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Adaptive Characterization of Jitter Noise in
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Abstract—We estimate the root-mean-square (RMS) value of
timing jitter noise in simulated signals similar to measured high-
speed sampled signals. The simulated signals are contaminated
by additive noise, timing jitter noise, and time shift errors. Before
estimating the RMS value of the jitter noise, we align the signals
(unless there are no time shift errors) based on estimates of the
relative shifts from cross-correlation analysis. We compute the
mean and sample variance of the aligned signals based on repeated
measurements at each time sample. We estimate the derivative
of the noise-free signal based, in part, on a regression spline fit
to the average of the aligned signals. Our initial estimate of the
RMS value of the jitter noise depends on estimated derivatives
and sample variances at time samples where the magnitude
of the estimated derivative exceeds a selected threshold. This
initial estimate is generally biased. Using a parametric bootstrap
approach, we adaptively adjust this initial estimate of the RMS
value of the jitter noise based on an estimate of this bias. We
apply our method to real data collected at NIST. We study how
results depend on the derivative threshold.

Index Terms—Adaptive, bias-correction, bootstrap, derivative
estimation, high-speed, jitter, optoelectronics, regression spline.

I. INTRODUCTION

I DEALLY, one would like to sample a signal at equally
spaced time intervals. However, in high-speed measurement

systems, the target time and actual sampling time may differ
because of both systematic and random errors. The systematic
component of this difference is time base distortion (TBD)
[1]–[8]. We decompose the random timing error into a slowly
varying component called drift, and a quickly varying compo-
nent called jitter [9]–[12] (the terms “jitter” and “jitter noise”
are synonymous and should not be confused with deterministic
jitter). Within the time window during which a particular
realization of the signal is sampled, the drift error manifests
itself by shifting the waveform, while jitter manifests itself
by perturbing each of the sampling times in the window by
a random amount. Within the measured time window, each
of the jitter noise realizations is independent of all the other
jitter noise realizations. By definition, the expected value of
a realization of the jitter noise at any time is 0. Thus, the
root-mean-square (RMS) value of the jitter noise, that is the
RMS jitter, equals the standard deviation of the jitter noise.
Further, signal measurements are contaminated by additive
noise. In this work, we estimate the RMS value of timing jitter
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noise. Our work is motivated by efforts to characterize the im-
pulse response functions of high-speed sampling oscilloscopes
[13]–[16] that are contaminated by jitter noise (as well as by
TBD errors, time shift errors, and additive noise).

For the case where the noise-free signal is a sinusoid plus its
harmonics, there are methods to estimate the RMS value of the
jitter noise [8], [17]. Here, we consider the more complex case
where there is no analytical model for the signal. Hence, the
methods developed in [8], [17] do not apply to the signals con-
sidered in this work. In principle, the RMS value of the jitter
noise can be estimated from data collected over a time interval
where the noise-free signal is a linear function of time [10].
If this linearity assumption is violated, estimates based on the
premise of signal linearity are, in general, biased. Given the
power spectrum of the jittered signal and a parametric model
for the power spectrum of the jitter probability density function
(pdf), it is possible to estimate the model parameters that char-
acterize the power spectrum of the jitter pdf [9]. Since this ap-
proach is a nonlinear parameter estimation scheme, it is likely
to be biased since estimates that are nonlinear functions of ob-
served data are generally biased. For more discussion on the bias
of nonlinear estimates, see page 40 of [18].

In this work, we estimate the RMS value of timing jitter noise
based on a fully empirical estimate of the time-varying variance
of the signal, and an estimate of the time-varying derivative of
the unknown noise-free signal. We obtain the estimate of the
signal derivative using a regression spline model [19] for the
signal. In a regression spline model, one can model a signal
without having a closed form analytical model for the signal.
Our work is inspired by an earlier attempt to estimate the RMS
value of jitter noise in high-speed sampled signals using a re-
gression spline method [20]. For a clear discussion of regres-
sion spline modeling and related techniques, we direct readers to
[21]. In [20], repeated measurements of jittered signals provided
estimates of the sample variance of the signal for each time
sample. Based on an estimate of the derivative of the noise-free
signal provided by a regression spline model, and the sample
variance of the signal at each time sample, they estimated the
RMS value of the timing jitter noise. In their regression spline
approach, the noise-free signal of interest was approximated as
piecewise cubic polynomials. The regression spline parameters
that define each cubic polynomial in each subinterval, the RMS
value of the jitter noise, and the RMS value of the additive noise
were jointly estimated using an iterative algorithm. However,
their approach yielded biased estimates of the RMS value of the
jitter noise.

