The form of the spin current den-
sity is similar to the more-familiar probability current den-
sity (~/m)Im(ψ∗∇ψ). For a spinor plane-wave wavefunc-
tion of the form

ψ =
eikx√

Ω
(a |↑〉+ b |↓〉) , (5)

where Ω is a normalization volume, the spatial part of the
spin current points in the x̂ direction, and the three spin
components take the simple forms

Qxx =
~2k

2mΩ
2Re(ab∗)

Qxy =
~2k

2mΩ
2Im(ab∗) (6)

Qxz =
~2k

2mΩ
(|a|2 − |b|2).

By conservation of angular momentum, one can say that
the spin transfer torque acting on some volume of mate-
rial can be computed simply by determining the net flux of
non-equilibrium spin current through the surfaces of that
volume, or equivalently by integrating the divergence of the
spin current density within an imaginary pillbox surround-
ing the volume in question:

Nst =−
∫

pillbox surfaces

d2Rn̂ ·Q

=−
∫

pillbox volume

d3r∇ ·Q, (7)

where R is the in-plane position and n̂ is the interface
normal for each surface of the pillbox. (Note that since Q is
a tensor, its dot product with a vector in real space leaves a
vector in spin space.) If one prefers to think in terms of the
differential form of Eq. (7), it states that the spin torque
density is the divergence of the spin current density.

Toy Model #1. Our first simple model is meant to illus-
trate that when a spin polarized current interacts with a
thin ferromagnetic layer and undergoes spin filtering the
result, in general, is that a spin transfer torque is applied
to the magnetic layer. Consider the problem of a single-
electron state with wave vector k in the x̂ direction and
spin oriented in the x̂-ẑ plane at an angle θ with respect
to the ẑ direction, which is incident onto a thin magnetic
layer whose magnetization is pointed in the ẑ direction (see
Fig. 5(a)). We will initially not be concerned about what
goes on inside the magnetic layer, but we will account for
its spin filtering properties simply by assuming that it can
be described by overall transmission and reflection ampli-
tudes for spin-up electrons (t↑, r↑) that are different from
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Fig. 5. Illustration of toy models discussed in the text.

the transmission and reflection amplitudes for spin-down
electrons (t↓, r↓), and that no spin-flipping processes occur.
Under these assumptions, the incident part of the wave-
function is

ψin =
eikx√

Ω

(
cos(θ/2) |↑〉+ sin(θ/2) |↓〉

)
. (8)

This can be derived, for example, by starting with the |↑〉
state and applying the appropriate rotation matrix for a
spin-1/2 system [90]. The transmitted and reflected parts
of the scattering wavefunction are

ψtrans =
eikx√

Ω

(
t↑ cos(θ/2) |↑〉+ t↓ sin(θ/2) |↓〉

)
ψrefl =

e−ikx√
Ω

(
r↑ cos(θ/2) |↑〉+ r↓ sin(θ/2) |↓〉

)
. (9)

The components of the spin current density can be deter-
mined using the expressions given in Eq. (6). The flows
of spin density in the x̂ spatial direction for the incident,
transmitted, and reflected parts of the wavefunction take
the forms

Qin =
~2k

2mΩ

[
sin(θ)x̂ + cos(θ)ẑ

]
Qtrans =

~2k

2mΩ
sin(θ)Re(t↑t∗↓)x̂

+
~2k

2mΩ
sin(θ)Im(t↑t∗↓)ŷ

+
~2k

2mΩ

[
|t↑|2 cos2(θ/2)− |t↓|2 sin2(θ/2)

]
ẑ (10)

Qrefl =− ~2k

2mΩ
sin(θ)Re(r↑r∗↓)x̂

− ~2k

2mΩ
sin(θ)Im(r↑r∗↓)ŷ

− ~2k

2mΩ

[
|r↑|2 cos2(θ/2)− |r↓|2 sin2(θ/2)

]
ẑ.
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It is then clear that the total spin current is not conserved
during the filtering process: the spin current density flowing
on the left of the magnet Qin + Qrefl is not equal to the
spin current density on the right Qtrans. By Eq. (7), we
can say that the spin transfer torque Nst on an area A of
the ferromagnet is equal to the net spin current transferred
from the electron to the ferromagnet, and is given in this
toy model by

Nst =Ax̂ · (Qin + Qrefl −Qtrans)

=
A

Ω
~2k

2m
sin(θ)

[
1− Re(t↑t∗↓ + r↑r

∗
↓)
]
x̂

−A
Ω

~2k

2m
sin(θ)Im(t↑t∗↓ + r↑r

∗
↓)ŷ. (11)

We have used the fact that |t↑|2+|r↑|2 = 1 and |t↓|2+|r↓|2 =
1. There is no component of spin torque in the ẑ direction.
We find the general result that the spin transfer torque is
zero when t↑ = t↓ and r↑ = r↓ (in which case the “mag-
netic” layer would provide no spin filtering) or when the in-
coming spin orientation is collinear with the magnetization
of the layer, θ = 0 or π. However, for any non-collinear spin
orientation, when the magnet does provide spin filtering,
it is a direct consequence of the spin filtering that the spin
transfer torque acting on the ferromagnetic layer is non-
zero. This torque is perpendicular to the magnetization of
the layer (no ẑ component), and for an individual incident
electron the torque may have components in both the x̂ and
ŷ directions, depending on the values of the transmission
and reflection coefficients.

It is possible to extend this type of 1-d toy model to cal-
culate the torque applied to a magnetic thin film in a re-
alistic 3-dimensional sample. The calculation proceeds by
summing the torque contributed by electron waves incident
onto the magnetic thin film from throughout the Fermi sur-
face of the non-magnetic metal, corresponding to electrons
incident from many directions in real space [91]. This re-
quires summing the contributions to the x̂ and ŷ compo-
nents of the torque in Eq. (11). In terms of the terminology
commonly used in this field [92,62], the sum over the x̂-
component contributions is proportional to the real part of
the “mixing conductance” and gives the “in-plane” torque
(the plane defined by the moments on the ferromagnet and
the incoming spin), and the sum over the ŷ-component
contributions is proportional to the imaginary part of the
mixing conductance and gives a perpendicular torque.

Toy Model #2. Next we consider a second simple 1-
dimensional toy model [93], to illustrate some of the pro-
cesses that occur near a normal metal/ferromagnetic inter-
face and influence the spin torque. Here we again first as-
sume a single incoming spin-polarized electron wavefunc-
tion of the form given by Eq. (8) incident onto a magnetic
layer whose magnetization is in the ẑ direction. However, in
this case we will use a Stoner-model approach to describe
the magnetic layer. That is, we will assume that the elec-
trons inside the ferromagnetic layer experience an exchange
splitting ∆ which shifts the states in the minority-spin

band (down electrons) higher in energy than the majority-
spin band (up electrons), but that both bands have a free-
electron dispersion. The physics near the interface can then
be modeled as a simple scattering problem in which the
electron scatters from a rectangular potential-energy step
(at position x = 0) that has different heights for spin-up
and spin-down electrons (see Fig. 5(b)). For simplicity, we
will assume that the height of the potential-energy step is 0
for up spins and ∆ for down spins, and we will consider an
electron energy E = ~2k2/(2m) which is greater than ∆.

By matching wavefunctions and their derivatives at the
interfaces, it is an elementary problem to calculate the
transmitted and reflected parts of the scattering-state
wavefunction with energy eigenvalue E:

ψtrans =
eik↑x√

Ω
cos(θ/2) |↑〉+

eik↓x√
Ω

2k
k + k↓

sin(θ/2) |↓〉

ψrefl =
e−ikx√

Ω
k − k↓
k + k↓

sin(θ/2) |↓〉 , (12)

where k↑ = k and k↓ = [2m(E − ∆)]1/2/~ < k. The inci-
dent, transmitted, and reflected spin currents are

Qin =
~2

2mΩ
(k sin(θ)x̂ + k cos(θ)ẑ)

Qtrans =
~2

2mΩ
sin(θ)k cos[(k↑ − k↓)x]x̂

− ~2

2mΩ
sin(θ)k sin[(k↑ − k↓)x]ŷ (13)

+
~2

2mΩ

[
k cos2(θ/2)− k↓

(
2k

k + k↓

)2

sin2(θ/2)

]
ẑ

Qrefl =
~2

2mΩ
k

(
k − k↓
k + k↓

)2

sin2(θ/2)ẑ.

