
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Random-effects model for meta-analysis
of clinical trials: An update

Rebecca DerSimonian a,⁎, Raghu Kacker b

a Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases,
Bethesda, Maryland, USA

b Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Received 7 April 2005; accepted 12 April 2006

Abstract

The random-effects model is often used for meta-analysis of clinical studies. The method explicitly accounts for the
heterogeneity of studies through a statistical parameter representing the inter-study variation. We discuss several iterative and non-
iterative alternative methods for estimating the inter-study variance and hence the overall population treatment effect. We show that
the leading methods for estimating the inter-study variance are special cases of a general method-of-moments estimate of the inter-
study variance. The general method suggests two new two-step methods. The iterative estimate is statistically optimal and it can be
easily calculated on a spreadsheet program, such as Microsoft Excel, available on the desktop of most researchers. The two-step
methods approximate the optimal iterative method better than the earlier one-step non-iterative methods.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Meta-analysis is a statistical technique for combining estimated treatment effects from independent comparable
clinical trials (studies). Such analyses have become increasingly popular in medical research where information about
treatment efficacy is available from a number of clinical trials with inconclusive or inconsistent results.

A major difficulty in integrating the findings from various studies stems from the sometimes diverse nature of the
studies being combined. The studies may differ, for example, in terms of patient characteristics or methods employed.
To account for such inter-study differences, DerSimonian and Laird [1] proposed a simple random effects model which
allows for treatment effects to vary across studies and uses a simple non-iterative method to estimate the inter-study
treatment effect variance. Because it incorporates inter-study differences into the analysis of overall treatment efficacy,
and because of its simplicity, the method [1] continues to be widely used. Nevertheless, indiscriminate or inappropriate
use of any approach to meta-analysis of clinical trials can lead to misleading inferences about treatment effects [2], and
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the need for careful consideration of methods in drawing statistical inferences from comparable but heterogeneous
studies remains critical.

In this paper, we first review the random-effects model for meta-analysis of clinical trials and introduce a general
method-of-moments estimate for the inter-study variance which includes several existing estimates as special cases. In
addition to the non-iterative method proposed by DerSimonian and Laird [1], an iterative estimate of the inter-study
variance based on a randomeffectsmodelwas proposed byPaule andMandel [3] for inter-laboratory studies. This estimate
was subsequently shown to be statistically optimal [4] and can be easily calculated on a spreadsheet program.Another non-
iterative estimate of the inter-study variance component based on a random-effects model was proposed byCochran [5]. In
contrast to the non-iterative DerSimonian and Laird as well as the iterative Paule andMandel estimates, the estimate based
on Cochran's ANOVA assumes that each study provides equal information and is of equal sample size.

We show that the inter-study variance estimates based on the methods of Cochran, DerSimonian and Laird, and Paule
and Mandel are all special cases of a general method-of-moments estimate for the inter-study variance with slightly
different weights assigned to the studies. The general method-of-moments estimate suggests two-step alternatives to the
one-step non-iterative procedures based on Cochran's ANOVA and the DerSimonian and Laird methods. We illustrate
and compare the estimates from the five methods in several examples, and based on the empirical evidence, suggest
improvements to the commonly used one-step non-iterative random-effects model estimates.

2. Methods

We consider the problem of combining estimated treatment effects from a series of k comparative clinical studies,
where the data from each study consist of the number of patients in treatment and control groups, nTi and nCi, and the
proportion of patients with some event in each of the two groups, rTi and rCi. A random effects model for meta-analysis
stipulates that the observed treatment effect, yi, from the i-th clinical study is made up of two additive components: the
true treatment effect for the study, θi, and the sampling error, ei. That is, yi=θi+ei for i=1,…, k. The variance of ei, σi

2, is
the sampling variance reflecting within-study variance and the sample size of the study. The sampling variance, σi