Our implementation of the regression spline method differs
from the implementation in [20]. First, we estimate the RMS
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jitter from a subset of the full signal, whereas in [20] they esti-
mated RMS jitter from the full signal. To belong to this subset,
the magnitude of the estimated derivative of the signal average
must exceed a chosen threshold. We subsample because we ex-
pect that the least informative part of the signal corresponds
to time samples where the magnitude of the derivative of the
noise-free signal is least. Second and most significantly, we es-
timate the bias, that is the systematic error, of our estimate using
a parametric bootstrap method [22]. Based on this bias estimate,
we adjust our estimate accordingly. Because we correct our es-
timate for bias, our procedure is adaptive.

In a Monte Carlo simulation experiment, we consider two
cases. In one case, the signals are contaminated by jitter noise
and additive noise, but not by time shift errors. In the second
case the signals are contaminated by jitter noise, additive noise,
and time shift errors. For the second case, we estimate relative
time shift errors based on cross-correlation analysis ([23] and
Appendix). Given the relative time shift estimates, we align the
signals using a Fourier method ([23] and Appendix). We es-
timate the RMS value of jitter noise from the average of the
aligned signals and the sample variance of the aligned signals.

For the simulated and real signals considered in this work,
we will show that RMS jitter can be estimated well by selecting
a threshold value so that the RMS jitter value estimate is com-
puted from the main feature in the signal which is similar to a
damped sinusoid. During the time where the main feature rises
from a local minimum to a local maximum, the signal is sam-
pled approximately seven to eight times. For the cases studied,
the RMS timing jitter value is no greater than 2where is
the interval between samples. In general, the accuracy of our
RMS jitter estimation method degrades as the true RMS jitter
value increases.

In Section II, we present details for calculating our jitter esti-
mate. In Section III, for simulated data, we study the perfor-
mance of our bias-corrected (and uncorrected) jitter estimate
based on the regression spline approach. We compare the per-
formance of our bias-corrected estimate to the performance of
two other estimates. One of the alternative estimates is based on
the assumption that the noise-free signal is a linear function of
time in the three-point time neighborhood about the time sample
where the sample variance of the signal is largest. The other es-
timate is the regression spline approach presented in [20]. In
Section IV, we estimate the RMS value of jitter noise in experi-
mental signals measured at NIST.

II. ESTIMATION PROCEDURE

A. Preliminaries

Assuming that TBD errors are negligible, we can model the
th observed signal at theth time sample as where

(1)

is a realization of the jitter noise, is a random time shift
(drift) error, is a realization of additive noise, and is an
unknown function of time. For each signal, the realizations of
the additive noise, jitter noise, and time shift noise processes are
assumed to be independent. We assume that the expected value

of each is zero, that is, , and that the
realizations of the additive noise and jitter processes have finite
variances and . We estimate the relative time shift errors
by an all-pairs cross-correlation method ([23] and Appendix).
Based on the estimated relative time shift errors, we translate
each signal in time using a Fourier method ([23] and Appendix).

We denote the th time sample of theth aligned signal as
. Assuming that we have accurately aligned the signals, a

first order Taylor series argument yields an approximation for
the variance of the sampled signal

(2)

(Here, we consider the general case where we do not have an
analytic model for the derivative of the noise-free signal at time

, . Hence, we must estimate this derivative from mea-
surements). Using (2), we approximate the jitter variance,as

(3)

At any time sample of interest, we cannot determine the
exact value of the variance of the signal from a finite number of
signal measurements. Following the standard rule of statistical
practice, we estimate the unknown theoretical variance by
computing the empirical sample variance. As a first step in
calculating the sample variance, we compute the average of the

aligned noisy signals as follows:

(4)

The sample variance of an aligned signal at theth time sample

(5)

is an estimate of the theoretical variance of the signal at
the th time sample. As the number of samplesapproaches
infinity, the sample variance converges to the theoretical vari-
ance. The square root of the sample variance, is the
estimated standard deviation of the signal at theth time
sample. Throughout this paper, we refer to the estimated stan-
dard deviation as the standard error.