There are two points of physics that we wish to illustrate
with this example. First, the transverse (perpendicular to
ẑ) spin component of the reflected spin current density is
equal to zero. Since the total spin current density is con-
tinuous at the interface, this means that all of the of the
transverse component of the incident spin current density
is transmitted through the interface; none is reflected. In
this toy model, this result follows from our assumption that
for spin up electrons the height of the potential-energy step
at the interface is zero, so that the reflection amplitude for
spin up electrons is zero and the reflected part of the wave-
function is purely spin down. For models in which both
components of spin experience a non-zero potential-energy
step, some of the incident x̂ component of the spin current
density will be reflected. However, for many of the materi-
als combinations used commonly in metallic GMR devices,
like Cu/Co, Cu/Ni, or Cr/Fe, one of the spin components
actually does have a reflection amplitude close to zero over
a large part of the Fermi surface [94,95,93], so it is a rea-
sonable approximation in these cases that almost all of the
transverse (x̂) component of the spin current density will
be transmitted into the ferromagnet.
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The second important point of physics illustrated by the
model concerns what happens to the transverse component
of the spin current density after it enters the ferromagnet.
The oscillatory x̂ and ŷ terms in the transmitted spin cur-
rent density represent precession of the spin about the ẑ axis
as a function of position as it penetrates through the mag-
net. In any model in which there is a difference in exchange
energy between majority and minority spin states, the two
spin components of a wavefunction for a given eigenvalue
E must have different kinetic energies, so that k↑ 6= k↓ and
the spin state inside the magnet will precess. The same
phenomenon is therefore present in more rigorous models.
One can view this effect as simply the precession of the
spin in the exchange field of the magnet. The period of the
precession, 2π/(k↑ − k↓) is very short for a typical transi-
tion metal ferromagnet, on the scale of a few atomic lattice
spacings. This is important because in real 3-dimensional
samples many electrons are incident on the magnetic layer
from a variety of directions, corresponding to states from all
parts of the Fermi surface, and therefore different electrons
take different paths through the magnetic layer. Even if all
of the electrons begin with perfectly aligned spins at the
normal-metal/ferromagnet interface, electrons reaching a
given depth inside the magnet will have traveled different
path lengths to get there. The result is classical dephas-
ing. Electron spins that have traveled different path lengths
will have precessed by different angles around the ẑ direc-
tion, and therefore their x̂ and ŷ components will not add
constructively. For locations more than a few atomic lat-
tice constants into a magnetic layer, when one sums over
electrons from all relevant parts of the Fermi surface in cal-
culations that include first-principles computations of the
transmission amplitudes [95,93,96], the transverse (to ẑ)
components of the spins average to zero. As a consequence
of this classical dephasing, there is no net transmission of
transverse spin angular momentum through the ferromag-
net. The transverse angular momentum that enters into
the ferromagnet is effectively absorbed within a few atomic
layers from the interface.

For a full calculation of the spin torque at an interface in
a real 3-dimensional sample, it is important to take into ac-
count not just propagating wavefunctions, but also evanes-
cent scattering states at the interface. If our toy model #2
is generalized to three dimensions, evanescent scattering
wavefunctions are required in cases where the incident elec-
tron approaches the interface from a glancing angle, so that
the part of the kinetic energy associated with the perpen-
dicular wavevector is less than the step height ∆. In calcula-
tions with more realistic band structures, both evanescent
and propagating scattering states can couple to incident
Bloch states more generally, and it is necessary to take the
evanescent states into account to guarantee the continuity
of the wavefunction and its first derivative on the atomic
scale. Although evanescent scattering states do not carry
charge current, they do carry spin current, so that they
can contribute a significant spin torque even when the net
charge flow through the interface is zero. This point can be

illustrated by our toy model if we consider a case in which
the spin-dependent step heights are sufficiently high that
both of the spin components are completely reflected. The
transmitted and reflected parts of the scattering wavefunc-
tion are then

ψtrans =
e−κ↑x√

Ω
2k

k + iκ↑
cos(θ/2) |↑〉

+
e−κ↓x√

Ω
2k

k + iκ↓
sin(θ/2) |↓〉 ,

ψrefl =
e−ikx√

Ω
k − iκ↑
k + iκ↑

cos(θ/2) |↑〉

+
e−ikx√

Ω
k − iκ↓
k + iκ↓

sin(θ/2) |↓〉 , (14)

where κ↑ and κ↓ are decay constants for the evanescent
states in the ferromagnet. Because the transmission and
reflection amplitudes are now complex, with (in general)
different complex phases for spin up and spin down elec-
trons, the transmitted and reflected spin current densities
will contain ŷ as well as x̂ components. The transmitted
spin current density also decays exponentially to zero as a
function of the penetration distance into the ferromagnet.
What this means is that, in effect, the electron penetrates
into the ferromagnet a distance on the order of 1/(κ↑+κ↓)
and precesses around the exchange field as it does so, so
that when it emerges from the magnet it is rotated away
from its original orientation. Consequently, during the pro-
cess of reflection an electron can apply a torque to the mag-
net in both the in-plane and perpendicular directions.

In calculations with realistic band structures for normal-
metal/ferromagnet interfaces, when one sums over the
Fermi surface to determine the total value of the trans-
verse part of the reflected spin current there is significant
(but not perfect) classical dephasing, so that the overall
net flow of reflected transverse angular momentum is close
to zero [93,95,96]. This means that the incident transverse
angular momentum that couples into the evanescent states
cannot end up flowing away from the interface through
the reflected states. Instead, this transverse spin angular
momentum is deposited in the interfacial region of the
ferromagnet via the torque from the evanescent states.
This contribution to the torque, which is not directly me-
diated by the propagating states, can be described as due
to spin filtering. If one accounts for the evanescent states
when constructingthe scattering states but then ignores
their contribution to the spin current, the spin-filtering
contribution corresponds to the resulting interfacial dis-
continuity in the part of the spin current density carried
by just the propagating states.

The net result of the classical dephasing that occurs for
both transmitted and reflected electron waves at a normal-
metal/ferromagnet interface is that the total transmitted
and reflected spin currents, summed over all relevant states
on the Fermi surface, are approximately collinear with the
ferromagnetic layer’s magnetization (in the ẑ direction, in
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our toy model). Since, to a good approximation, no trans-
verse angular momentum flows away from the magnet,
this collinearity means that approximately the entire inci-
dent transverse spin current is absorbed near the normal-
metal/ferromagnet interface, and the spin transfer torque
(Eq. (7)) becomes

Nst =Ax̂ · (Qin + Qrefl −Qtrans) ≈ Ax̂ ·Qin⊥. (15)

In terms of the parameters used in our first toy model
above, it is correct to say that when summing or averag-
ing over all contributions from around the Fermi surface
that to a good approximation for a typical metallic in-
terface the dephasing leads to 〈Re(t↑t∗↓)〉 = 〈Im(t↑t∗↓)〉 =
〈Im(r↑r∗↓)〉 = 0, and to a somewhat less-accurate approxi-
mation 〈Re(r↑r∗↓)〉 ≈ 0, so that on average for our one elec-
tron

Nst ≈
A

Ω
~2k

2m
sin(θ)x̂, (16)

and the spin torque acting on the magnet per unit area is
equal to the full component of incident spin current that is
transverse to the ferromagnet’s moment.

The result in Eq. (15) is a good approximation for
metallic interfaces, like Cr/Fe or Cu/Co, but the processes
that lead to the simple form Ax̂ · Qin⊥ may be different
for magnetic semiconductors or for tunnel junctions like
Fe/MgO/Fe. Most electrons that scatter from tunnel bar-
riers reflect, whether they are majority or minority. In ad-
dition, tunneling is dominated by electrons that are largely
from particular parts of the Fermi surface, so the classical
dephasing processes that are important for metallic junc-
tions may be weaker in tunnel junctions. In fact, there is
good evidence that 〈Im(r↑r∗↓)〉 6= 0 in tunnel junctions,
so that for large applied biases there can be a significant
spin torque component in the ŷ direction (perpendicular
to the plane defined by the incoming electron spin and the
ferromagnet’s moment) [97,98]. This is discussed in more
detail in the article by Sun and Ralph.

Before moving on to consider how the spin torque will af-
fect the ferromagnet’s magnetization orientation, we wish
to re-emphasize one last important point. Spin currents
can flow within parts of devices even where there is no net
charge current. Consequently, a spin transfer torque can
also be applied to magnetic elements that do not carry
any charge current [24,95]. We have already noted two ex-
amples of this effect, in Slonczewski’s original calculation
of interlayer exchange coupling in a magnetic tunnel junc-
tion [21] and in our toy model #2 for the case when both
spin-up and spin-down components of the wavefunction
are completely reflected. Another important example oc-
curs in multiterminal normal-metal/ferromagnet devices,
which are designed so that a charge current flows only be-
tween two selected terminals, but diffusive spin currents
may also flow throughout the rest of the device. The groups
of Johnson, van Wees, and others have demonstrated non-
local spin accumulation in nonmagnetic wires using multi-
terminal devices [99–102]. Kimura et al. have used a simi-

lar lateral device design to demonstrate spin-torque-driven
switching of a thin-film magnetic element which carries no
charge current [103]. One can view this effect as due simply
to a flow of spin-polarized electrons penetrating by diffu-
sive motion into a magnetic element and transferring their
transverse component of spin angular momentum, while an
equal number of electrons exit the magnet with an aver-
age spin component collinear with the magnet so that they
give no spin torque. In this way there can be a non-zero net
spin current and therefore a non-zero spin torque on the
magnet, even when there is no net charge current. Thus far
the switching currents required in the devices of Kimura
et al. are larger than those needed to switch comparable
magnetic elements in standard magnetic-multilayer pillar
devices, because the magnitude of the spin current densi-
ties achieved in the lateral devices (per unit injected charge
current) is smaller than in the multilayers.

Spin Transfer Torque and the Landau-Lifshitz-Gilbert
Equation. To calculate the effects of the spin transfer torque
on magnetic dynamics, in practice a term Ṁst ∝ Nst is
generally simply inserted as an additional contribution
on the right side of the Landau-Lifshitz-Gilbert equation
(Eq. (3)). However, this step deserves some careful con-
sideration, as it involves a few subtle points of physics.
First, this insertion assumes that the all of the angular
momentum transferred from the transverse spin current
density acts entirely to reorient the orientation of the fer-
romagnet rather than, for example, being absorbed in the
excitation of short-wavelength magnon modes or being
transferred directly to the atomic lattice. This seems to be
a reasonable approximation for describing the experiments
performed to date; however, as we note below, the existing
spin-torque measurements in metallic multilayer samples
are not particularly quantitative.

