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Noise Characterization of Multiport Amplifiers
J. Randa, Senior Member, IEEE

Abstract—This paper addresses the issue of the definition and
measurement of the noise figure and parameters to characterize
multiport devices, particularly differential amplifiers. A parame-
terization in terms of the noise matrix appears to be the most prac-
tical. The noise figure for a given output port is defined and re-
lated to the noise matrix and scattering parameters of the device,
as well as the correlations between different input noise waves. The
degradation of the signal-to-noise ratio is obtained from a special
choice of the input correlation function. Two examples are consid-
ered in detail: a three-port differential amplifier and a four-port
mixed-mode amplifier, both with reflectionless terminations. The
noise figures, effective input temperatures, and gains are related to
the results of a series of hot–cold measurements, as in the familiar
two-port case.

Index Terms—Amplifier noise, differential amplifier, multiport
amplifier, noise, noise figure, noise matrix, thermal noise.

I. INTRODUCTION

T HERE ARE several equivalent parameterizations for the
noise characteristics of two-port amplifiers and transis-

tors, including the well known IEEE noise parameters [1], [2]
and their variants, the noise matrix in either its voltage–cur-
rent [3] or its wave amplitude [4], [5] incarnation, and the ter-
minal-invariant set of Engen [6]. The noise figure or effective
input noise temperature of a two-port amplifier as a function
of source impedance or reflection coefficient can be expressed
in terms of any of these sets. For more than two ports, or for
more than one mode in a port, the situation is not so well de-
veloped. The basic multiport noise-matrix formalism was intro-
duced long ago [3], but the expression of multiport noise figures
in terms of a common set of parameters has not been developed.
Even the definition of multiport noise figures is not well estab-
lished. The IEEE definitions [7] allow for multiple input ports,
as well as different input and output frequencies (since they were
developed with receivers in mind), but they are restricted to one
output port and, even for that case, they stop short of defining a
noise figure. Differential amplifiers present two complications
not included in the two-port noise-figure definition and parame-
terization: multiple input ports and a signal input channel that is
a linear combination of the two physical input channels. Other
multiports, such as mixed-mode two ports [8], introduce the ad-
ditional complication of multiple output ports. The widespread
use of such components in cell phones and other applications
makes it desirable to have a convenient standard description of
their noise characteristics. Such a description should be simple,
have a physical basis or interpretation, and reduce to a familiar
form for the two-port case.
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This paper suggests a description of noise in differential am-
plifiers and other multiports based on a wave description of the
noise matrix [4], [5]. Our interest is in multiple (especially two)
input and output ports, at a single frequency, with all ports at the
same frequency. A definition of the noise figure for a given port
is suggested, and that noise figure is expressed in terms of the
noise matrix and the -parameters of the amplifier, as well as
the reflection coefficients of the terminations and the correlation
matrix among the incident noise waves. The degradation of the
signal-to-noise ratio for the general multiport case is expressed
in terms of this general framework. Two simple examples are
considered in detail: a three-port differential amplifier with re-
flectionless terminations and uncorrelated incident noise, and
a four-port mixed-mode amplifier, also with reflectionless ter-
minations and uncorrelated incident noise. For these cases, the
noise figures, effective input temperatures, gains, and degrada-
tions of signal-to-noise ratio are related to the results of a series
of hot–cold measurements, as in the familiar two-port case. Sec-
tion II reviews the noise matrix formalism, as applied to multi-
ports, and goes on to develop a definition of the noise figure for
each output port of a linear multiport device. Section III treats
the special case of a three-port differential amplifier with re-
flectionless terminations. Section IV contains the four-port ex-
ample, and Section V is devoted to a summary. An earlier ab-
breviated version of this work can be found in [9].

