
.

Page 1 of 16

Interface-driven Model-based Generation of Java Test Drivers
Mark Blackburn, Robert Busser, Aaron Nauman, T-VEC Technologies/SPC
Ramaswamy Chandramouli, National Institute of Standards and Technology

This paper extends prior work in model-based verification and describes
interface-driven analysis that combines with a requirement model to support
automated generation of Java test scripts. It describes concepts of models and
test driver mappings using examples for testing security functionality of an
Oracle database using Java and Structured Query Language(SQL) test
drivers. Although the modeling and testing are focused on database security
capabilities, the described concepts can be applied to develop test drivers for
many other products.

Keywords: Test Automation Technology and Experience, Interface-driven Model-Based Test
Automation, Java and SQL Test Driver Generation, Security Testing, Database Testing

1 Introduction

The combination of model-based verification and test automation has helped reduce cost, provide
early identification of requirement defects, and improve test coverage [RR00; KSSB01;
BBNKK01; BBN01d; Sta00; Sta01]. This paper extends prior work in model-based verification
and recommends the use of interface-driven analysis with requirement modeling to support
automated test generation. The interface analysis provides key information that results in test
driver mappings that specify the relationships between model variables and the interfaces of the
system under test. The paper describes the concepts of models and test driver mappings using
examples for testing security functionality of an Oracle database using Java and Structured Query
Language (SQL) test drivers1. Recommendations are provided for performing the modeling of
textual requirements in conjunction with interface analysis to support reuse of models and their
associated test driver mappings. These recommendations were derived while extending an early
experimental model of one small set of requirements to several other groups of interrelated
requirements. The resulting insights have been applied to other industry applications and are
useful for understanding how to scale models and the associated test driver mappings to support
industry-sized verification projects.

1.1 Background

The National Institute of Standards and Technology (NIST) [Cha99] assessed the feasibility of
automating security functional testing using the Test Automation Framework2 (TAF). TAF

1 One of the key requirements for the environment required the testing to be executed against the Oracle database

engine through a Java/JDBC connection.
2 Certain Commercial Products are mentioned in this paper. This does not imply recommendation or endorsement by

National Institute of Standards and Technology nor does it imply that the products mentioned are necessarily the
best available for the purpose.

 April 30, 2003

Page 2 of 16

integrates various government and commercially available model development and test generation
tools to support defect prevention and automated testing of systems and software. T-VEC
[BBNC01] is a component tool in TAF.T-VEC supports test vector generation, test driver
generation, requirement test coverage analysis, and test results checking and reporting [BB96].
Test vectors include inputs as well as the expected outputs with requirement-to-test traceability
information. The test driver mappings and the test vectors are inputs to the test driver generation,
which produces test drivers that are executed against the implemented system.

Although the modeling and testing examples are focused on security functionality of a database,
the results and recommended approaches are general for testing most applications. TAF has been
applied to other applications in various domains including critical applications for aerospace
(Mars Polar Lander) [BBNKK01], medical devices, flight navigation, guidance, autopilots,
display systems, flight management and control laws, engine controls, and airborne traffic and
collision avoidance. TAF has also been applied to non-critical applications like workstation-based
Java applications with GUI user interfaces, databases, client-server, web-based, automotive, and
telecommunication applications. The related test driver generation has been developed for many
languages (e.g., C, C++, Java, Ada, Perl, PL/I, SQL, etc.) as well as proprietary languages, COTS
test injection products (e.g., DynaComm, WinRunner) and test environments. Most users of
the approach have reduced their verification/test effort by 50 percent [KSSB01, Saf00].

1.2 Contributions

This paper provides pragmatic guidance for combining interface analysis and requirement
modeling. These recommendations for defining interfaces that provide better support for
testability are valid for all forms of testing. Although this paper describes why interface-driven
modeling has benefits for testing a released product, it has been applied during development with
many additional benefits, which are described in Section 2.3.

1.3 Organization of Paper

Section 2 provides an overview of the method and tools, while providing concept definitions,
guidance on interface definitions and analysis, and organizational roles and best practices. Section
Error! Reference source not found. discusses the security requirements and database interface
details using examples. Section 4 discusses the test driver mapping and associated Java support
required for test driver generation. Section 5 provides conclusions concerning the use of Java for
automated test driver support and summarizes the benefits of interface-driven model-based
testing.