2, is
usually unknown and is estimated from the data of the i-th observed study. For instance, when the observed effect in the
i-th study is a difference in proportions, rTi− rCi, the sampling variance can be estimated [1] by

s2i ¼ rTið1−rTiÞ=nTi þ rCið1−rCiÞ=nCi:
In addition to the sampling error associated with each study, the random effects model assumes the true treatment

effect in each trial will be influenced by several factors, including patient characteristics as well as design and execution
of the study. The model explicitly accounts for this possible heterogeneity in the true treatment effects and stipulates
that θi=μ+δi, where θi is the true treatment effect in the i-th study, μ is the overall treatment effect for a population of
possible treatment evaluations, and δi=θi−μ is the deviation of the i-th study's effect from the overall effect μ. The
variance of δi, τ

2≥0, is the inter-study variance and represents both the degree to which true treatment effects vary
across experiments as well as the degree to which individual studies give biased assessments of treatment effects. The
special case τ2 =0 represents lack of heterogeneity among the true treatment effects; i.e., the true treatment effects θi are
all equal and the common value is μ.

With this formulation, the model assumes that the observed treatment effects, y1,…, yk, are realizations of
independent random variables from a distribution with overall value μ and variances τ2 +σ1

2,…, τ2 +σk
2, respectively,

where σ1
2N0,…, σk

2N0 and τ2≥0. The variances reflect the two components of variance assigned to each observed
effect: an inter-study variance τ2 which reflects treatment effects heterogeneity and an intra-study variance σi

2 (or its
approximation si

2) which reflects within-study sampling variance.

2.1. Estimation of the overall population treatment effect μ

Given the observed effects, y1,…, yk, and the sampling variances, σ1
2,…, σk

2, the first step in meta-analysis based on a
random effects model is to calculate an estimate for the inter-study variance τ2 and then estimate the overall population
treatment effect μ and its standard error.

If σ1
2,…, σk

2 and τ2 were known, a weighted estimator of μ would be μW=ΣiWiyi /ΣiWi, where Wi=1 / (τ
2 +σi

2), and
its standard error would be s.e.(μW)=1 / (ΣiWi)

1 / 2. In practice, the variances σ1
2,…, σk

2, and τ2 are usually unknown and
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are estimated from the data. Suppose s1
2,…, sk

2 and t2 are the estimates of σ1
2,…, σk

2 and τ2, respectively. By substituting
the estimated variances for σ1

2,…, σk
2, and τ2 in μW we get the following estimate for μ

mW ¼
X

i
wiyi=

X
i
wi; ð1Þ

where

wi ¼ 1=ðt2 þ s2i Þ ð2Þ
for i=1,…, k and an approximate standard error for mw

s:e:ðmWÞ ¼ 1=
X

i
wi

� �1=2
: ð3Þ

The expression (3) for s.e.(mw) is a conditional standard error of mw under the assumption that the estimates s1
2,…, sk

2

and t2 are equal to the true variances σ1
2,…, σk

2 and τ2, respectively. It is difficult to determine an expression for the
unconditional (true) standard error of mw involving the uncertainty that arises from the use of estimates s1

2,…, sk
2 and t2

for σ1
2,…, σk

2, and τ2, respectively. The expression (3) is an underestimate of the true standard error of mw [6]. General
inferential problems due to replacing σ1

2,…, σk
2 by their estimates s1

2,…, sk
2 in the context of a random-effect model are

also discussed by Bohning et al. [7].

2.2. Estimation of the inter-study variance τ2

In addition to the sampling variance estimates, s1
2,…, sk

2, the expressions (1) and (3) require an estimate t2 for τ2. In
this section, we describe several methods for estimating τ2 that yield slightly different results for the overall population
treatment effect estimate and its standard error, mw and s.e.(mw). These methods include non-iterative estimates
proposed by Cochran [5] and DerSimonian and Laird [1] and an iterative estimate proposed by Paule and Mandel [3]
for inter-laboratory studies. This section introduces an identity that shows that all three estimates are special cases of a
general method-of-moments estimate for τ2 proposed by Kacker [8] for inter-laboratory studies and proposes two new
estimates.