II. FORMALISM

A. Noise Matrix

Throughout this paper, the term “noise temperature” denotes
the available noise power spectral density divided by the Boltz-
mann constant . A port will refer to a single mode in a single
physical port. An -port will refer to a multiport with ports,

will be reserved to denote the noise matrix, andwill be used
for noise powers. Multiple modes in a single physical port are
treated as multiple ports. Thus, a four-port may refer to an am-
plifier with two input and two output ports or to an amplifier
with two different modes in a single input port and two in an
output port (or to some combination of these). Our primary in-
terest is in three- and four-port amplifiers, but in principle, the
formalism applies to any greater than one. All the work in
this paper is in terms of wave amplitudes. They may be defined
in terms of voltages and currents [4], [8], [10] or they may be
introduced and used with no reference to voltage and current
[5], [11]. Details of the modes and waves are not of concern.
What are important are two general properties. In order for the
formalism of this paper to be valid, the modes must be power
orthogonal, i.e., the total power across a reference plane must
be the sum of the powers in each of the individual modes or
ports. If this is not the case, and the total power contains cross
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Fig. 1. Illustration of notation.

terms between the modes, it is possible to regain power orthogo-
nality by a linear transformation, at least for lossless or low-loss
lines [12]. The second general property that we assume about
the waves is that they can be physically generated in practical
applications, otherwise the discussion of measurements based
on these waves is purely academic.

A linear -port amplifier can be represented by its
scattering matrix ( ) and an vector of internal (noise) sources
( )

(1)

where and are vectors of the usual incident and outgoing
wave amplitudes. Theth element of , , is the amplitude of the
generator wave at port, which would be the output noise am-
plitude for reflectionless terminations and no input noise. The
normalization is such that the spectral power density is given
by the square of the absolute value of the wave amplitude. The
noise amplitudes are assumed to be approximately constant in
a small bandwidth (e.g., 1 Hz) around the frequency of interest,
and we have divided out that bandwidth. Bold characters indi-
cate vectors or matrices. The incident wave vector can be written
as

(2)

where is the vector of generator waves of the sources con-
nected to the ports, and is the matrix of reflection
coefficients. In simple casesis diagonal, and is the reflec-
tion coefficient from the termination on port i. More generally,
has off-diagonal elements corresponding to a wave emerging
from port or mode j and being reflected back (at least in part)
in port or mode i. The general configuration and notation is il-
lustrated in Fig. 1. Combining (1) and (2) in the usual manner
yields the expression for the outgoing wave vector in terms of
the generator waves

(3)

The noise matrix (or noise correlation matrix) can then be
defined and expressed in terms of the intrinsic parameters of the

-port and the properties of the terminations on its ports. We
can define two distinct noise matrices: an intrinsic noise matrix,
which depends only on the properties of the amplifier itself, and
an in situ noise matrix, which depends on the characteristics of
the circuit in which the amplifier is embedded. The fullin situ
noise matrix is defined as

(4)

or

(5)

where the bar indicates either an ensemble or time average (as-
sumed equal) and theindicates a Hermitian conjugate. Diag-
onal elements of the noise matrix give the power spectral density
of the output noise in the respective port, while off-diagonal el-
ements are the correlations between the output noise in different
ports. We can use (3) to write the noise matrix in terms of the
generator waves

(6)

where we have used the fact that the generator waves from the
amplifier are uncorrelated with those from the terminations. The
first term is due to the noise (and signal) from the sources and
terminations connected to the ports, and the second term is due
to the noise generated by the amplifier itself, suitably modified
by reflections from the terminations. In the absence of any ex-
ternal noise ( ), the first term vanishes, and we are left with
only the amplifier noise represented by the second term. Con-
versely, for a noiseless amplifier , and only the first term
is present.

The intrinsic noise matrix is defined by

(7)

It is the noise matrix that would occur if all terminations of the
amplifier were reflectionless and noiseless. Since the intrinsic
noise matrix (supplemented by the scattering matrix) contains
full information on the intrinsic noise parameters of the ampli-
fier, we find it useful to introduce a more physical parameteri-
zation of it. It will also be convenient to have a more compact
notation. For the diagonal elements, we associate a character-
istic or reduced noise temperature with each port

(8)

where is Boltzmann’s constant. The quantity is the
noise power per unit bandwidth that would bedeliveredto a
noiseless, reflectionless load attached to portif all other ports
were also terminated in noiseless reflectionless loads. The ac-
tual noise temperature of portis related to theavailablenoise
power, and for the case of all noiseless reflectionless termina-
tions, the noise temperature is given by .