B. Naive Estimate

In order to exploit (3) to estimate the RMS value of the jitter
noise, we need an estimate of the derivative of the noise-free
signal and an estimate of the additive noise variance. In this
work, we estimate the additive noise variance from sample vari-
ances computed near the time boundaries where the signal is
flat. We define the time sample where the sample variance of the
signal is largest to be the th time sample. If we assume that the
noise-free function is a linear function of time in the neighbor-
hood of this time sample, the derivative of the noise-free signal
is approximately equal to . This deriva-
tive estimate is equal to the estimated slope determined by linear
regression analysis. Based on this estimate of the derivative and
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(3), a naive estimate of the standard deviation of the jitter noise
is

(6)

where is the interval between time samples, andis our
estimate of the additive noise variance.

Since the above naive estimate depends on data from just
three time samples, we expect it to have a large variance com-
pared to a judiciously constructed estimate that depends on data
from more than three time samples. Moreover, we expect the
naive estimate to be biased because 1) the estimated derivative
may differ from the true derivative; 2) higher order terms in the
Taylor series are neglected in (3); and 3) the (6) estimate is a
nonlinear function of the observed data and nonlinear estimates
are generally biased. For more discussion about the bias of non-
trivial nonlinear estimates, see page 40 of [18]. The regression
spline method estimate developed in this work is superior to the
(6) estimate for two main reasons. First, we incorporate infor-
mation from more than just three time samples. Second, we cor-
rect our estimate for bias, that is, systematic error. In the next
section, we derive our first-pass (uncorrected) regression spline
method estimate of RMS jitter. Afterward, we estimate the bias
of this first pass estimate and then adjust the first pass estimate
accordingly.

C. Regression Spline Estimate: Uncorrected

In a regression spline approach, one selects a sequence of
interior knots that partition the time interval during which the
signal is measured into contiguous subintervals. Within any of
these subintervals, the regression spline prediction of the signal
of interest is a polynomial function of time. The coefficients of
the polynomial vary from subinterval to subinterval. In [20], and
in our work, we choose a cubic polynomial within each interval.
For the cubic case, there are K interior knots and four exterior
knots (two at each time boundary). Overall, the cubic regres-
sion spline model has independent basis functions. The

regression spline model parameters are determined by the
standard method of weighted least-squares where the weight at
a particular time sample is inversely proportional to the sample
variance at that time sample. In [20] as well as in our work, we
use B-spline basis functions to represent the polynomials in each
subinterval. For the cubic case, the first and second derivatives
of the regression spline are continuous at the knots. Based on the
regression spline model parameters, one can estimate the deriva-
tive of the noise-free signal as a function of time. This derivative
information along with empirical estimates of the standard devi-
ation of the jittered signal at each time sample, allow one to es-
timate the RMS timing jitter noise. The B-spline representation
at time , is denoted as , and the derivative of the B-spline
representation at timeis denoted as .

To compute our jitter estimate, it is convenient to define the
following quantities at the th time sample

(7)

and

(8)

Given (3), we expect the ratio of and to be a rough esti-
mate of the jitter variance at all. Intuitively, we expect more
information in ( , ) data at time samples where the magni-
tude of the derivative is relatively large. In our studies, the ratio

had a very large variance at time samples where
the magnitude of the signal derivative was very small. Thus, the
average of all the values would be a poor estimate of the jitter
variance. To reduce the influence of noisy (, ) pairs on our
estimate, we take two actions. First, we design our estimate so
that it depends on ( , ) values at time samples where the
magnitude of the estimated derivative is greater than a selected
threshold. Second, we estimate the jitter noise variance as the
ratio of the pooled data and the pooled data. Pooling is a
natural way to reduce the influence of highly variable, i.e. non-
informative, ( , ) values on the estimate. For a discussion of
data pooling in other statistical estimation problems, see [24],
[25]. Finally, we require that our variance estimate be nonneg-
ative. Thus, our (nonnegative) estimate of the variance of the
jitter noise is

(9)

where

if
otherwise

(10)

and is an adjustable threshold. Our estimate of the RMS value
of the jitter noise is (above, we denote the maximum of 0 and

as ).
By lowering the threshold, we incorporate more of the mea-

sured data into our estimate. However, if the threshold is too low,
prediction error may increase if we incorporate too much noisy
data with little or no additional information content. Since the
optimal choice of the threshold is not obvious, we study how
the choice of threshold affects results in a Monte Carlo simu-
lation experiment. In general, for any choice of threshold, we
expect that the above estimate is biased since it is a nonlinear
function of the observed data (nonlinear estimates are generally
biased [18]). Next, we describe how to correct our estimate for
this bias.