Suppose yW=Σiaiyi /Σiai where a1,…, ak are any positive constants. Kacker [8] verified that the expected value of
the expression Σiai(yi−yW)2 is

E
X

i
aiðyi−yWÞ2

h i
¼

X
i
aiðs2 þ r2i Þ−

X
i
a2i ðs2 þ r2i Þ=

X
i
ai: ð4Þ

which can be expressed as

E
X

i
aiðyi−yWÞ2

h i
¼ s2

X
i
ai−

X
i
a2i =

X
i
ai

h i
þ

X
i
air

2
i −

X
i
a2i r

2
i =

X
i
ai

h i
: ð5Þ

2.2.1. General method-of-moments estimate for τ2

By equating the expressionΣiai(yi−yW)2 to its expected value given by Eq. (5), solving for τ2, and then substituting
s1
2,…, sk

2 for σ1
2,…, σk

2, we have the following general method-of-moments estimate t2(MM) for τ2

t2ðMMÞ ¼
P

i aiðyi−yWÞ2
h i

−½Pi ais
2
i −

P
i a

2
i s

2
i =

P
i ai�

½Pi ai−
P

i a
2
i =

P
i ai� ð6Þ

Since τ2≥0, the estimate τ2(MM) is set to zero when its computed value turns out to be negative [8].
In Eq. (6), a1,…, ak are any positive values reflecting weights assigned to the k studies. Each set of values for the

weights yields an alternative estimate for τ2. Table 1 summarizes five alternate sets of weights which yield special cases
of the general method of moments estimate of τ2 described in Eq. (6). These special cases include Cochran's [5]
analysis-of-variance (ANOVA) non-iterative estimate, t2(CA), DerSimonian and Laird's [1] non-iterative estimate,
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t2(DL), Paule and Mandel's [3] iterative estimate, t2(PM), two-step estimate starting with Cochran's estimate of τ2,
t2(CA2), and two-step estimate starting with the DerSimonian and Laird estimate of τ2, t2(DL2). The following
sections describe the five alternative sets of weights and the corresponding τ2 estimates in more detail.

2.2.2. Cochran ANOVA estimate for τ2

With ai=1 /k for i=1,…, k, Eq. (6) yields the Cochran ANOVA estimate, t2(CA), for τ2, where

t2ðCAÞ ¼ max 0;
1

k−1

X
i
ðyi−yAÞ2− 1

k

X
i
s2i

� �
; ð7Þ

and yA is the arithmetic mean (1 /k)Σiyi. Substituting t
2(CA) for t2 in Eq. (2) yields the corresponding Cochran estimate,

mw(CA), for μ and its approximate standard error, s.e.(mw(CA)), as defined by Eq. (3).

2.2.3. DerSimonian and Laird estimate for τ2

With ai=1 / si
2 for i=1,…, k, Eq. (6) yields the DerSimonian and Laird estimate, t2(DL), for τ2, where

t2ðDLÞ ¼ max 0;

P
i wi0ðyi−ywð0ÞÞ2

h i
−ðk−1Þ

½Pi wi0−
P

i w
2
i0=

P
i wi0�

8<
:

9=
;; ð8Þ

yW(0)=Σiwi0yi /Σiwi0, and wi0=1 / si
2. Substituting t2(DL) for t2 in Eq. (2) yields the corresponding DerSimonian and

Laird estimate, mw(DL), for μ and its approximate standard error, s.e.(mw(DL)), as defined by Eq. (3). The expression
Σiwi0(yi−yW(0))2 is referred to as a Q-statistic in meta-analysis literature [1].