The off-diagonal elements of the intrinsic noise matrix are
appropriately scaled correlation functions

(9)

The absolute values of the can range from 0 to 1, as befits
a correlation function. For the discussion that follows, it is also
useful to define a correlation matrix for the incident noise waves.
Let

(10)
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where is a reference temperature (290 K). Diagonal elements
of the matrix are then the ratios of the noise temperatures
incident on the different ports divided by .

With multiple ports, there may be several different useful
choices for the set of basis waves (e.g., common and differential
modes or ports 1 and 2). The noise matrix (in situ or intrinsic)
will be different for different choices of basis waves. Under a
change of basis represented by the matrix, , the
noise matrix transforms according to

(11)

B. Noise-Figure Definition

We are now prepared to consider the definition of the noise
figure and its expression in terms of the intrinsic parameters of
the amplifier and its terminations. We deal only with the noise
figure at a single frequency, i.e., the spot noise figure. The IEEE
definition of operating noise temperature and effective noise
temperature for multiple input ports [7] stops short of defining
a noise figure for multiple inputs. For a two-port, the IEEE def-
inition [1] is that the noise figure (or noise factor) at a given
frequency is the ratio of total output noise power per unit band-
width to the portion of the output noise power that is due to the
input noise, evaluated for the case where the input noise power
is ( K). Equivalently, it is one plus the ratio of
the output noise due to the amplifier to the output noise due to

input noise. We wish to extend this definition to the-port
case. In principle, we can define a noise figurefor every port
i, but, in practice, we will consider noise figures only for output
ports. As in the two-port case, the noise figure of a given port
should be the ratio of the total output noise in that port to the
output noise power that is due to the input noise for the case
when the input noise is .

Complications and ambiguities arise immediately however.
Is input to all the input ports and, if so, is the input noise to
different ports correlated? How are the other output ports termi-
nated; is input to them as well? For differential amplifiers, is
the noise input to the physical ports 1 and 2 or to the differential
and common modes?

The most significant complicating factor is the correlation
matrix of the incident noise waves. In actual use, the input to
the amplifier will come from other parts of the circuit, and the
noise incident on different ports may well be correlated to some
degree. Also, each input port may have a different incident noise
temperature. Both these complications are contained in the in-
cident noise correlation matrix (10). The output noise powers
will be given by the appropriate elements of the noise matrix
(6), which depend on the incident noise waves and, there-
fore, on . There are two possible strategies for dealing with
the correlations between incident noise waves. The noise figure
can be defined to be a function of the incident noise correlation
matrix, just as it is a function of the reflection coefficients of
the terminations; or a reference value (e.g., the identity matrix)
can be chosen for the incident noise correlation matrix, much
as we choose a reference noise temperature. However, un-
like the case with the reference noise temperature, it would
not be possible to compute the noise figure for some other value

of from the noise figure with the reference value. Conse-
quently, we choose to treat the noise figure as a function of,
the (complex) correlation matrix of the input noise waves.

For the terminations of the output ports, we follow the spirit
of the two-port definition, namely, that the noise figure measures
the noise added by the amplifier for a given choice of reflection
coefficients for the input terminations, but it should not include
noise contributions from the various output loads. (Note, how-
ever, that the IEEE definition of the operating temperature does
include such contributions [7].) We will (tentatively) adopt the
convention that no noise source is connected to the output ports.
In practice, it should make little difference since the isolation
between the different output ports should be great enough that
the output of a given port would be insensitive to whether
is applied to some other output port, especially considering that

is applied to the input channels, which are being amplified.
The definition of the noise figure for a given output channel

is then complete. In terms of the notation introduced in the pre-
ceding section, it takes the form

(12)

where the subscript’s indicate the element of the matrix within
the braces.

The definition of (12) reduces to the usual definition for the
two-port case and embodies the intuitive idea that the noise
figure measures how much noise the amplifier adds to a 290-K
reference signal. If it seems rather formal at this point, it should
become clearer in the following sections, when we work through
two simple examples in detail.