A second simple matter to keep straight is the sign of
the torque. An electron’s magnetic moment is opposite to
its spin angular momentum µ = geµBS/~, where S is the
total spin and ge ≈ −2.0023, and likewise in transition
metal ferromagnets the magnetization is generally opposite
to the spin density M = gµBs/~, where s is here the spin
density and g is typically in the range -2.1 to -2.2 [104].
We have defined Nst as a time rate of change of angular
momentum. Since the Landau-Lifshitz-Gilbert equation is
stated in terms of magnetization, the contribution of the
spin transfer torque should enter this equation with a sign
opposite to the change in angular momentum. In the end,
the sign of the spin transfer torque is such as to rotate the
spin angular momentum density of the ferromagnet toward
the direction of the spin of the incoming electrons, or equiv-
alently to rotate the magnetization of the ferromagnet to-
ward the direction of the moment of the incoming electrons.

A third, potentially much more consequential, subtlety
involves the orbital contribution to the magnetization. If we
assume that all of the angular momentum in the ferromag-
net is due to its spin density, then conservation of angular
momentum implies that the effect of spin transfer torque
on the magnetization can be described simply by inserting
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Ṁst = −Nst|g|µB/(~V) (17)

into the right side of the Landau-Lifshitz-Gilbert equation
(Eq. (3)). Here V is the volume of the ferromagnet (free
layer) over which the spin torque Nst is applied. Ignoring
any orbital contribution is a reasonable first-order approx-
imation, because the orbital moments in transition metal
ferromagnets are largely quenched by the strong hybridiza-
tion of the d electrons. However, spin-orbit coupling does
give rise to a weak orbital moment, typically less than a
tenth of the spin moment as indicated by the deviation of
g from -2. In a more precise treatment that takes the or-
bital contribution into account, the total angular momen-
tum density would be s + `, and the magnetization would
be M = −µB(|ge|s + `)/~, so that there might not be any
simple proportionality between the total angular momen-
tum density and M. This would necessitate a significantly
more complicated picture, as described in more detail im-
mediately below. However, in most analyses of spin trans-
fer torques, the potential effects of orbital moments are ig-
nored, and it is assumed that the spin torque is simply de-
scribed by Eq. (17). The appropriateness of neglecting or-
bital angular momentum is discussed briefly in the article
by Haney, Duine, Núñez, and MacDonald.

A More Rigorous Approach to the Equation of Motion for
Magnetization. In this section we will discuss how one might
take a more systematic approach to deriving the equation
of motion for a ferromagnet under the influence of a spin
transfer torque. This exercise will give additional insights
into what might be required to account more accurately for
effects like orbital angular momentum and spin-orbit cou-
pling. This approach also provides a more natural frame-
work for considering spin transfer torques at domain walls
and in other spatially non-uniform magnetization distribu-
tions.

Our starting point is that the equation of motion for
any variable in quantum mechanics can be determined by
taking the commutator of the operator corresponding to
that variable with the Hamiltonian and then evaluating
the expectation value of the result. To explore how this
process works, we will consider first the charge density, then
the spin density, and finally (briefly) the magnetization. In
second quantized notation [105] the charge density and spin
density operators are

n̂= (−e)
∑
σ

ψ̂†σ(r)ψ̂σ(r),

ŝ =
~
2

∑
σ,σ′

ψ̂†σ(r)σσ,σ′ ψ̂σ′(r), (18)

in terms of the creation ψ̂†σ and destruction ψ̂σ operators for
an electron at point r and spin σ. These fermion operators
obey the anti-commutation relations {ψ̂σ(r), ψ̂†σ′(r

′)} =
δ(r − r′)δσ,σ′ . For the present purposes we consider the
Hamiltonian for non-interacting electrons as in the mean
field LSDA approach

Ĥ=
~2

2m

∑
σ

∫
d3r∇ψ̂†σ(r) ·∇ψ̂σ(r)

+
∫
d3r

[
V (r)n̂(r) +

2µB

~
Bxc · ŝ

]
+
∫
d3rµ0

gµB

~
(Hext + Hdip) · ŝ. (19)

The first term in the above equation is the kinetic energy,
the second term is the potential, including the local ex-
change field, and the third term is the coupling with the
applied field Hext and the dipolar field Hdip due to the
rest of the spins. More generally, the potential, the local
exchange field, and the dipolar field are many-body terms,
but for the present example they are treated as effective
single particle interactions. For the moment we are also ig-
noring spin-orbit coupling in this Hamiltonian.

Let us first derive the equation of motion for the electron
charge density. The only term in the Hamiltonian that does
not commute with the charge density operator is the kinetic
energy and it gives rise to a term that is the divergence of
the charge current density

dn̂

dt
=

1
i~

[n̂,H]

=
−e~
2im

∑
σ

∫
d3r

{
ψ̂†σ′(r

′)[∇r′δ((r− r′))]δσ,σ′∇ψ̂σ(r)

−∇ψ̂†σ(r)[∇δ((r− r′))]δσ,σ′ ψ̂σ′(r′)
}

=−∇ · ĵ. (20)

The charge current density operator is

ĵ =
−e~
2im

∑
σ

[
ψ̂†σ(r)∇ψ̂σ(r)−∇ψ̂†σ(r)ψ̂σ(r)

]
. (21)

Taking the expectation value of Eq. (20) gives simply the
continuity equation for the charge density, as is required by
charge conservation. The time rate of change of the charge
density in some volume is given by the net flux of electrons
into that volume.

Finding the time evolution of the spin density can be
done using the same method, but this exercise is somewhat
more complicated because the spin density is a vector and
there are additional terms in the Hamiltonian beside the
kinetic energy with which it does not commute. If we ignore
spin-orbit coupling we get

dŝ
dt

=−∇ · Q̂− γ0ŝ× (Hext + Hdip), (22)

where Q̂ is the tensor spin current density operator

Q̂ =
~2

4im

∑
σ,σ′

[
ψ̂†σ(r)σσ,σ′ ⊗∇ψ̂σ′(r)

−∇ψ̂†σ(r)⊗ σσ,σ′ ψ̂σ′(r)
]
, (23)
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and the dot product in Eq. (22) connects to the spatial in-
dex of the spin current. Similar to the contribution in the
continuity equation, there is a contribution to the time rate
of change in the spin density due to the net flux of spins in
and out of a volume (the term involving Q̂). In addition,
the spin density precesses in the local fields Hext + Hdip.
There is no contribution from the local exchange field be-
cause (at least in the LSDA mean field theory) it is exactly
aligned with the expectation value of the local spin den-
sity. The cross product between these two quantities is then
identically zero.

Comparing Eq. (22) to Eqs. (2) and (3), the astute reader
will notice some differences. Eq. (22) does not include a
contribution from the magnetocrystalline anisotropy, but
this is just because for the present we are ignoring the spin-
orbit coupling. More importantly, Eq. (22) appears not to
include any term to account for micromagnetic exchange.
The explanation for this is that there are actually two con-
tributions to the spin current density Q and its divergence
within a ferromagnet having a spatially non-uniform mag-
netization. The first is the non-equilibrium spin current
that flows with an applied bias and which is the contribu-
tion of interest in this series of articles. A second contribu-
tion is present in the absence of any applied bias whenever
the magnetization is non-collinear. This contribution can
be viewed as the mediator of the micromagnetic exchange
interaction in analogy to Slonczewski’s calculation [21] of
the exchange coupling across a tunnel barrier. In general in
the discussion of spin transfer torques, and in particular in
the rest of this article and the accompanying articles, this
contribution is taken into account by including explicitly in
the equation of motion a micromagnetic exchange contri-
bution in the form−∇·Qeq = −γ0[Aex/(2µ0M

2
s )]s×∇2M,

so that the spin current contribution then describes only
the non-equilibrium component.

We expect that the equations of motion become even
more interesting if one were to include spin-orbit coupling
in the Hamiltonian. First, there are additional terms in the
equation of motion of the spin density, Eq. (22), because the
contribution of spin-orbit coupling to the Hamiltonian will
not commute with the spin density operator. One new term
generated by the spin-orbit coupling is straightforward: the
magnetocrystalline anisotropy gives a contribution −γ0ŝ×
Hani. The damping term in Eq. (3) emerges as well, when
a coupling to a source of energy and angular momentum
is also included. The article by Tserkovnyak, Brataas, and
Bauer describes the derivation of such terms. However,
when the orbital angular momentum in a ferromagnet is ap-
preciable, one should recognize that the quantity of primary
interest in the Landau-Lifshitz-Gilbert equation is the mag-
netization rather than the spin density, and these quantities
need no longer be simply proportional to each other. The
magnetization operator is M̂ = −µB(|ge |̂s + ˆ̀)/~, where ˆ̀
is the orbital angular momentum density operator. When
taking the commutator of M̂ with the Hamiltonian, the
spin part of the magnetization will generate the same di-
vergence of the spin current written in Eq. (22) but there

will be a large number of additional terms due to spin-orbit
coupling and ˆ̀.

These complications due to spin-orbit coupling are likely
to play an important role in the dynamics of ferromagnetic
semiconductors discussed in the article by Ohno and Di-
etl, because spin-orbit coupling is much more significant in
these materials than in transition metal ferromagnets. As
the spin-orbit coupling is comparable to the exchange split-
ting in the ferromagnetic semiconductors, the band struc-
ture does not divide cleanly into majority and minority
bands. This leads to additional complications in calculating
transport properties [106], even beyond the complications
discussed above. In these materials, it is not even clear that
the spin current is the most appropriate current to consider.
This question is related to the issues of interest in the study
of the spin Hall effect, see [107] for a review. Complications
from spin-orbit coupling are also likely to be amplified in
ferrimagnetic samples as discussed in the articles by Haney,
Duine, Núñez, and MacDonald and by Sun and Ralph.