2.2.4. Paule and Mandel estimate for τ2

With ai=1 / (τ
2 +σi

2) for i=1,…, k, Eq. (4) reduces to

E
X

i
aiðyi−yWÞ2

h i
¼ k−1; ð9Þ

where yW=Σiaiyi /Σiai, and ai=1 / (τ
2 +σi

2). By equating the expression Σiai(yi−yW)2, where ai=1 / (τ
2 +σi

2), to its
expected value k−1, and then substituting s1

2,…, sk
2 for σ1

2,…, σk
2 , we get the Paule and Mandel estimating equation

Fðs2Þ ¼
X

i
Wiðyi−yWðs2ÞÞ2−ðk−1Þ ¼ 0; ð10Þ

where yW(τ
2)=ΣiWiyi /ΣiWi and Wi=1 / (τ

2 + si
2). The solution, t2(PM), of the estimating equation F(τ2)=0 is the

Paule and Mandel estimate for τ2. The estimating equation F(τ2)=0 has a unique solution, which can be determined
through a simple numerical iteration starting with τ2 =0. An algorithm for numerical iteration on a spreadsheet
program such as Microsoft Excel is described in the Appendix. When F(τ2) is negative for all τ2≥0, the equation F
(τ2)=0 has no non-negative solution; in that case the estimate t2(PM) is set to zero. Substituting t2(PM) for t2 in Eq.
(2) yields the Paule and Mandel estimate, mw(PM), for μ and its approximate standard error, s.e.(mw(PM)), as defined
by Eq. (3).

Table 1
Various estimates for τ2 as special cases of the general method of moments estimate

Weights ai Estimate t2 Author(s) Reference

Any positive value t2(MM) Eq. (6) Kacker [8] Metrologia (2004)
ai=1/k t2(CA) Eq. (7) Cochran [5] Biometrics (1954)
ai=1/ si

2 t2(DL) Eq. (8) DerSimonian and Laird [1] Cont Clin Trials (1986)
ai=1 / (t

2(PM)+ si
2) t2(PM) a Eqs. (9)–(10) Paule and Mandel [3] J Res NBS (1982)

ai=1 / (t
2(CA)+ si

2) t2(CA2) Eq. (11) DerSimonian and Kacker This paper
ai=1 / (t

2(DL)+ si
2) t2(DL2) Eq. (12) DerSimonian and Kacker This paper

a Requires iteration.
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The general method of moments estimate t 2(MM) for τ2 suggests two new two-step estimates for τ2.

2.2.5. Two-step estimate of μ starting with the Cochran estimate for τ2

If we substitute ai=1 / (t
2(CA)+ si

2) for i=1,…, k in Eq. (6), we get the two-step estimate, t 2(CA2), where

t2ðCA2Þ ¼ max 0;

P
i wiCðyi−mwðCAÞÞ2

h i
−½Pi wiCs2i −

P
i w

2
iCs

2
i =

P
i wiC�

½Pi wiC−
P

i w
2
iC=

P
i wiC�

8<
:

9=
;; ð11Þ

wiC=1 / (t
2(CA)+ si

2) and mw(CA) is the Cochran ANOVA estimate for μ. By substituting t 2(CA2) for t 2 in Eq. (2) we
get the corresponding two-step estimate, mw(CA2), for μ and its approximate standard error, s.e.(mw(CA2)), as defined
by Eq. (3).

2.2.6. Two-step estimate of μ starting with the DerSimonian and Laird estimate for τ2

If we substitute ai=1 / (t
2(DL)+ si

2) for i=1,…, k in Eq. (6), we get the two-step estimate, t 2(DL2), where

t 2ðDL2Þ ¼ max 0;

P
i wiDðyi−mwðDLÞÞ2

h i
−½Pi wiDs2i −

P
i w

2
iDs

2
i =

P
i wiD�

½Pi wiD−
P

i w
2
iD=

P
i wiD�

8<
:

9=
;; ð12Þ

wiD=1 / (t
2(DL)+ si

2) and mw(DL) is the DerSimonian and Laird estimate for μ. By substituting t 2(DL2) for t 2 in Eq.
(2) we get the corresponding two-step estimate, mw(DL2), for μ and its approximate standard error, s.e.(mw(DL2)), as
defined by Eq. (3).