Besides defining the noise figure, (12) also constitutes a pa-
rameterization of its dependence on the reflection coefficients
of the sources and loads and on the incident noise correlation
matrix. The noise parameters of the amplifier are the indepen-
dent elements of the intrinsic noise matrix. For a three-port am-
plifier, there would be nine real parameters: three characteristic
noise temperatures and three complex correlation functions. In
principle, one could develop a parameterization analogous to
the IEEE parameterization for two-port noise figure or effective
noise temperature. This would also require nine real parame-
ters: a minimum noise figure, optimal complex values for the
reflection coefficients of the two sources, and four parameters
describing the rate of variation of the noise figure as the reflec-
tion coefficients deviated from their optimal values. This set of
nine parameters could be expressed in terms of the elements of
the noise matrix and the-parameters of the amplifier, but that
is well beyond the scope of this paper.

C. Signal-to-Noise-Ratio Degradation

For a two-port amplifier, the noise figure is a direct measure
of the degradation of the signal-to-noise ratio (). In general
the noise figure of (12) is not the ratio of input to output

, but it is not difficult to obtain the expression for that ratio.
Let the wave amplitude of the signal be , and assume that
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the signal channel is port 1. The input signal power density is
, and the output power density in port i is given by

(13)

The input noise power density is taken to betimes the refer-
ence temperature and the output noise power den-
sity in port i is

(14)

where is the incident noise correlation matrix for the actual
configuration, except that . The degradation of the
signal-to-noise ratio for output port i, which will be denoted

, is then given by

(15)

The difference between this form and (12) is that (12) has
the full in the denominator, whereas the of (15) has
only . The noise figure of (12) takes the total noise out and
divides it by the noise out due to all the incident noise, whereas

divides by the noise out due to the incident noisein the
signal channel only. For the case, (15) reduces to

(16)

and is the gain from the incident signal channel (1) to the
output channel i.

III. EXAMPLE—DIFFERENTIAL AMPLIFIER

A. Characteristic Noise Temperature, Gains, and Effective
Input Temperature

In order to completely characterize the noise properties of a
multiport amplifier, or to determine its noise figures for gen-
eral terminations and input noise correlations, it is necessary to
determine the complete intrinsic noise matrix. There are, how-
ever, specific configurations or choices of terminations that are
of interest in their own right. In particular, the case in which all
ports have reflectionless terminations is often a useful approxi-
mation to the exact actual configuration. Also, it is often useful
to have a single number, or a figure-of-merit, that summarizes

or represents an amplifier’s noise properties. The noise figure
with reflectionless terminations is often used for this purpose
in the two-port case, and we expect that the noise figure with
reflectionless terminations and uncorrelated incident noise can
serve a similar purpose for multiport amplifiers. Consequently,
the examples considered in this and the following sec-
tion should be of some practical use, as well as clarifying the
multiport noise-figure definition.

A differential amplifier is a three-port device with a single
output port whose signal (ideally) is proportional to the differ-
ence between the signals at the two input ports. Let the output
port be port 3, and define input waves and-parameters to de-
scribe the common () and differential ( ) modes

(17)

We can then write the output amplitude at port 3 as

(18)

where ideally . One immediate, important conse-
quence of the definitions of (17) is that if the noise waves
represented by and are uncorrelated, then the noise
temperatures input to the common and differential modes are
equal ( ). Therefore, to
obtain different input noise temperatures for the common and
differential modes requires correlated noise sources for ports 1
and 2.

We consider the simple case of all ports terminated with
matched (reflectionless) loads or sources. Since there are no
reflections from the terminations, the off-diagonal elements of
the noise matrix do not contribute to the output noise at port 3,
nor do the characteristic noise temperatures of the input ports

and . Only , the characteristic noise temperature of
port 3, contributes to the output noise, just as in the case of a
two-port amplifier with reflectionless terminations.