D. Regression Spline Estimate: Corrected

We estimate the bias of our estimate using a parametric boot-
strap procedure [22]. The parametric bootstrap procedure is a
Monte Carlo resampling scheme for simulating synthetic data
based on the observed data. Based on the distribution of the (9)
jitter estimates computed from the synthetic data, one can esti-
mate the standard deviation of the (9) jitter estimate computed
from the observed data. Further, one can estimate the bias of the
estimate and correct it accordingly. In the bootstrap simulation
model, the noise-free signal is equated to the regression spline
model estimate of the average of the aligned observed signals

. Like the observed data, the synthetic signals are corrupted
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TABLE I
STATISTICAL PROPERTIES OFESTIMATES OF THERMS VALUE OF THE JITTER NOISE. FOR EACH DERIVATIVE THRESHOLDVALUE (�) AND TRUE RMS JITTER

NOISEVALUE (� ), WE DISPLAY THE ESTIMATED BIAS (BIAS), STANDARD ERROR(se),AND RMS PREDICTION ERROR(rms)OF THE UNCORRECTED(9) AND

BIAS-CORRECTED(14) ESTIMATE COMPUTED FROM 100 RUNS OF A SIMULATION EXPERIMENT. IN EACH RUN, RMS JITTER IS ESTIMATED FROM 100 NOISY

SIGNALS. FOR EACH RUN, WE ESTIMATE THE STANDARD DEVIATION OF THE ESTIMATE BY A BOOTSTRAPRESAMPLING SCHEME. WE LIST THE MEAN (COMPUTED

FROM ALL 100 RUNS) VALUE OF THE BOOTSTRAPESTIMATE (15) OF THESTANDARD DEVIATION OF THE ESTIMATE AS se . WE NORMALIZE ALL STATISTICAL

QUANTITIES BY THE INTERVAL BETWEEN TIME SAMPLES dt. IN THIS STUDY, THERE ARENO TIME SHIFT ERRORS. FOR EACH SIMULATION RUN, THERE

ARE 100 SIGNALS. WE LIST THE NAIVE ESTIMATE (6) FOR COMPARISON

by time shift errors, additive noise and jitter noise. In the simu-
lation, the time shift parameters are equated to the estimated rel-
ative time shift parameters computed from the observed data. In
the bootstrap procedure, we assume that jitter and additive noise
are Gaussian random variables with expected values equal to 0
and variances equal to those estimated from the primary “ob-
served” data. The number of signals in each bootstrap set is the
same as the number of observed signals. Throughout this work,
we simulate bootstrap replications of the observed data.
Since the observed data consist of 100 repeat measurements of
the noisy signal, each bootstrap replication consists of 100 real-
izations of a noisy signal.

More formally, the th bootstrap replication of the observed
signal at the th time sample is , where

(11)

(12)

and is a constant. Above, is the regression spline model
estimate of the average of the aligned signals,is the nominal
spacing betweens time samples, is our estimate of the rel-
ative time shift of the th signal with respect to the first signal
(Appendix and [23]), is a simulated jitter noise realization,

and is a simulated additive noise realization. In the (12) sim-
ulation model, we assume that time base distortion is 0 at all
times [If time base distortion is not 0, we would add a term
equal to the estimated TBD to the right hand side of (12). Given
that TBD is nonzero, the regression spline model ) would
be fit to the unequally-spaced time series (, ) where

where is the estimate of
the TBD. For more details on this approach, see [15], [26]].
The realizations of the jitter noise and additive noise are mutu-
ally independent realizations of Gaussian random variables with
standard deviations equal to the corresponding values computed
from the observed signals ( and ). The expected values of
the simulated jitter noise and additive noise realizations are 0.