2.2.7. Special case when sampling variances are all equal
When the intra-study sampling variance estimates s1

2,…, sk
2 are approximately equal and each is replaced with their

average s2 = (1 /k)Σisi
2, then all five estimates t 2(CA), t 2(DL), t 2(CA2), t 2(DL2), and t2(PM) for τ2 reduce to

t 2 ¼ max 0;
1

k−1

X
i
ðyi−yAÞ2−s2

� �
: ð13Þ

In that case the estimate for the overall treatment effect μ is the arithmetic meanyA=(1 /k)Σiyi and its approximate
standard error as defined by Eq. (3) is s.e.(mw)=[(1 /k)(t

2+ s2)]1 / 2 where s2 = (1 /k)Σi si
2 . This expression emphasizes

that s.e.(mw) consists of two components of variance: an inter-study variance t 2 and an intra-study variance s2 which
reflects the individual study sampling variances si

2.

2.2.8. Statistical optimality of the Paule and Mandel estimate for τ2

The Paule and Mandel estimate of the inter-study variance, t 2(PM), does not require a normality assumption.
Although Paul and Mandel [3] did not evaluate the statistical properties of t 2(PM) in the original article, Rukhin et al.
[4] more recently investigated its properties under normality. In particular, Rukhin et al. [4] show that when the
normally assumption holds and a weighted mean of the form (1) is used as an estimate for the parameter μ, then the
Paule and Mandel estimate t 2(PM) is the conditionally restricted maximum likelihood (REML) estimate of τ2; the
condition being that the estimates s1

2,…, sk
2 be regarded as the true intra-study variances σ1

2,…, σk
2, respectively. A

REML estimate of a variance component is an improvement over the maximum likelihood (ML) estimate because it
accounts for the loss in degrees of freedom resulting from the estimation of μ [9]. Rukhin et al. [4] also show that the
estimate of μ determined by using t 2(PM) for τ2 is an approximate generalized Bayes estimate based on non-
informative prior distributions for the statistical parameters μ, τ2, and σ1

2,…, σk
2. Thus under normality, t 2(PM) and

mw(PM) are statistically optimal estimates for τ2 and μ, respectively.
Under the normality assumption, the Paule and Mandel's approach is statistically optimal, but the method itself does

not require a normality assumption; hence, when normality assumptions do not hold, the Paule and Mandel method is
more robust for estimating τ2 than the methods of Cochran or DerSimonian and Laird which are based on large sample
assumptions.
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3. Database

We compare the methods discussed in the previous section using data from six reviews published from 1981 to
2003. These reviews include articles from the New England Journal of Medicine [10], the British Medical Journal [11],
Lancet [12], the Journal of the American Medical Association [13,14] and Hepatology [15]. We briefly describe the six
reviews identifying each by its first author or the study name:

Baum [10]: This is a survey of a number of studies that evaluate the efficacy of antibiotics in the prevention of wound
infection following colon surgery. This review includes twelve studies published before 1976 and fourteen studies published
after 1976. We consider the combined data from all twenty-six studies to evaluate antibiotic prophylaxis in colon surgery.

Anand [13]: This is a meta-analysis of studies that evaluate the efficacy of long-term oral anticoagulant (OA) therapy in
patients with coronary artery disease. The review includes several comparisons where the studies are stratified according to
the intensity of OA therapy. We consider the nine studies that compare high-intensity OA therapy with a control group.

CLASP [12]: This is a large collaborative multi-center study of a low-dose aspirin for the prevention and treatment
of pre-eclampsia in pregnant women. The review includes several meta-analyses of small and large studies to assess if
aspirin is effective in preventing pre-eclampsia or perinatal deaths. We consider the six larger studies (each having more
than 200 subjects) evaluating the efficacy of aspirin in reducing the incidence of pre-eclampsia.

Bradley [14]: This is a meta-analysis of four studies that evaluate the efficacy of cardiac resynchronization for the
treatment of patients with advanced heart failure. The review considers several outcome measures including heart
failure mortality, heart failure hospitalization, and all-cause mortality. We consider the three studies with data to assess
the efficacy of cardiac resynchronization in reducing heart failure hospitalizations.