4. Multilayers and Tunnel Junctions

Device Geometries. For understanding the behavior
of spin-torque devices, the simplest geometry to con-
sider consists of two magnetic layers separated by a thin
non-magnetic spacer layer. One magnetic layer serves to
spin-polarize a current flowing perpendicular to the layer
interface (this spin filtering can occur either in transmis-
sion or reflection), and then this spin-polarized current
can transfer angular momentum to the other magnetic
layer to excite magnetic dynamics. The spacer layer can
either be a non-magnetic metal or a tunnel junction. In
order that magnetic dynamics are excited in one magnetic
layer but not both, typically devices are designed to hold
the magnetization in one magnetic layer (the “fixed” or
“pinned” layer) approximately stationary at least for low
currents. This is done either by making this layer much
thicker than the other, so that it is more difficult to ex-
cite by spin torque, or by fabricating it in contact with an
antiferromagnetic layer, which produces an effective field
(“exchange bias”) and increases the damping, which both
act to keep the ferromagnetic layer pinned in place. The
strength of the spin torque acting on the thin “free layer”
can be increased by sandwiching it between two different
pinned magnetic layers (with moments oriented antiparal-
lel), so that a spin-polarized current is incident onto the
free layer from both sides, [108–112].

Spin transfer devices must be fabricated with relatively
small lateral cross sections, less than about 250 nm in diam-
eter for typical materials, in order that the spin torque ef-
fect dominates over the Oersted field produced by the flow-
ing current [113]. (The Oersted field is often not negligible
even in samples for which the spin torque effect dominates
– it can be included in micromagnetic simulations of the
magnetic dynamics as an additional contribution to Heff

in the Landau-Lifshitz-Gilbert equation as described in the
article by Berkov and Miltat.) Small device sizes are also
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Fig. 6. Schematic experimental geometries.

convenient for understanding spin-torque-generated mag-
netic dynamics because the macrospin approximation can
become a reasonable approximation, and of course small
devices are desired for many applications.

Two general experimental approaches are used to direct
current flow through an area ≤ 250 nm wide in a mag-
netic multilayer. One is to make electrical contact to an
extended multilayer substrate in a “point contact” geome-
try, made either mechanically with a very sharp tip [25] or
using lithography techniques [27,114]. The other approach
is to make “nanopillar” devices in which at least the free
magnetic layer and sometimes both the free and the fixed
magnetic layers are patterned to a desired cross section.
See Fig. 6 for a schematic illustration of both geometries.
Nanopillars can be made by electron-beam lithography and
ion milling [28], stencil techniques [115], or electrodeposi-
tion of layers inside cylindrical nanopores [116]. Samples in
which the free layer is patterned but the fixed layer is left as
an extended film are convenient for some experiments be-
cause this geometry minimizes the magnetostatic coupling
between the magnetic layers. In general, point contact de-
vices require much more current density to excite magnetic
dynamics with spin torque, because the excitations must
reorient a small region in an extended magnetic film, work-
ing against strong micromagnetic exchange. Typical criti-
cal current densities for excitations in point contact devices
are 108 A/cm2 to 109 A/cm2, while nanopillar devices have
achieved current densities of < 107 A/cm2. As far as we
are aware, the record low intrinsic (extrapolated to T = 0)
critical current in a nanopillar device with a magnetic free
layer that is thermally stable at room temperature is 1.1
× 106 A/cm2 [117]. Two of the nice features of nanopil-
lars are that they can be made to have two different stable
magnetic configurations at zero applied magnetic field for
memory applications, and recently they have enabled direct
x ray imaging of current-driven magnetic dynamics [118].
Point contacts have an advantage in that they give narrower
linewidths (∆f/f) as a function of frequency f when used
to make spin-transfer nano-oscillators, as described below.
Both point contacts [27,119,120] and nanopillars [121] have
also been used to study samples with a single ferromagnetic
layer. The article by Katine and Fullerton describes some
of the strategies which can be employed to decrease the
critical current density for magnetic switching in nanopil-
lars. The article by Silva and Rippard discusses research on
point contact devices.

Methods for Calculating Spin Torques. From a theoretical

point of view, a consensus has developed [62,63,122] for the
general approach to be used for calculating spin torques in
metal multilayers. We note however, that there is not uni-
versal agreement that this model is correct [123–125]. To
solve for the spin transfer torque acting on a static mag-
netic configuration, the consensus view is that one should
determine the spin current density Q through an analysis of
the spin-dependent electron transport in the device struc-
ture, and then identify the torque from the divergences of Q
near magnetic interfaces or in regions of non-uniform mag-
netization. (As we noted above, this assumes that no angu-
lar momentum is lost to the excitation of short-wavelength
spin wave modes or to other processes.)

To calculate the spin torque on a moving magnetic con-
figuration, a somewhat more sophisticated procedure is
in principle necessary, for a rigorous treatment, in order
to take into account the “spin-pumping” effect [83]. Spin
pumping refers to the fact that a precessing magnetization
can produce a non-zero spin current density in a magnetic
device, in addition to the spin current density generated
directly by any applied bias. The total spin torque on the
moving magnetization should be determined from the di-
vergence of the total spin current arising from both sources.
However, typically the primary effect of spin pumping is
merely to increase the effective damping of the ferromag-
net in a way that is independent of bias (although it may
depend strongly on the precession angle [126]), so that spin
pumping can be taken into account approximately just by
renormalizing the damping constant. Then the spin trans-
fer torque even on a moving magnetization configuration
can be determined, approximately, from the divergence of
just the bias-dependent part of the spin current density.

Once the spin torque is calculated, the response of
the magnetization is generally determined by inserting
this torque as an additional contribution to the classical
Landau-Lifshitz Gilbert equation of motion (Eq. (3)). The
article by Haney, Duine, Núñez, and MacDonald describes
this consensus approach as the “bookkeeping theory.” Spin
pumping can also be incorporated into fully self-consistent
solutions without too much extra difficulty, because spin
pumping is local in time, depending only on M and Ṁ,
and it can be calculated within the same type of theoretical
framework needed for calculating the direct bias-generated
spin torque [126,127].

Depending on the amount of disorder in the device and
other details, there are a number of strategies for comput-
ing the spin current density, some of which are compared in
Ref. [128]. If scattering within a layer is weak enough that
most electrons do not scatter except at interfaces, the trans-
port is called ballistic. The opposite limit, in which most
electrons scatter several times while traversing a layer, is
called diffusive. Calculations for particular devices can be
complicated by the fact that some layers may be in the dif-
fusive limit while others are in the ballistic limit and some
layers are in between.

The ballistic regime can be treated by constructing the
scattering states of the system [91,96], by the Keldysh for-



D. C. Ralph & M. D. Stiles 16

malism [129] or by non-equilibrium Green’s functions [130].
References [129] and [130] have considered some of the po-
tential effects of quantum coherence in the ballistic limit,
but these effects are generally not expected to be impor-
tant in the types of metallic multilayer samples typically
studied experimentally, because their interfaces are not suf-
ficiently abrupt and perfect. In principle, scattering-state
formalisms, the Keldysh method, and non-equilibrium
Green’s functions techniques can all be extended into the
diffusive regime, but the strong scattering in the diffusive
regime is generally easier to treat using the semiclassical
approaches discussed next.

The Boltzmann equation [131,132] neglects coherent
effects, but is accurate for both ballistic and diffusive
samples, and can interpolate between these limits. In the
Boltzmann-equation approach, the transport is described
in terms of a semiclassical distribution function so that
the behavior of electrons on different parts of the Fermi
surface are tracked separately. Other calculation strategies
are based on approximations that sum over this distribu-
tion function and compute the transport in terms of just
its moments. These include the drift-diffusion approxima-
tion [133–135] and circuit theory [92]. For the non-collinear
magnetic configurations considered here, these approxi-
mations are extensions of Valet-Fert theory [61], which is
widely used to describe GMR for collinear magnetizations.

In all of these approaches, the transport across the in-
terfaces is described in terms of spin-dependent transmis-
sion and reflection amplitudes. For electron spins that are
collinear with the magnetization, these processes are incor-
porated into the transport calculations as boundary con-
ditions between the solutions of the transport equations
in each layer, and the results are spin-dependent inter-
face resistances [136] (or conductances). For spins that are
not collinear, transmission and reflection give rise both
to boundary conditions on the transport calculations and
also give the spin transfer torque. In the drift-diffusion ap-
proach, the non-collinear boundary conditions are that the
transverse spin current is proportional to the transverse
spin accumulation

QNM
⊥ · n̂ = wmNM

⊥ , (24)

where n̂ is the interface normal, w is a characteristic veloc-
ity, mNM

⊥ is the transverse spin accumulation, and the NM
superscript indicates that the transverse spin density and
spin current are evaluated in the non-magnet as they are
both zero in the ferromagnet. This boundary condition has
a straightforward interpretation. Since the interface acts as
an absorber of any transverse spin component that scat-
ters from it, there is no out-going spin current to cancel the
incoming spin current, so there must be a net accumula-
tion of transverse spins in the non-magnet near the inter-
face. Since the incident transverse spin current is equal to
the spin transfer torque it is also the case that the trans-
verse spin accumulation is proportional to the spin trans-
fer torque. The relation leads some authors to discuss sep-

arate spin current and spin accumulation mechanisms for
the spin transfer torque. However, from this discussion, we
see that the two are intimately related, and the spin trans-
fer torque can be fully accounted for in terms of the spin
current; there is not an extra separate contribution from
spin accumulation.

For the case of a symmetric two-magnetic-layer device
with a metal spacer, Slonczewski [137] calculated the spin
transfer torque using a simplified Boltzmann equation
grafted with circuit theory. He found that the torque on
the free layer magnetization M due to the misalignment
with fixed layer magnetization Mfixed can be described by
adding to the Landau-Lifshitz-Gilbert equation (Eq. (3))
a term of the form

Ṁst = η(θ)
µBI

eV
M̂× (M̂× M̂fixed), (25)

where I is the current, V is the free-layer volume on which
the spin torque acts, η(θ) = q/(A+B cos θ), M̂ and M̂fixed

are unit vectors in the directions of M and Mfixed (not
operators), and cos θ = M̂ · M̂fixed. All of the details of
the layer structure are buried in the constants q, A, and
B. Very similar results have also been found by a variety
of other theoretical approaches. Below, we will sometimes
refer loosely to Ṁst as a “torque”, even though strictly
speaking its units are (magnetic moment)/(volume · time)
rather than (angular momentum)/time.