The average noise power per unit bandwidth emerging from
port 3 is given by

(19)

If two uncorrelated noise sources with noise temperatures
and are input to ports 1 and 2, (19) becomes

(20)

where .
The unknown parameters in (20) can be determined from a

series of hot–cold measurements similar to the two-port case.
Let denote the noise temperature of the hot source con-
nected to port 1, etc. In principle, and could be equal,
and and probably will be equal to the ambient temper-
ature and, therefore, to each other, but we begin with the gen-
eral case. There are then four different measurements that can
be performed. Let be the output noise power per unit fre-
quency measured at port 3, for a hot source on port 1 and a cold
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source on port 2. , , and are defined in a similar
manner. The results of the four measurements are then given by

(21)

There are only three unknowns in (21), i.e., , , and ;
and, consequently, the equations are not all independent. Indeed,
one notes that

(22)

Therefore, it is sufficient to measure only three of the four
hot–cold combinations to determine the gains and. (In
practice, it may be preferable to measure all four combinations
and fit for a best solution.) The set of , , and may give
slightly better accuracy, and it requires only one hot noise
source; thus, we begin with that set. The measured values for
the gains are then

(23)

and the intrinsic output noise temperature for port 3 is given by

(24)

The equivalent input temperature, which is equal for the two
input ports [7], is given by

(25)

Assuming the two cold temperatures are equal, this can be
written as

(26)

where , etc. Although may not have
been measured, can be determined from (22),

. If we further assume that only one hot noise source is
used, so that , (26) reduces to

(27)

which is the familiar two-port result, with playing the role
of the two-port .

Equation (27) indicates that can be determined either from
the set of three measurements (, , and ) or from just two
measurements ( and ) if . If only and are
measured, we can still determine the sum of the gains and

(28)

but we cannot determine either gain separately, as in (23).

The discussion in this section has not yet treated the differen-
tial or common mode, nor has it mentioned noise figure. From

and (17) and (18), it follows that

(29)

Since is the same no matter how we describe the input ports
and since the sum of the gains is the same, the effective input
noise temperature in the differential and common modes is the
same as for ports 1 and 2. The hot–cold measurements with
uncorrelated sources, described above, are therefore sufficient
to determine , , and for the differential and
common modes, but not or individually. Since
is designed to be much larger than , we might use the ap-
proximation , but it would be useful to mea-
sure or independently. Using noise to measure or

requires correlated noise input to ports 1 and 2. If ,
then and , which, in turn, leads to
and . If the measured noise power out of port 3 in
such a measurement is called , then

(30)

from which it follows that

(31)

where . All the quantities on the right-hand
side, except , can be determined from the uncorrelated mea-
surements described above, and therefore measurement of
determines .

To summarize the matched case, with just one hot source and
two equal-temperature cold sources, a set of three measurements
( , , and ) with uncorrelated input noise will determine

, , , , and . (Obviously, if a second hot
source is available, could be done as a consistency check or
to reduce the measurement uncertainty.) If two equal-temper-
ature hot sources and two equal-temperature cold sources are
available, then just two measurements (and ) suffice to de-
termine , , , and , but not any indi-
vidual gain. To determine or individually (in a noise
measurement) requires the noise input to ports 1 and 2 to be cor-
related.

B. Noise Figure

Once all the relevant parameters have been measured, as in
the preceding subsection, we can compute the noise figure of the
differential amplifier. For two input ports and one output port,
all with reflectionless terminations, and no correlation between
the incident noise waves , (12) reduces to

(32)



1762 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 10, OCTOBER 2001

Note that this noise factor does not require separate measure-
ment of or and, thus, does not require any measure-
ments with correlated noise input.

Equation (32) gives the ratio of total output noise to output
noise due to all input noise for the particular case considered,

, . As discussed in Section II-C, however, it
does not give the degradation of the signal-to-noise ratio. That
is given by (15), or (16) for . If the input channel is the
differential mode, (16) takes the form

(33)

This differs from the of (32) by the factor ( ,
which makes more difficult to measure. It does, however,
provide a better measure of the amplifier’s signal-to-noise per-
formance. The gains and can be determined from
noise measurements with correlated noise incident on the two
input ports or from vector-network-analyzer measurements.