Llovet [15]: This is a systematic review of fourteen studies that evaluate the efficacy of tamoxifen (seven studies) or
arterial embolization/chemoembolization (seven studies) for improving survival in patientswith unresectable hepatocellular
carcinoma. The review includes several comparisons evaluating 1 or 2 years survival as well as several sensitivity analyses.
We consider the seven studies with data to assess if arterial embolization improves 1-year survival rates.

Teo [11]: This is an overview of seven studies that evaluate the efficacy of intravenous magnesium in suspected
acute myocardial infarction. We consider all seven studies with data to assess if intravenous magnesium reduces
mortality in patients with acute myocardial infarction.

Table 2 summarizes the methods and reported results from the original reviews. Except for one review [10] that uses
the difference in proportions as ameasure of the treatment effect, the other five reviews use the odds ratio. For estimating
the overall population treatment effect μ, two reviews pool the raw data; two reviews use the modifiedMantel–Haenszel
(M–M-H) method [16]; and two reviews use the DerSimonian and Laird (D and L) method [1]. Columns 5 and 6 of
Table 2 display the estimates of overall population treatment effect and the associated 95% confidence intervals (95%
CIs) as reported in the original reviews. For each review, the estimates imply a beneficial effect of the treatment relative
to control. For instance, Baum et al. [10] reported antibiotics to be highly effective in preventing wound infection
following colon surgery. Their estimate for the overall difference in proportions (95% CI) of subjects who did not

Table 2
Methods and reported results from the original reviews

Study Sample size Outcome measure Estimation method Overall estimate 95% CI Test of homogeneity (df )⁎

Baum Difference
in Proportions

Pooled
After 1976 1033 0.26 (0.20–0.31) ⁎⁎

Before
1976

1019 0.14 (0.08–0.20)

Anand 8749 Odds ratio M–M-Ha 0.52 (0.40–0.68) ⁎⁎

CLASP 14530 Odds ratio Pooled 0.81 (0.71–0.93) 10.5 (5)⁎⁎⁎

Bradley 1496 Odds ratio D&Lb 0.71 (0.53–0.96) 0.4 (2)
Llovet 545 Odds ratio D&Lb 0.64 (0.41–1.01) 7.7 (6)
Teo 1301 Odds ratio M–M-Ha 0.45 (0.28–0.71) 7.6 (6)

⁎Degrees of freedom.
⁎⁎Test statistic for assessing homogeneity not reported.
⁎⁎⁎p-valueb0.10.
a Modified Mantel–Haenszel method [16].
b DerSimonian and Laird method [1].
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develop infection was 0.26 (0.20–0.31) (i.e., less infections in the antibiotics group) in the studies published after 1976
and 0.14 (0.08–0.20) in the studies published before 1976. Similarly, each of the other reviews report a reduction in the
odds and a benefit due to treatment with odds ratio estimates ranging from 0.45 to 0.81. Four of the reviews provide a
quantitative assessment of the homogeneity of treatment effects on the odds ratio scale. Column 7 in Table 2 displays the
reported test statistic for homogeneity of treatment effects. Only one study (CLASP) indicates significant heterogeneity
at the 0.10 level of significance. Two reviews, Baum [10] and Anand [13], refer to effect homogeneity but do not provide
a quantitative assessment. Anand [13] simply mentions lack of heterogeneity. Baum et al. [10] estimate the variability in
treatment differences for each publication period (before and after 1976) using the method of Gilbert et al. [17] and
conclude that the between study variation is negligible relative to the within study variation which is assumed to be equal
for all studies. The combined set of all 26 studies is heterogeneous (p-valueb0.05) because the estimates of overall
treatment effect for pre and post 1976 publication years are quite different.