We note that the direction of Ṁst indicated by Eq. (25) is
exactly what is expected from the simple picture of Eq. (15),
based on the approximately complete absorption of the
transverse spin current by the magnetic free layer. When
the current has the sign that electrons flow from the fixed
layer to the free layer in a multilayer like Co/Cu/Co, the
electron spin moment incident on the free layer is in the
same direction as Mfixed and the double cross product in
Eq. (25) represents just the transverse component. When
the current is reversed, it is the electrons reflected from the
fixed layer that apply a torque to the free layer; their mo-
ments are on average oriented antiparallel to Mfixed on ac-
count of the reflection, and therefore the transverse compo-
nent of spin current incident on the free layer changes sign.
Subsequent calculations [138,139] have generalized Eq. (25)
for asymmetric structures. Ref. [140] compares these sim-
ple forms to full calculations using the Boltzmann equation
and shows that they agree for typical layer thicknesses but
break down in some limits. That paper also shows where a
drift-diffusion approximation fails to reproduce the results
of the Boltzmann equation calculations.

Spin-Transfer-Driven Magnetic Dynamics. The qualita-
tive types of magnetic dynamics that can be excited by Ṁst

with the form given by Eq. (25) can be understood using
the diagrams shown in Fig. 7 and Fig. 8. We first consider
the simplest possible geometry, in which the free layer mag-
netization M is assumed to move as one macrospin and the
magnetic-field direction and the fixed layer moment Mfixed

both point along ẑ. We also assume, initially, that there is
no magnetic anisotropy. We will consider the problem in
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Fig. 7. Directions of damping and spin-torque vectors for a simple
model discussed in the text.

terms of a linear stability analysis, to see, when the free
layer moment is initially perturbed slightly from the field
direction, whether it returns to rest or whether a current
can destabilize it to generate large-angle dynamics. This
analysis can be achieved using the Landau-Lifshitz-Gilbert
equation of motion (Eq. (3)). In the absence of any spin
transfer torque or damping, if the free layer moment M is
instantaneously tilted away from ẑ then it will precess in
a circle, due to the torque from the applied magnetic field.
(For real thin-film devices, magnetic anisotropies generally
cause the precessional motion to trace out an ellipse.) If
there is damping in addition to an applied magnetic field
(but still no applied current), the torque due to damp-
ing will push M back toward the low-energy configuration
along ẑ. Consequently, if M is perturbed away from ẑ, then
at I = 0 it will precess with gradually decreasing preces-
sion angle back toward ẑ along a spiral path. This type of
magnetic trajectory is depicted in Fig. 8(b).

When a current is applied, the direction of the spin trans-
fer torque predicted by Eq. (25) is either parallel to the
damping torque or antiparallel to it, depending on the sign
of the current (see Fig. 7). (For the more realistic case of el-
liptical precession in the presence of magnetic anisotropies,
the instantaneous orientations of the spin torque and the
damping are not always collinear, but on average over each
cycle the spin torque can still be understood as either rein-
forcing or acting opposite to the damping.) For the sign of
the current that produces a spin-torque contribution Ṁst

in the same direction as the damping, there are no current-
induced instabilities in the free-layer orientation. The cur-
rent increases the value of the effective damping, and M
simply spirals more rapidly back to the ẑ direction after any
perturbation. For small currents of the opposite sign, such
that Ṁst is opposite to the damping but weaker in mag-
nitude, the spin torque just decreases the effective damp-
ing, and again nothing exciting happens, at least at zero
temperature. (Effects of thermal fluctuations are discussed
below.)

When Ṁst is opposite to the damping torque and of
greater magnitude, then following any small perturbation
M will spiral away from the low-energy configuration along
ẑ to increasing angles – the current destabilizes the orienta-
tion with M parallel to Mfixed and may excite large-angle
dynamics. In effect, a sufficiently large current drives the

damping to be negative, which leads to the amplification
of any deviations of M from equilibrium. Past this point of
instability, the large-angle dynamics excited by spin trans-
fer can fall in two broad classes within the macrospin ap-
proximation, depending on the angular dependencies of the
spin transfer torque, the damping torque, and the magnetic
anisotropy. One possibility, which may occur if the damp-
ing torque increases with precession angle faster than the
spin torque, is that the initial increase in precession angle
may eventually be limited, so that M may achieve a state
of dynamical equilibrium, precessing continuously at some
fixed average angle in response to the direct current (see
Fig. 8(c)). In this state, the energy gained from the spin
torque during each cycle of precession is balanced by the
energy lost to damping. The second possible class of spin-
torque-driven magnetic dynamics is that the precession an-
gle may be excited to ever-increasing values until eventually
it reaches 180◦, meaning that M is reversed (see Fig. 8(d)).

In real samples, the magnetic anisotropy can generally
not be ignored, as we have done so far in the discussion
above. The typical sample formed as part of a thin-film
magnetic multilayer will have biaxial magnetic anisotropy,
consisting of a strong in-plane anisotropy and a weaker uni-
axial anisotropy along one of the in-plane axes. In Fig. 8(e)-
(g) we consider some of the magnetic trajectories that can
be excited by spin transfer for this type of sample, where
the easy magnetic axes are assumed to lie along the ±x̂
directions, and Mfixed and the applied magnetic field are
also assumed to point along x̂ instead of the ẑ direction
as in Fig. 8(a)-(d). Within the macrospin approximation,
the dynamics of M excited by the spin transfer torque
can still be calculated by integrating the Landau-Lifshitz-
Gilbert equation (Eq. (3)) with the spin-transfer-torque
term Eq. (25) included.

Different behavior occurs in different regimes. Consider
first in-plane magnetic fields less than the coercive field
needed to produce magnetic-field-induced switching. At
low temperature, as the current increases, there is generally
first a critical current which leads to states of dynamical
equilibrium in which M undergoes steady-state precession
along an approximately elliptical trajectory (see Fig. 8(g))
[30,141,142]. For slightly larger currents, the precessing
state becomes unstable, and the precession angle for M in-
creases until it reaches 180◦, thereby achieving switching
to the state with M antiparallel to Mfixed (Fig. 8(h)). For
applied magnetic fields larger than the coercive field, usu-
ally only steady-state precessional dynamics are observed
(Fig. 8(g)). Additional static and dynamic magnetic states
may occur at even larger values of current (see below). If
one starts with the free-layer moment M oriented antipar-
allel to the fixed layer, rather than parallel (i.e., with M in
the−x̂ direction rather than +x̂), a reversed sign of current
is required to produce a negative effective damping, and
this can excite steady-state dynamics or switch M back to
the parallel orientation.

For thin-film samples with the magnetizations of both
the fixed and free layers oriented in plane and with their
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Fig. 8. Trajectories of spin-torque-driven dynamics for the magnetization vector M. (a) Initial magnetic configuration assumed for panels
(b,c,d), with the free layer magnetization slightly misaligned from ẑ, for example due to a thermal fluctuation. For these panels, we assume a

sample with no magnetic anisotropy, with Mfixed and the applied magnetic field aligned in the ẑ direction. (b) For currents below a critical

current, M spirals back toward the low-energy ẑ direction on account of magnetic damping. (c) For currents larger than the critical value,
the spin transfer torque causes the effective damping to become negative, meaning that M spirals away from ẑ, with a steadily-increasing

precession angle. The ultimate result can be either stable steady-state precession at large precession angle (shown in (c)) or magnetic reversal

(shown in (d)), depending on angular dependence of the spin torque and damping. (e,f) Geometry assumed for a thin-film magnetic sample
with a strong easy-plane anisotropy and a weaker uniaxial anisotropy with stable static magnetic states along the ±x̂ directions. For this

geometry, the spin transfer torque from a direct current can also produce either (g) steady-state precession or (h) magnetic reversal from
+x̂ to −x̂.

easy axes aligned with the applied magnetic field, it is pos-
sible to estimate the threshold current for small-angle ex-
citations in a macrospin picture. The estimation proceeds
by integrating over the elliptic orbit for a small precession
angle to determine both the energy lost due to damping
and the energy gained from the spin torque during each
cycle, and determining at what value of current the spin
torque overcomes the damping. This leads, for example, to
the critical current expression for excitations from an ini-
tially parallel magnetic orientation (θ = 0)

Ic =
2e
~

α

η(0)
Vµ0Ms

(
H +Hk +

Ms

2

)
, (26)

referred to by the article of Katine and Fullerton. Here α is
the Gilbert damping, H is the applied magnetic field and
Hk the strength of the within-plane magnetic anisotropy
[28,143]. The saturation magnetization Ms appears in the
last factor because of the large thin-film demagnetization
effect which favors an in-plane orientation for M; Ms/2
is typically much larger than H or Hk. It is important to
note that this threshold describes only the first instabil-

ity of the free layer to small angle precession. There is a
separate threshold for magnetic switching at slightly larger
currents, which has a different dependence on magnetic
field. Approximate analytical expressions been derived to
describe the switching threshold and other boundaries be-
tween the different dynamical states that can be driven by
spin torques [144,63,145]. These phase boundaries are il-
lustrated in Fig. 9 for the case of a magnetic field applied
in-plane along the easy axis of the magnetic free layer.