For each bootstrap replication of the observed data, we es-
timate relative time shift errors and align the signals using the
same algorithms used for the observed data. We estimate a new
set of regression spline model parameters, a new RMS additive
noise value, and a new RMS jitter noise value. The bootstrap
estimate of the bias of our jitter estimate is

(13)



COAKLEY et al.: ADAPTIVE CHARACTERIZATION OF JITTER NOISE 1541

TABLE II
STATISTICAL PROPERTIES OFESTIMATES OF THERMS VALUE OF THE JITTER NOISE. FOR EACH VALUE OF THE DERIVATIVE THRESHOLD(�) AND TRUE RMS

JITTER NOISEVALUE (� ), WE DISPLAY THE ESTIMATED BIAS (BIAS), STANDARD ERROR(se),AND RMS PREDICTION ERROR(rms)OF THEUNCORRECTED(9)
AND BIAS-CORRECTED(14) ESTIMATE COMPUTEDFROM 100 RUNS OF A SIMULATION EXPERIMENT. FOR EACH RUN, WE ESTIMATE THE STANDARD DEVIATION

BY A BOOTSTRAPRESAMPLING SCHEME. WE LIST THE MEAN VALUE OF THE BOOTSTRAPESTIMATE (15) OF THESTANDARD DEVIATION OF THE ESTIMATE AS

se . WE NORMALIZE ALL STATISTICAL QUANTITIES BY THE INTERVAL BETWEENTIME SAMPLES dt. FOR EACH SIMULATION RUN, THERE ARE100 SIGNALS.
WE LIST THE NAIVE ESTIMATE (6) FOR COMPARISON. UNLIKE FOR THE TABLE I CASE, THE SIGNALS ARE MISALIGNED DUE TO TIME SHIFT ERRORS. WE

ESTIMATE RELATIVE TIME SHIFT ERRORS BY ACROSS-CORRELATION METHOD, AND ALIGN THE SIGNALS BY A FOURIER METHOD

where is the estimate of RMS jitter computed from theth
bootstrap replication. Our bias-corrected estimate of RMS jitter
noise is

(14)

The bootstrap estimate of the standard deviation of the uncor-
rected jitter estimate is

(15)

III. SIMULATION STUDY

A. Results

We quantify the performance of our estimate in a Monte Carlo
experiment. In the simulation study, we equate the noise-free
signal to the regression spline estimate of the average of aligned
experimental signals collected in an experiment at NIST. Each
simulated signal is sampled at 2048 times. The regression spline

model has 1028 knots. Between knots, the interpolating polyno-
mial is cubic. In each of many runs of the simulation, we gen-
erate 100 synthetic signals that are contaminated by jitter noise,
additive noise, and possibly time shift errors. In the first case
(Table I), there are no time shift errors. For this case, we assume
the signals are aligned, that is, we do not estimate relative time
shift errors. In the second case (Table II), the signals are mis-
aligned due to time shift errors. For this case, we estimate the
relative time shifts and align the signals (Table II, Appendix).
In case 2, we model the time shift errors as realizations of a
Gaussian AR(1) process [27] where the autocorrelation at lag
1 is 0.5 and the standard deviation is 0.5. In Figs. 1 and 2,
we display the average of 100 aligned noisy signals, the mag-
nitude of the estimated derivative of the signal average based
on the regression spline model, and the standard error of the
aligned signals as a function of time. In Tables I and II, we list
the standard error of the bias estimate in parentheses. For in-
stance, 0.0003(10) signifies that the bias estimate and associated
standard error are 0.0003 and 0.0010.

In the simulation experiments, the true value of the RMS
value of the additive noise, . The RMS value
of the additive noise is estimated from the first 50 samples after
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(a)

(b)

(c)

Fig. 1. (a) Signal average of 100 aligned simulated signals. (b) Magnitude of estimated derivative (scaled so that maximum derivative magnitude is 1). (c) Standard
error of signal.

(a)

(b)

(c)

Fig. 2. (a) Signal average of 100 aligned simulated signals and regression spline estimate of signal average. (b) Magnitude of estimated derivative (scaled so that
maximum derivative magnitude is 1). (c) Standard error of signal.

the 10th sample and the last 50 time samples before the 2039th
time sample. We neglect the first 10 and last ten time samples

in order to suppress possible artifacts arising from boundary ef-
fects related to the Fourier algorithm.
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(a)

(b)

(c)

Fig. 3. (a) Signal average of 100 aligned observed signals. (b) Magnitude of estimated derivative (scaled so that maximum magnitude is 1). (c) Standard error of
signal. The interval between samples isdt = 1:96 ps. The RMS additive noise estimate is� = 0:000268 V.