It is also interesting to consider for the case of ,
which would be appropriate for a circuit configuration in which
the noise incident on the different ports of the differential am-
plifier was correlated. In this case, (16) takes the form

(34)

The only noise parameter of the amplifier that enters (34) is.
The other parameters needed are the elements of the correlation
matrix of the incident noise, coming from other parts of the cir-
cuit in which the amplifier is embedded, and the scattering pa-
rameters of the amplifier, not just the gains. The incident noise
correlation matrix element is taken equal to one, as pre-
scribed by the convention for defining the signal-to-noise noise
factor.

IV. FOUR-PORT EXAMPLE

As a further example of the formalism, we consider an am-
plifier with two input and two output ports (or modes), such as
the mixed-mode two-port treated in [8]. To make the example
concrete, we take port 3 to be the differential output mode and
port 4 to be the common output mode. Ports 1 and 2 are taken to
correspond to two physically separate input ports, though they
could just as well be the differential and common input modes.
Again, we treat only the reflectionless case with uncorrelated
incident noise, , . Equation (12) then reduces to

(35)

for the noise figure of port 3. Port 4 has its own noise figure,
given by a similar equation, but with . Determination

of then requires determination of , the characteristic noise
temperature for port 3, as well as the sum of the two gains

or .
The characteristic noise temperatures and sums of gains can

be determined by a series of hot–cold measurements, as in the
preceding section. If we first measure the output noise in port 3
while connecting hot and cold loads to the input ports, we again
obtain the set of equations in (21) and (22), and solving for
again yields (24). Similarly, if we measure the output noise in
port 4 while connecting hot and cold loads to the input ports, we
obtain

(36)

and the gains are given by

(37)

Thus far, everything is essentially the same as in the three-port
case. However, a nuance arises when we attempt to compute the
effective input temperature. When there are two output ports,
the two input ports, in general, cannot have the same effective
input temperature. The equations that defineand are

(38)

Solving, we obtain

(39)

For the signal-to-noise degradation, the expressions are sim-
ilar to the three-port case

(40)

The equations for port 4 are obtained by in (40).
In summary, the four-port case introduces two complications

not present for three-ports. The obvious complication is that
there are two noise figures, one for each output port. Each noise
figure can be measured in a manner similar to the three-port (or
two-port) case, with a series of hot–cold measurements. (In fact,
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the two noise figures could, in principle, be measured simulta-
neously.) The second complication, which might not have been
expected, is that there must be two different effective input noise
temperatures. These are given in (39) in terms of the gains and
characteristic noise temperatures of the output ports. The ex-
pressions for the signal-to-noise noise figure are similar to the
three-port case.

Relegated to the indefinite future is the definition of the ef-
fective input noise temperature when there are more output than
input ports. In that case, the generalization of (38) will usually
not admit a solution for the ’s, and we would have to define a
different effective input noise temperature for each output port.

V. SUMMARY

A formalism based on the wave-amplitude form of the noise
matrix has been presented for multiport amplifiers, particularly
differential amplifiers. The noise figure for an output channel
was defined and written in terms of the noise matrix and scat-
tering parameters of the amplifier, the reflection coefficients
of the terminations, and the correlation matrix of the incident
noise waves in the actual configuration of use of the ampli-
fier. The noise figure corresponding to the degradation of the
signal-to-noise ratio was also defined and expressed in terms of
the same quantities for the general case. Two special cases were
considered, a three-port differential amplifier with reflection-
less terminations and uncorrelated incident noise and a four-port
mixed-mode amplifier, also with reflectionless terminations and
uncorrelated incident noise. For each case, the noise figures, ef-
fective input temperatures, and gains were related to the results
of a series of hot–cold measurements, as in the familiar two-port
case. In both examples, the off-diagonal elements of the intrinsic
noise matrix, the correlation coefficients , were not deter-
mined, since they do not affect the noise figure in the
case. To characterize a multiport amplifier for nonzero reflec-
tion coefficients, additional measurements would be required to
measure the . That more general case is left for future work.
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