One common result of all semiclassical calculations of
transport and spin transfer torque for metallic multilayers
[62,63,122] is that they predict a fairly substantial asym-
metry between the differential torque near parallel and an-
tiparallel alignment. That is,∣∣∣∣∣dṀst(θ)

dθ θ=π

∣∣∣∣∣ >
∣∣∣∣∣dṀst(θ)

dθ θ=0

∣∣∣∣∣ . (27)

In other words, B is comparable to A in η(θ) =
q/(A+B cos θ). This asymmetry arises from the differ-
ent amounts of spin accumulation for alignments close to
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Fig. 9. Schematic phase diagram for spin-torque-driven magnetic

dynamics of a thin-film free layer in a nanopillar device at zero
temperature as a function of current I and a magnetic field H applied

in-plane along with magnetic easy axis. P is the static state with the
free-layer magnetization parallel to the fixed-layer magnetization,

AP is the static antiparallel state, and PS1 and PS2 correspond to

the steady-state precession states depicted in the inset. Where two
states A and B are indicated using the notation A/B, both states are

stable at zero temperature. Diagram courtesy of Yaroslaw Bazaliy

[145].

parallel as compared to those close to antiparallel. The
results suggest that the critical currents for switching out
of the antiparallel state in metallic multilayers should be
significantly less than those for switching out of the par-
allel state. However, typically the asymmetry found in
the measured critical currents is much less than expected
[146]. The degree of asymmetry seems to depend on the
sample structure (e.g., on the amount of taper in nanopil-
lar sidewalls), so the discrepancy could result in part from
deviations from a completely uniform magnetization state,
which might affect either the mechanism of reversal or
the degree of spin accumulation. On the other hand, mea-
surements of noise instabilities for magnetizations close to
perpendicular [147] suggest an asymmetry consistent with
the theoretical expectations.

If Mfixed and M are misaligned within the sample plane
by an applied magnetic field or an exchange bias, the critical
currents will depend on the angle θ0 between the equilib-
rium orientations of M and Mfixed. This can be understood
in a simple way by Taylor-expanding the instantaneous
value of the spin torque in the sample plane: Ṁst(θ) ≈
Ṁst(θ0) + [dṀst(θ0)/dθ](θ − θ0). For current pulses much
larger than the threshold needed to produce excitations,
the first term can dominate the fast magnetic dynamics
that are produced. However, for currents near the critical
current this term will generally just cause the equilibrium
angle to shift by a small amount as a function of I, because
it can be opposed by strong anisotropy forces. Near the
excitation threshold, it is actually the second term of the
Taylor expansion which governs the stability of the static
state, because it determines whether the spin torque has
the sign to increase or decrease the magnitude of deviations
from the equilibrium angle. Dynamical excitations will oc-
cur at zero temperature when dṀst(θ0)/dθ has the correct

sign and becomes sufficiently large to overcome the intrin-
sic damping, so as to cause the free-layer moment to spiral
away from its equilibrium orientation with increasing pre-
cession angle, as discussed above. In a macrospin picture
Ic ∝ 1/[dṀst(θ0)/dθ] ≈ 1/ cos(θ0) [143,148].

An additional subtlety that can complicate understand-
ing spin-torque-driven magnetic dynamics is that the mag-
netization in ferromagnetic devices is never completely spa-
tially uniform, but even in thin-film devices with very small
cross section there is some spatial dependence to the mag-
netization within the layer. This has the consequence that
even in devices with electric current flowing strictly per-
pendicular to the plane the spin current density will have
a non-zero spatial component within the plane. These lat-
eral spin currents can produce additional instabilities that
lead to the excitation of spatially non-uniform magnetiza-
tion dynamics within a magnetic layer [127,135,149], and
in fact these excitations have been observed in devices con-
taining only a single magnetic layer [121] and standard two-
magnetic-layer devices [150,89]. Magnetic excitations that
are non-uniform through the thickness of magnetic layers
may also be possible [27,119]. Initial attempts to incorpo-
rate lateral spin transport self-consistently with spatially
dependent magnetic dynamics in micromagnetic calcula-
tions of multilayer devices are under way.

Measurements of Magnetic Dynamics. The main experi-
mental probe of the spin-torque-driven magnetization dy-
namics is measuring the resistance. The resistance reflects
the magnetic configuration through the GMR effect. One
signature that a current-driven change in magnetic config-
uration is due to the spin transfer effect is that it is asym-
metric in the direction of the current, for the reasons ex-
plained above. In the first identification of a spin trans-
fer effect [25], Tsoi et al. measured a peak in the differen-
tial resistance for one direction of the current and not the
other. In switching devices [27,28], for large currents flow-
ing from the fixed layer to the free layer (electrons flowing
from free to fixed), the free layer magnetization is driven to
be antiparallel to the fixed layer, resulting in the high re-
sistance state, while the opposite current drives the sample
to the parallel, low-resistance state. The sign of the torque
observed experimentally agrees with the sign predicted by
theory.

A sample excited into a state of dc-driven magnetic pre-
cession naturally emits a substantial microwave-frequency
signal at its electrical contacts. The resistance is changing
at microwave frequencies and a dc current is applied, so by
Ohm’s law a microwave voltage is generated. This can be
detected either in the frequency regime [30,31] or directly in
time-domain measurements [32,151]. This mode of steady-
state precession is of interest for applications which might
benefit from a nanoscale oscillator or microwave source that
can have a narrow linewidth and is tunable in frequency,
see Fig. 10.

The phase diagram of the spin-transfer-driven dynamics
as a function of current, magnetic field, and the direction
of magnetic field contains several distinct types of preces-
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Fig. 10. Spectra of voltage oscillations produced by spin-torque–
driven steady-state magnetic precession, showing several harmonics

and the linewidths of the signals. (a,b) Spectra for all-metal nanopil-

lar samples taken at a temperature of 40 K, courtesy of Ilya Krivo-
rotov. (c) Linewidth for an all-metal point contact sample at room

temperature from the NIST, Boulder group [152].

sional modes and static magnetic states [30,153]. When one
crosses from one mode to another by varying current or
field, the frequency of precession can jump, the microwave
power output can increase or decrease dramatically, the
linewidth can change, and the resistance measured by stan-
dard low-frequency techniques generally changes by a small
amount, too. When a device is biased near the boundary be-
tween two different modes, it often exhibits time-dependent
switching behavior between them [154,141,151]. The dy-
namical phase diagram has been mapped in some detail for
both in-plane and perpendicular magnetic fields in nanopil-
lar devices [30,144,150,155–160], and it shows surprisingly
good agreement even with the simplest macrospin models,
with some exceptions at large currents and for devices in
which the magnetic configuration begins in a vortex state
[161]. In addition to studies in which the equilibrium ori-
entation of the moments is in the plane, devices have re-
cently been produced in which the magnetic anisotropy of
one or more of the magnetic layers is manipulated so that

the magnetization points out of plane [68,69]. Such devices
may enable ways to decrease the critical current for switch-
ing in memory devices, to increase the switching speed
[162], or to produce improved nano-oscillators. Frequency-
and time-domain measurements of the different modes of
spin-transfer-driven dynamics provide very fertile ground
for comparisons with sophisticated micromagnetic simula-
tions of the dynamics, as reported by Berkov and Miltat in
their article.

An alternate measurement approach that has recently
been exploited is to apply a high frequency input cur-
rent to drive resonant magnetic precession and look at
the static output voltage generated by mixing, a technique
referred to as spin-transfer ferromagnetic resonance (ST-
FMR) [88,89,97,98,163,164]. These measurements, as ap-
plied to magnetic tunnel junctions, are discussed in the ar-
ticle by Sun and Ralph.

Effects of Non-Zero Temperature. Spin-torque devices
have sufficiently small sizes that temperature-induced fluc-
tuations can have important effects on the magnetic dy-
namics. At room temperature, the reduced effective damp-
ing that can be produced by spin transfer torque can en-
hance the amplitude of thermal fluctuations even for cur-
rents well below the T = 0 critical current. These enhanced
thermal magnetic oscillations can be measured accurately
in tunnel junctions [165,166]. In both tunnel junctions and
metallic devices, room temperature thermal fluctuations
can also cause magnetic switching to occur at currents that
are well below the intrinsic zero-temperature threshold cur-
rent for spin-transfer-driven instabilities (Eq. (26)). In or-
der to determine the intrinsic critical current for switching,
it is necessary to make direct measurements of switching
on the typical time scale of ferromagnetic precession near
1 ns, or measure the switching current as a function of tem-
perature and extrapolate to zero temperature, or measure
the statistics of switching using current pulses of various
lengths and extrapolate to the ns scale.

The linewidths of the microwave signals generated by
spin-torque-driven magnetic precession appear to be gov-
erned largely by thermal fluctuations that produce devia-
tions from perfectly periodic motion [167,168]. Point con-
tact devices, in which magnetic precession is excited in a lo-
cal area of an extended magnetic film can produce narrower
linewidths than typical nanopillar devices [169], perhaps
because the micromagnetic exchange coupling to the ex-
tended film makes them less susceptible to thermal fluctu-
ations. If the effects of thermal fluctuations can be reduced
or eliminated, it is likely that the ultimate limit on the
linewidths of spin-torque nano-oscillators will be chaotic
dynamics of the magnetization [170–172].

In terms of theory, the role of temperature is an area that
is still under development. Transport calculations and de-
terminations of the torque are typically done assuming zero
temperature. This approximation is expected to be reason-
able because not much about the transport is expected to
change with temperature except for scattering rates. There
have been a number of theoretical studies of the temper-
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ature dependence based on the macrospin approximation
[173–176,160]. However, as the temperature increases, the
macrospin approximation becomes worse. It is possible to
include thermal effects into full micromagnetic simulations,
but the calculations become quite time consuming and it
is very difficult to capture meaningful statistics.