B. Comments

For the case of no time shift errors, and the
same additive noise as before, we estimate the RMS value of
the jitter noise by the computationally expensive method pre-
sented in [20]. In a study based on 500 Monte Carlo replica-
tions, the mean and standard deviation of the 500 estimates of
the RMS value of the jitter noise are 0.442and 0.012 , re-
spectively. Thus, the bias of the method in [20] is larger than the
corresponding bias of our estimate for this jitter noise level (see
Table I).

In general, the RMS prediction error of the corrected estimate
(14) is less than the RMS prediction error of the naive estimate
(6) for all thresholds (Tables I, II). For most cases, the magnitude
of the bias of the corrected estimate is closer to 0 than is the
magnitude of the bias of the naive estimate. We conclude that
the bias-corrected estimate (14) is superior to the naive estimate
(6) of RMS timing jitter noise.

In general, the corrected estimate has lower RMS prediction
error for the case where there are no time shift errors (Table I)
compared to case where there are time shift errors (Table II).
Since the relative time shift estimates are not perfect, we ex-
pect that jitter estimation is more difficult for the second case
(Table II). For the four jitter noise levels considered in Table II,
the RMS prediction errors [23] of the relative shift estimates
are 0.03, 0.16, 0.30, and 0.68. In general, as additive noise
or jitter noise increases, the performance of our estimate should
deteriorate.

The bias of the uncorrected estimate (9) depends strongly on
threshold. However, in general, the bias of the corrected estimate

(14) is relatively small (relative to the standard error) and stable
for thresholds equal to 0.01, 0.1, and 0.5. For both cases (drift
and no drift), the bias of the corrected estimate is much lower
than the bias of the uncorrected estimated.

The standard deviation of the estimate depends on the
threshold (Tables I, II). Except for the lowest jitter case of

, the highest threshold of yields the
estimate with the largest RMS prediction error and largest
standard error. For , yields the estimate with
highest RMS prediction error and largest standard error. In
general, except for the lowest and highest thresholds, the mean
bootstrap prediction of the standard deviation of the estimate is
close to the actual standard error of the estimate. The bootstrap
estimate of the standard deviation of the estimate is a promising
diagnostic statistic for threshold selection. For instance, for any
given data, we might select the threshold which minimizes.

In the parametric bootstrap procedure, we assume that the
jitter pdf is Gaussian. For real applications, the actual jitter pdf
may not be Gaussian. As the departure from normality becomes
more extreme, the reliability of the bias estimate should dete-
riorate. To explore this issue, we simulated observed data con-
taminated by Gaussian timing jitter noise as before. However,
when simulating bootstrap replications of the observed data, we
sample timing jitter noise from a uniform distribution. The uni-
form distribution is centered on 0 so that the expected value of
the jitter noise is 0 as before. Further, the upper and lower end-
points of the uniform distribution are selected so that the vari-
ance of the simulated jitter noise equals the estimated variance
of the timing jitter noise. Except for the highest jitter case, the
statistical properties of the corrected jitter estimate were almost
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(a)

(b)

(c)

Fig. 4. (a) Signal average of 100 aligned observed signals and regression spline estimate. (b) Magnitude of estimated derivative (scaled so that maximum magnitude
is 1). (c) Standard error of signal. The nominal interval between samples isdt = 1:96 ps. The RMS additive noise estimate is� = 0:000268 V.

the same as before. For the highest jitter case, this modeling
error inflated the RMS prediction error of the estimate by about
50%.

IV. REAL DATA

We estimate the RMS jitter from 100 misaligned measured
high-speed sampled signals. We estimate RMS jitter as de-
scribed before. Due to TBD errors, the nominal sampling times
are not equally spaced. We fit the regression spline model
to the signal average of the aligned signals. Based on the
B-spline model parameters, we estimate the first derivative
of the noise-free signal at each of 2048 unequally spaced
time samples. The derivative estimates are computed in a way
which accounts for TBD errors that are estimated in a separate
experiment. (We fit the regression spline model to data of the
form ( , ), where is the sum of the th
nominal sampling time plus the value of the TBD at thetime
sample. Given the estimated regression spline parameters, we
can easily estimate the derivative at anyvalue.) In Figs. 3
and 4, we display the signal average of the 100 aligned signals,
an estimate of the derivative of the noise-free signal, and the
sample variance of the observed signals.