4. Comparison

To compare the five statistical estimates for τ2 and μ discussed in the Methods section, we use the reported data from
the six reviews discussed in the previous section. We recognize that this set of reviews may not be representative of all
meta-analyses published in the medical literature. In each review, the data from the i-th study consist of the total number
of subjects in the treatment and control groups (nTi and nCi) and the proportion of subjects with some event of interest in
each of the two groups (rTi and rCi). In this setting, several measures of treatment effect can be considered, including the
difference in proportions, the odds ratio, and the relative risk [18]. To compare various estimates for τ2 and μ, we
concentrate throughout on log odds ratio as the outcome measure of interest due to its prominence in clinical trials and
since it is the measure used in five of the six reviews. When the observed effect from the i-th study, yi, is the log odds
ratio, ln[rTi(1− rCi) / rCi(1− rTi)], we approximate the sampling variance in that study by si

2 = [nTirTi(1− rTi)]
−1 + [nCirCi

(1− rCi)]−1 [1].
Table 3 presents the estimates t for the inter-study standard deviation τ and Table 4 presents the estimates mw for the

overall population treatment effect μ on the log odds ratio scale determined from the five statistical methods. Table 4
also includes approximate estimates s.e.(mw) for the standard errors of the estimates for μ. As noted earlier, these
approximate estimates of standard errors are underestimates. The five statistical methods of estimation yield slightly
different estimates for τ and μ in all reviews except one. For the review by Anand, the estimates for τ from all five
methods are zero; therefore, the estimates for μ are the same regardless of the statistical estimation method used
(Tables 3 and 4). For the other reviews, the estimates for τ from the five statistical methods are somewhat different;
therefore, the estimates for μ also vary from each other (Tables 3 and 4). For example, for the review by Teo, the
Cochran ANOVA estimate for τ is zero while the other estimates are greater than zero. As the estimate of τ increases,
the weights assigned to the studies become more uniform, i.e., the weighted mean mw converges to an arithmetic mean.
Consequently, the larger relative impact of larger studies on the estimate of the overall treatment effect μ is reduced.
Also, a larger estimate for τ yields a larger approximate estimate s.e.(mw) of the standard error ofmw. The overall results
of Tables 3 and 4 indicate that for estimation of τ, μ, and s.e.(mw), the two-step estimates approximate the iterative

Table 3
Estimates of the inter-study standard deviation τ: log odds ratio scale

t(PM) a t(CA) b t(DL) c t(CA2) d t(DL2) e

Baum 0.4796 0.4497 0.4442 0.4775 0.4771
Anand 0.0000 0.0000 0.0000 0.0000 0.0000
CLASP 0.3681 0.4410 0.2323 0.3831 0.3254
Bradley 0.0685 0.1281 0.0625 0.0793 0.0676
Llovet 0.2970 0.3284 0.2884 0.2984 0.2966
Teo 0.3312 0.0000 0.4135 0.4135 0.2883

a Paule and Mandel estimate.
b Cochran ANOVA estimate.
c DerSimonian and Laird estimate.
d Two-step estimate starting with the Cochran ANOVA estimate.
e Two-step estimate starting with the DerSimonian and Laird estimate.
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estimates of Paule and Mandel better than the earlier one-step methods; the Paule and Mandel estimates being
statistically optimal under normality.

5. Summary

We discuss two non-iterative methods and one iterative method for estimating the inter-study component of variance
in a random-effects model for meta-analysis of clinical studies. We show that all three methods are special cases of a
general method-of-moments estimate for the inter-study variance with slightly different weights assigned to the studies.
In Cochran's ANOVAmethod, each study is assigned an equal weight while the weights in the DerSimonian and Laird
method are inversely proportional to the within-study sampling variances. These two methods are non-iterative. The
weights in the iterative Paule and Mandel method are inversely proportional to the total variances and the method
requires a simple iteration that can be easily done on a spreadsheet program like Microsoft Excel; such was not the case
in 1982 when the method was originally proposed and may have been a deterrent to its widespread use. We identify this
approach as an extension of the same principle used with the non-iterative methods and provide the iterative algorithm
to make its use more accessible in the context of clinical trials. Under normality assumptions, the Paule and Mandel
estimate for the inter-study variance component is statistically optimal in the sense of being a conditionally restricted
maximum likelihood estimate and the corresponding estimate for the overall treatment effect is statistically optimal in
the sense of being approximately Bayes estimate. Based on the general method-of-moments estimate, we suggest two-
step alternatives to the one-step non-iterative procedures based on Cochran's ANOVA and the DerSimonian and Laird
methods. We compare the estimates based on these two-step procedures with those from the optimal method of Paule
and Mandel. Our results indicate that the two-step methods approximate the method of Paule and Mandel better than
the earlier one-step methods. The two-step methods may be considered when a non-iterative method is desired.