On the Perpendicular Component of the Spin Torque Vec-
tor. In discussing the result of Eq. (15), i.e. that one expects
essentially all of the transverse spin angular momentum
incident onto a normal-metal/ferromagnet interface to be
absorbed in producing the spin torque, we made the point
that this was only approximately correct; it is not exact.
The most important caveat is that classical averaging over
the Fermi surface need not necessarily eliminate all trans-
port of transverse spin density away from the interface, par-
ticularly for the reflected part of the scattering wavefunc-
tion (or for very thin magnetic layers in transmission). One
consequence is that the amplitude of the “in-plane” com-
ponent of the torque can differ somewhat from Eq. (15). In
addition, there is the possibility of an additional contribu-
tion due to the spin torque in the form

Ṁ⊥ = η⊥(θ)
µBI

eV
M̂× M̂fixed, (28)

oriented perpendicular to the plane defined by M and
Mfixed, rather than within this plane as in Eq. (25). Note
that here the symbol ⊥ refers to the direction perpendic-
ular to the plane of the magnetizations as opposed to the
usage in Eq. (15) where it refers to both components of
the spin current transverse to the free layer magnetization.
In Fig. 7, this new component of torque would point in
or out of the page. The out-of-plane torque component is
sometimes referred to as an “effective field” contribution
because its form is similar to the torque that would result
from a field aligned with the fixed layer magnetization. It
can be viewed as a consequence of a small amount of aver-
age precession into the ŷ direction for reflected electrons
in our toy models from Section 3.

Calculations incorporating transmission and reflection
coefficients computed by ab initio techniques find that the
perpendicular component of the torque is small for the ma-
terials generally used in metallic multilayer devices. For
electrons of a given energy, the out-of-plane component of
spin transfer is predicted to be less than 10 %, and typi-
cally 1 % to 3 % of the in-plane component [95,93,96]. The
final magnitude of the bias-dependent part of the out-of-
plane torque is expected to be smaller still, due to a can-
cellation that arises when computing the bias dependence.
This cancellation is maximal in the case of a symmetric
N/F/N/F/N junction, where it can be understood from a
simple symmetry argument.

Consider a junction whose layer structure is perfectly
symmetric about a plane at the midpoint of the device, see
Fig. 11. Assume that the magnetic moments of the two fer-
romagnetic layers are oriented in the plane of the sample
layers, with an arbitrary angle θ between them. When a
bias is applied to the junction, the resulting spin current

q

L⊥M
. R⊥M

.θ

Fig. 11. Sample geometry for the perfectly symmetric N/F/N/F/N

device assumed in our analysis of the perpendicular component of
the spin torque vector. The perpendicular spin torques on the two

magnetic layers are equal and opposite.

density in each lead (each of the outer N layers) will be
aligned with the magnetization of the neighboring ferro-
magnetic layer provided that the electrons that transmit
into the lead from the rest of the devices are completely
classically dephased. In this case, the spin currents in the
outer N layers are oriented in the plane of the two magne-
tizations, and an out-of-plane spin component of the spin
current density can exist only in the middle N layer. If there
are no sources or sinks of angular momentum except for
the spin torques applied to the magnetic layers (e.g., we
assume that there is no angular momentum lost to the ex-
citation of short-wavelength spin wave modes), then angu-
lar momentum conservation allows the perpendicular com-
ponent of spin torques on the ferromagnetic layers to be
determined solely from the out-of-plane spin current trav-
eling between the magnetic layers. As a consequence, the
out-of-plane spin torques on the two magnetic layers must
be equal and opposite. (To be clear, our argument applies
only to the perpendicular component of the spin torque
and not the in-plane component, because the in-plane spin
component of the spin-current density is not zero in the
outer N layers, and hence the in-plane spin torques on the
ferromagnetic layers are not generally equal and opposite.)

For an applied bias such that electrons flow from left to
right, suppose that the perpendicular spin torque on the
right magnetic layer has the value N⊥. Now imagine that
the bias is reversed, so that electrons flow from right to
left. Because of the symmetry of the device, the spin cur-
rent density in this case can be determined from the first
case simply by an appropriate rotation; the answer is that
both the direction of the out-of-plane spin component that
flows between the two layers and the direction of its flow are
reversed, so that (multiplying the two negative signs) the
out-of-plane spin current density is actually the same as in
the first case. Consequently, the perpendicular spin torque
acting on the right magnetic layer due to electrons flow-
ing right to left will again be N⊥, the same magnitude and
the same sign as for the perpendicular torque on the same
(right) magnetic layer due electron flow from left to right.
It follows that the perpendicular spin torque on a magnetic
layer in a perfectly-symmetric junction is an even function
of the bias V , as long as conservation of angular momen-
tum can be applied to the spin-transfer process and the
classical dephasing processes are complete. Consequently,
there is no contribution that is linear in V at zero bias in a
symmetric junction, in spite of the fact that ab initio calcu-
lations show that electrons at a given energy incident onto
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a magnetic interface can give non-zero contributions to the
perpendicular torque.

In a more microscopic picture, one can see how this result
comes about by considering a calculation in which the to-
tal perpendicular spin torque is determined by integrating
the contributions from all electrons incident onto the sym-
metric junction from both sides. Following the logic of the
symmetry argument above, the perpendicular torque due
to incoming electrons in the energy range dε incident from
the left should be the same, N⊥(ε)dε, as for electrons of the
same energy incident from the right, as long as we assume
that the effect of the applied bias on the scattering poten-
tial is sufficiently weak that the electron transmission and
reflection amplitudes do not depend explicitly on V . For a
symmetric junction, any applied voltage bias will offset the
electron chemical potential on the two sides of the device
by ±eV/2. Therefore, if we consider only elastic scatter-
ing processes, the bias-dependent part of the perpendicular
torque can be calculated by subtracting the contributions
of electrons in the energy range εF −eV/2 to εF that are no
longer incident on the junction from one side, and adding
the contribution of the extra electrons in the range εF to
εF + eV/2 that are incident from the other side:

Ṁ⊥(V )− Ṁ⊥(0)

∝−
εF∫

εF−eV/2

N⊥(ε)dε+

εF +eV/2∫
εF

N⊥(ε)dε

≈ dN⊥(εF )
dε

(
eV

2

)2

. (29)

The contributions from the states in the energy ranges εF −
eV/2 to εF and εF to εF + eV/2 cancel to first order in eV ,
so that the lowest-order contribution to the perpendicular
spin torque should go only as (eV )2, symmetric in V with
no linear term. Even at non-zero biases the perpendicular
component of the spin torque is probably very small in
most metallic multilayers. Predictions for non-zero values
of the perpendicular torque typically arise only under the
assumption of coherent transport between ideal interfaces,
but in real devices this coherence is generally not present
due to interface disorder [91,96].

For tunnel junctions, the bias-dependent part of the out-
of-plane spin torque is predicted to be larger than for metal-
lic multilayers [95,177]. It remains an open question as to
how well our symmetry argument applies to tunnel junc-
tions, because the current may be dominated by a small
part of the Fermi surface. In such systems, classical dephas-
ing may not be as complete and therefore in principle a
small linear-in-V out-of-plane torque may remain even for
a symmetric junction. In addition, for tunnel junctions at
high bias, angular momentum loss from hot electrons to the
excitation of short-wavelength spin waves might become
significant, which would invalidate our arguments because
they are based on angular momentum conservation between
the conduction electrons and the approximately uniform

magnetization mode. Nevertheless, a tight-binding calcula-
tion designed to model a symmetric magnetic tunnel junc-
tion (in the absence of any short wavelength spin-wave exci-
tations) did predict a bias dependence Ṁ⊥(V )−Ṁ⊥(0) ∝
V 2 [177], consistent with the symmetry argument. For a
tunnel junction device with a non-symmetric layer struc-
ture none of the symmetry arguments apply, and in this case
one should expect that there may be a perpendicular spin
torque with a linear dependence on V near zero bias. The
potential absence of complete classical dephasing in mag-
netic tunnel junctions, the consequences of spin-wave ex-
citation by hot electrons, and the effects of non-symmetric
layer structures are all interesting questions for future the-
oretical work, as is the effect of disorder on the out-of-plane
torque.

The experimental literature regarding the perpendicu-
lar component of spin torque contains some contradictory
results. Recent spin-transfer ferromagnetic resonance mea-
surements (ST-FMR) on metallic NiFe/Cu/NiFe devices
find no sign of a perpendicular torque at the level of 1 % of
the in-plane torque [97], in agreement with the theoretical
expectations. However, Zimmler et al. interpreted a mea-
surement on Co/Cu/Co devices [178] of a non-zero slope vs.
current for the critical magnetic field for switching Hc(I)
at 4.2 K as demonstrating a perpendicular torque linear in
V with a magnitude about 20 % of the in-plane torque. We
are skeptical of this interpretation, and suspect that the
observation might be an artifact of heating. The measured
slope of Hc(I) was not actually constant as a function of
I as would be expected from a perpendicular torque, but
rather the slope ofHc(I) was approximately zero except for
combinations of current polarity and magnetic orientation
for which the spin torque decreases the effective magnetic
damping. This asymmetric rounding of the critical field line
can be viewed as a signature of thermally induced fluctu-
ations [173], in that a decreased effective damping can in-
crease the amplitude of thermal fluctuations and therefore
decrease the measured switching field at non-zero temper-
ature. Zimmler et al. attempted to correct for this temper-
ature effect in their analysis, but did not consider that the
temperature might be varying as a function of current due
to heating at 4.2 K.