In Table III, we list estimates of the RMS value of jitter
computed from observed data as a function of the derivative
threshold and as a function of the number of knots. The
uncorrected estimate of the RMS jitter noise depends strongly
on threshold. However, the corrected estimate does not depend
strongly on threshold. The highest values of the bootstrap
estimates of the standard deviation of the corrected estimate
were for the lowest and highest thresholds of 0 and 0.99. The
variation of the corrected estimate with knot number, and with

threshold, is not large compared to the estimated random error
. The stability of the jitter estimate as a function of

threshold and number of knots supports the claim that our
regression spline model is sufficiently complex for our purpose
(of estimating RMS jitter noise).

In the bias-correction step, we assume that the actual jitter
pdf is Gaussian. When the jitter is assumed to be uniform, the
bias-corrected estimates are lower than the ones computed based
on the Gaussian assumption by approximately 1%. In general, if
the timing jitter noise pdf is not Gaussian, this sort of robustness
analysis may help quantify systematic error not removed by our
bias-correction procedure.

Between 0.42 ns and 0.47 ns, the signal has a quasisinusoidal
form. Over this interval, the signal rises from a local minimum to
a local maximum twice. During this rise, the signal is sampled
about seven to eight times. Recall, that the simulated signals
were sampled about the same number of times during their rise
time. This gives us confidence that the sampling rate is high
enough to accurately characterize the jitter noise.

All thresholds with the exception of yield similar
results. The largest threshold yields a result that appears to be
inconsistent with the lower threshold results. This result is con-
sistent with the simulation results. Based on this observation,
the result for the highest threshold is not as trustworthy as the
results for the lower thresholds.

V. CONCLUSION

We estimated the RMS value of timing jitter noise in simu-
lated signals that were similar in complexity to high-speed sam-
pled signals collected at NIST. We modeled the noise-free signal
as a piece-wise polynomial using a regression spline approach.
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TABLE III
WE ESTIMATE THE RMS VALUE OF TIMING JITTER NOISEBASED ON 100 ALIGNED EXPERIMENTAL SIGNALS. THE NOMINAL INTERVAL BETWEENSAMPLES IS

1.96 ps. THE NUMBER OFSAMPLES PERSIGNAL IS 2048. BEFOREJITTER ESTIMATION, SIGNALS ARE ALIGNED. DERIVATIVE ESTIMATES ACCOUNT FORTIME BASE

DISTORTIONERRORSTHAT ARE ESTIMATED IN A SEPARATECALIBRATION EXPERIMENT. BOTH THE UNCORRECTED(9) AND BIAS-CORRECTED(12) ESTIMATE OF

THE RMS VALUE OF THE TIMING JITTER NOISE ARELISTED. WE ESTIMATE THE STANDARD DEVIATION OF THE ESTIMATE BY A PARAMETRIC BOOTSTRAP

RESAMPLING SCHEME. THE BOOTSTRAPESTIMATE OF THIS STANDARD DEVIATION IS LISTED AS se . THE BOOTSTRAPESTIMATE OF THE STANDARD

DEVIATION IS AN APPROXIMATION TO THESTANDARD ERRORTHAT WOULD HAVE BEEN COMPUTEDFROM MULTIPLE REALIZATIONS OF THE OBSERVEDDATA

In one case, the signals were contaminated by additive noise
and timing jitter noise. In the other case, the signals were con-
taminated by additive noise, jitter noise, and time shift errors.
For the second case, we aligned the signals based on estimated
values of the relative time shifts determined from cross-correla-
tion analysis.