Table 4
Estimates of the overall population treatment effect μ and the corresponding approximate standard error (in parenthesis): log odds ratio scale⁎

mw(PM) a mw(CA)
b mw(DL)

c mw(CA2)
d mw(DL2)

e

Baum −1.0653 (0.1568) −1.0614 (0.1526) −1.0606 (0.1518) −1.0650 (0.1565) −1.0650 (0.1564)
Anand −0.5742 (0.1333) −0.5742 (0.1333) −0.5742 (0.1333) −0.5742 (0.1333) −0.5742 (0.1333)
CLASP −0.3811 (0.2060) −0.4035 (0.2327) −0.3240 (0.1540) −0.3861 (0.2115) −0.3655 (0.1901)
Bradley −0.3398 (0.1520) −0.3464 (0.1650) −0.3392 (0.1511) −0.3408 (0.1539) −0.3397 (0.1519)
Llovet −0.4476 (0.2225) −0.4459 (0.2292) −0.4481 (0.2208) −0.4476 (0.2228) −0.4477 (0.2224)
Teo −0.7866 (0.3124) −0.7533 (0.2649) −0.8032 (0.3336) −0.8032 (0.3336) −0.7788 (0.3023)

⁎The negative estimates mw imply that the estimate of odds ratio is less than one and the effect of treatment is beneficial.
a Based on t(PM), the Paule and Mandel estimate of τ.
b Based on t(CA), the Cochran ANOVA estimate of τ.
c Based on t(DL), the DerSimonian and Laird estimate of τ.
d Based on t(CA2), the two-step method starting with the Cochran ANOVA estimate of τ.
e Based on t(DL2), the two-step method starting with the DerSimonian and Laird estimate of τ.

Fig. A.1. Sketch of Paule and Mandel's estimating equation when F(0) is positive.
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Appendix A

The function F(τ2) defined in Eq. (10) is strictly decreasing and concave up [8]. The shape of the function F(τ2) is
sketched in Figs. A.1 and A.2. The maximum of F(τ2) occurs at τ2 =0 and F(τ2)→− (k−1) as τ2→∞. When F(0), i.e.,
the value of F(τ2) at τ2 =0 is positive as shown in Fig. A.1, then by the intermediate value theorem of calculus a value
of τ2 exists for which F(τ2)=0. Since F(τ2) is strictly decreasing, such τ2 is unique. When F(0) is negative as shown in
Fig. A.2, the Eq. (10) has no positive solution. When F(0) is zero, the solution is τ2 =0.

The solution τ2(PM) of the estimating equation F(τ2)=0 can be determined through the following algorithm.
Start with τ2(previous)=0 or with a number slightly above zero.

(i) Calculate weights Wi=1 / (τ
2 + si

2) for i=1,…, k and the function F(τ2).
(ii) If F(τ2) at τ2 =0 is negative, set τ2(PM)=0.

If F(τ2(previous))=0, set τ2(PM)=τ2(previous).
If F(τ2(previous))N0, determine the correction

Ds2 ¼
P

i Wiðyi−yWðs2ÞÞ2−ðk−1ÞP
i W

2
i ðyi−yWðs2ÞÞ2

ð14Þ

(iii) The next iterative value of τ2is τ2(next)=τ2(previous)+Δτ2.
(iv) Repeat (ii) and (iii) until F(τ2(previous))=0. The final value of τ2 is τ2(PM).

We suggest τ2(CA) as the starting value for τ2. This often reduces the number of iterations required unless τ2(CA) is zero.
This algorithm can be easily implemented in a spreadsheet program such as Microsoft Excel.
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