Spin-transfer FMR measurements on symmetric mag-
netic tunnel junctions differ from experiments on magnetic
multilayers in that the perpendicular torques found in the
tunnel junctions are significant [97,98]. In agreement with
our symmetry argument and with more detailed calcula-
tions [177], these experiments find that to good accuracy
Ṁ⊥(V ) − Ṁ⊥(0) ∝ V 2 at low bias for symmetric tunnel
junctions, with no contribution to the perpendicular torque
that is linear in V . An earlier report by Tulapurkar et al.
[88] of a perpendicular torque linear in bias near V = 0
is now believed to be incorrect; the same group has said
more recently that this observation may have been an ar-
tifact due to a spatially non-uniform magnetic state [98].
The article by Sun and Ralph describes in more detail the
similarities and differences between spin torques in metal
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multilayers and tunnel junctions.
Comparison Between Theory and Experiments. While

there is a general consensus about the correct approach
for calculating spin transfer torques in magnetic multilay-
ers, there is as of yet no fully quantitative comparison be-
tween theory and experiment in metallic multilayers. The
primary difficulty is that the torques themselves are gener-
ally not measured directly, but only the resulting dynam-
ics as inferred from the time dependent resistance. Spin-
transfer-driven ferromagnetic resonance may eventually en-
able more direct quantitative measurements, but so far this
has not been achieved for the in-plane component of the
spin-torque in metal multilayers. As described in the arti-
cle by Berkov and Miltat, attempting to infer the dynamics
of a magnetic sample from its time dependent resistance is
highly non-trivial and may hide the details of the torque.
The problem is particularly complicated because it is diffi-
cult to determine simply from resistance measurements the
degree to which spin-torque induced excitations are spa-
tially non-uniform.

The most sophisticated calculations can make very good
qualitative predictions concerning, for example, the differ-
ent types of dynamical modes (static or precessional) that
are observed experimentally. However, they currently do
not match experiment well in more quantitative compar-
isons, for instance in comparing to the current-dependent
amplitude of the microwave signals emitted in the steady-
state precession regime (see the article by Berkov and Mil-
tat). Another complication is that there is still some vari-
ation experimentally between the behaviors of nominally
identical samples. This degree of variability has improved
since spin transfer effects were first measured, so that quan-
tities like switching currents and precession frequencies now
show good reproducibility. However, other quantities, e.g.
microwave linewidths and the positions of transitions be-
tween different precession modes, are much more variable.
The variability that still exists highlights the importance of
achieving improved control over materials and lithography.

5. Domain Walls in Nanowires

In this section we provide a very brief introduction to
current-induced domain wall motion. This section is brief
compared to the previous section because the articles by
Beach, Tsoi, and Erskine, by Tserkovnyak, Brataas, and
Bauer, and by Ohno and Dietl together provide a rather
comprehensive introduction, review, and summary of open
questions for this topic.

Experimentally, current-induced domain wall motion is
typically studied in lithographically defined, narrow mag-
netic wires. The wires are frequently curved or the ends
are designed to make it possible to controllably introduce
a domain wall into the wire using an applied field. In early
experiments, the positions of the domain walls were im-
aged using techniques such as Magnetic Force Microscopy
(MFM) [4,8] or Scanning Electron Microscopy with Po-
larization Analysis (SEMPA) [7]. Measuring the positions

before and after a current pulses allows estimates of the
wall velocities. Alternatively, the locations of the wall
could be determined in real time using the Magneto-Optic
Kerr Effect (MOKE) [179] or electrically using GMR sand-
wich structures [5,6] or through the extra resistance due
to anisotropic magnetoresistance (AMR) in a domain wall
[180]. Using these various techniques, experimentalists can
determine the wall velocity as a function of current and
applied magnetic field and compare with theoretical pre-
dictions. The level of the comparison is discussed in detail
in the article by Beach, Tsoi, and Erskine.

To a first approximation, understanding current-induced
domain wall motion is quite simple [1]. Assuming that the
electron spins adiabatically follow the magnetization direc-
tion, the divergence of the spin current in Eq. (22) gives
a torque (actually a torque density, but for the rest of the
article we refer to it simply as a torque) on the magneti-
zation of −(v0 ·∇)M(r). Here, v0 is a vector in the cur-
rent direction with magnitude v0 = P |j|µB/eM , where P
is the polarization of the current. If the current is uniform,
this torque density simply translates the domain wall in the
direction of electron flow with a speed v0. There are sev-
eral factors that complicate this simple description. These
factors are described in the three articles by Beach, Tsoi,
and Erskine, by Tserkovnyak, Brataas, and Bauer, and by
Ohno and Dietl.

The degree to which the spins adiabatically follow the
magnetization has been computed in several models [181–
183]. The deviations are small except for rather narrow do-
main walls. When they are non-negligible, there is an addi-
tional torque in the M× (v0 ·∇)M direction. This torque
is referred to as a non-adiabatic torque because it derives
from the inability of the electron spins to adiabatically fol-
low the magnetization direction.

Much of the debate on the theoretical description of
current-induced domain wall motion is associated with how
to describe the damping and whether there is an additional
torque in the direction of the non-adiabatic torque [181,184]
that arises from the same processes that lead to damp-
ing. This torque, while not related to a true non-adiabatic
torque is still sometimes called a non-adiabatic torque. Al-
ternatively, sometimes it is called the beta term, because
β is the dimensionless parameter that is frequently used to
characterize its strength. This contribution is extensively
discussed by Tserkovnyak, Brataas, and Bauer. One tech-
nical aspect, whether the adiabatic spin transfer torque can
be derived from an energy functional, is addressed in the
article by Haney, Duine, Núñez, and MacDonald. One of
the present authors believes that their argument is incor-
rect, but disagreement is one of the things that makes an
issue an open question.

Just as the dynamics of the free magnetic layers in
nanopillars are complicated by the possibility of spatially
non-uniform magnetization patterns, so are the dynamics
of domain wall motion complicated by non-trivial wall
structures. When the domain patterns distort, the mo-
tion is no longer simple. Domain walls distort in response
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to non-adiabatic torques, damping, and the presence of
non-uniformities in the sample. The non-uniformities are
frequently described as pinning centers. They have been
studied extensively in the context of field driven domain
wall motion as discussed by both Beach, Tsoi, and Erskine
and Ohno and Dietl. Much experimental effort is spent
on trying to minimize and understand the effects of these
pinning centers.

6. Outlook

In this article, we have tried to highlight some of the
open questions in the study of spin transfer torques and
provide background material for the succeeding articles. As
Katine and Fullerton describe, spin transfer torques should
start having commercial impact in the very near future, but
there are still important scientific issues to work through.
It seems likely that tunnel junctions will be an important
system for applications of spin transfer torques. Sun and
Ralph discuss what is known about spin transfer torques
in magnetic tunnel junctions as well as what we still need
to learn.

The dynamics that result from spin transfer torques is the
topic of the articles by Berkov and Miltat and by Silva and
Rippard. The former focuses primarily on the nanopillar
geometry with a free layer that is patterned to have a finite
extent. The latter focuses on the fabricated nanocontact
geometry in which the free layer is part of an extended thin
film. Both show that the agreement between theory and
experiment is still incomplete.

The developments in current-induced domain wall mo-
tion are more recent than those in magnetic multilayers and
tunnel junctions, so applications are still more uncertain.
As Beach, Tsoi, and Erskine describe, the experiments are
rapidly becoming more sophisticated and more meaning-
ful results are appearing. Tserkovnyak, Brataas, and Bauer
describe the rapid progress in the theory of spin trans-
fer torques in these systems. It is likely that experimental
progress will challenge these theories and more work will
be required.

Most research on spin transfer torques has focused on
transition metal ferromagnets, but there are other poten-
tially interesting materials systems. Ferromagnetic semi-
conductors are potentially exciting because they have mag-
netizations much smaller than transition metal magnets, so
that their moments might be manipulated using spin trans-
fer from much smaller currents than transition metal mag-
nets. While the feasibility of a room-temperature dilute fer-
romagnetic semiconductor remains to be established, there
are fascinating scientific questions to be understood about
these materials and their interactions with current. Ohno
and Dietl describe the measurements of current-induced
domain wall motion in a dilute magnetic semiconductor
and a theory that can be used to characterize the electrical
and magnetic properties of these systems. Haney, Duine,
Núñez, and MacDonald describe a different way of comput-
ing spin transfer torques and apply it to novel systems. In

particular, they raise the possibility of large spin transfer
torques in antiferromagnets.
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8. Notes on Corrections

This version of the tutorial is modified from the
originally-published version. (i) We have corrected alge-
braic errors in Eq. (13) and modified the discussion in the
following paragraphs to correct a mistaken claim that the
spin current density in the toy model can be discontinuous
at the interface. We thank Claire Baraduc for pointing out
the error. (ii) We have corrected an error in the units for
the y axes in Figures 10a and 10b.
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[178] M. A. Zimmler, B. Özyilmaz, W. Chen, A. D. Kent, J. Z. Sun,
M. J. Rooks, and R. H. Koch Phys. Rev. B 70, 184438 (2004).

[179] G. S. Beach, C. Knutson, C. Nistor, M. Tsoi, and J. L. Erskine,

Phys. Rev. Lett. 97, 057203 (2006).
[180] M. Hayashi, L. Thomas, Ya. B. Bazaliy, C. Rettner, R. Moriya,

X. Jiang, and S. S. Parkin, Phys. Rev. Lett. 96, 197207 (2006).
[181] G. Tatara, H. Kohno, Phys. Rev. Lett. 92, 086601 (2004).
[182] X. Waintal and M. Viret, Europhys. Lett. 65, 427 (2004).
[183] J. Xiao, A. Zangwill, and M. D. Stiles Phys. Rev. B 73, 054428

(2006).
[184] S. Zhang and Z. Li Phys. Rev. Lett. 93, 127204 (2004).