Based on repeated measurements of the noisy signals, we
computed the sample variance of the (aligned) signals as a func-
tion of time. Based on a regression spline model, we estimated
the derivative of the signal average at each time sample. Our
RMS timing jitter estimate was computed from the estimated
derivatives and sample variances at samples where the magni-
tude of the estimated derivative exceeded a selected threshold.
Using a parametric bootstrap approach, we adjusted the estimate
for bias. In general, the bias of the corrected estimate was much
lower than the bias of the uncorrected estimate. For intermediate
thresholds in range from 0.01 to 0.5, the bias of the corrected
estimate was relatively small and stable for the simulated data.
However, in general, our bias-correction scheme was not as ef-
fective when we selected the largest threshold of 0.99.

For real data, the uncorrected estimate of the RMS jitter noise
depended strongly on threshold. However, the corrected esti-
mate did not depend strongly on threshold. The bootstrap es-
timate of the standard deviation of the corrected estimate was
lowest for thresholds between 0.01 and 0.5.

Provided that the signal is sampled at a sufficiently high rate,
we expect our method to be valid for cases where the noise-free
signal is well approximated as piece-wise cubic polynomials
where the first and second derivatives are continuous. We rec-
ommend that users of our methods perform a stability study to
verify that the sampling rate is sufficiently high for the purpose
of estimating the RMS value of the jitter noise. We also rec-
ommend that users demonstrate that the regression spline has
a sufficient number of knots in order to sufficiently model the
complexity of the signal of interest. The user should verify that

the RMS jitter estimate stabilizes as the number of knots in the
regression spline model increases.

APPENDIX

ALIGNMENT OF SIGNALS

Our approach for aligning signals generally follows the
method presented in [23]. However, we implement a faster ver-
sion of the approach described in [23]. In brief, we estimate the
relative time shift of each distinct pair of signals by minimizing
the mean square difference (MSD) between one signal and the
shifted version of the other signal. We evaluate MSD at relative
shifts which are integral multiples of the interval between
samples . We then interpolate to estimate a relative shift
which is, in general, a nonintegral multiple of. We combine
relative shift estimates computed from all pairs
of signals to estimate the time shift parameters. We give
the technical details of the approach below.

We assume that each noisy signal is shifted with respect to the
others. That is, we model the expected value of theth signal at
time as

(16)

where is an unobserved time shift parameter and is the
unobserved reference signal. From a set ofsignals, we cannot
estimate the set of absolute time shifts . Instead,
we estimate relative time shift of theth and first signal

.
For the signal pair containing theth signal and th signal, we

compute

(17)

as a function of . The translation is an integral multiple
of the interval between samples. In the above expression,
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we sum over all time samples except the first and last 20 time
samples. In our approach, we assume that the signal is flat near
the time boundaries. (The plateau levels at the beginning and
end of the signal may not be exactly equal.) In our applications,
the magnitude of the value of that minimizes is less
than 20 .

We compute MSD in an neighborhood of a good initial guess
for the optimal value of . Our initial guess is provided by a fast
relative shift estimation method based on time centroids of the
magnitude of the signal [23]. Our estimate of the time centroid
of a signal is

(18)

where

if
otherwise

(19)

We set for the signals studied in this work.
For the signals studied here, this choice ofis reasonable. In
general, one might select the thresholdusing the adaptive
technique in [23].

If the value of that minimized is on a boundary of
the search neighborhood, we repeat (recursively) the search for a
neighborhood with twice as many points. For the simulated data
(Section III), the initial search neighborhood had 17 points. For
the real data (Section IV), the initial search neighborhood had
7 points. We define the value of on the lattice that minimizes

to be . We estimate the optimal value of, , by
quadratic interpolation as follows:

(20)

We denote the (20) estimate of the relative shift of theth
and th signals as . The complete cross-correlation method
estimate of the relative time shift is

(21)

We align the th signal with respect to the first signal by
translating it by the amount . Since the translation is not
an integral multiple of , we align each signal using a Fourier
method. We compute the complex Fourier transform of the signal
to be translated. We choose a frequency representation which
ranges from 0 to twice the Nyquist frequency. At frequencies less
than or equal to the Nyquist frequency, we multiply the complex
Fourier transform by where is frequency. The
Fourier transforms at the other frequencies above the Nyquist
frequency are adjusted so that they satisfy a complex conjugate
symmetry with the (adjusted) Fourier transform values at the
corresponding frequencies below the Nyquist frequency. The
translated version of theth signal is equated to the real part of
the inverse Fourier transform of the adjusted Fourier transform.
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