1.4 Related Work

Formal Models of software functions have been developed for supporting software engineering
functions like design, coding and testing. Some examples of modeling approaches can be found in
[HJL96; PM91; Sch90], with examples that support automated test generation [BBN01a;
BBN01b; BBN01c; BBNC01, BBNKK01]. Asisi provides a historical perspective on test vector
generation and describes some of the leading commercial tools [Asi02]. Pretschner and Lotzbeyer
briefly discuss Extreme Modeling that includes model-based test generation [PL01], which is
similar to uses of TAF as discussed in Section 2.3. There are various approaches to model-based

 April 30, 2003

Page 3 of 16

testing and Robinson hosts a website that provides useful links to authors, tools and papers
[Rob00].

2 Method and Tool Overview

The TAF support, as shown in Figure 1, involves three main roles of development, including
Requirement Engineer, Design/Implementation Engineer, and Test Engineer. A requirements
engineer performs requirement analysis and typically documents the requirements in text. A
designer/implementer develops the technical solution, which includes system/software
architecture, design and implementation. Test engineers clarify the requirements in the form of a
verification model, which specifies behavioral requirements in terms of the interfaces for the
system under test.3 This is in contrast to a “pure” requirement model, which specifies the
requirements in terms of logical entities representing the environment of the system under test
[PM91; Sch90; HJL96]. Verification modeling from the interfaces is analogous to the way a test
engineer develops tests in terms of the specific interfaces of the system under test. TAF translators
convert verification models into a form where the T-VEC system generates test vectors and test
drivers, with requirement-to-test traceability information that allows failures to be traced
backwards to the requirement.

TAF Support

T-VEC
®

Factory

Model
Analysis &
Coverage

Model
Analysis &
Coverage

Status,
Results
Report

Status,
Results
Report

Test
Driver
Test
Driver

Defect
Tracking

TAF
Translators

Technical
Solution

Requirement
Management

Verification
Modeling

TAF
Translators

Technical
Solution

Requirement
Management

Verification
Modeling

Requirement Engineer

Design Engineer

Test Engineer

Defects and Failures

HTML
Model Report

Figure 1. Test Automation Framework Life Cycle Automation

3 A design engineer typically defines the interfaces, and component interfaces are typically documented in a

application programming interface (API) or other interface documents.

 April 30, 2003

Page 4 of 16

2.1 Verification Modeling Process

Figure 2 provides a detailed perspective of the verification modeling process flow. A test engineer
is supplied with various inputs. Although it is common to start the process with poorly defined
requirements, inputs to the process can include requirement specifications, user documentation,
interface control documents, application program interface (API) documents, previous designs,
and old test scripts. A verification model is composed of a model and one or more test driver
mappings. A test driver mapping consists of object mappings and a schema (pattern). Object
mappings relate the model objects to the interfaces of the system under test. The schema defines
the algorithmic pattern to carry out the execution of the test cases. The one selected for use in this
paper is a Java test driver schema tailored to interface with an Oracle database through a Java
Database Connectivity (JDBC) application programming interface (API).

Verification Models

Test
Engineer

System

Tests and
Test Drivers

Test
Results

T-VECTAF
TranslatorModeling

Interfaces

Tabular
Model

Env n.

map

schema

Env 1.

map

schema

Test Driver

map

schema

Env n.

map

schema

Env n.

map

schema

Env 1.

map

schema

Env 1.

map

schema

Test Driver

map

schema

Test Driver

map

schema

Requirement Specs.
User Documents

Interface Control Doc's.
API Doc's.

Design Models
Previous Test Scripts

Design Engineer

Model Defects

• Java - GUI
• Java - JDBC- Oracle
• Perl - ODBC - Oracle and Interbase
• Other languages C, Ada
• Proprietary, WinRunner, DynaComm, etc

Figure 2. Verification Model Details

Models are typically developed incrementally. The models are translated and T-VEC generates
test vectors. T-VEC also detects untestable requirements (i.e., requirements with contradictions).
Test drivers are produced from the test vectors using the test driver mappings and schema
information. Details are provided in Section 4.

2.2 Nature of the Requirements Model

The modeling language used for developing the requirements model in our approach is the
Software Cost Reduction (SCR) method [HJL96]. SCR is a table-based requirements model that
has been very effective and relatively easy to learn for test engineers [KSSB01]. Although design
engineers commonly develop models based on state machines or other notations like the Unified
Modeling Language (UML), users and project leaders observed that test engineers find it easier to
develop requirements for test in the form of tables (See [BBN01a] for details). The modeling

 April 30, 2003

Page 5 of 16

notations supported by tools for the SCR method have well-defined syntax and semantics
allowing for a precise and analyzable definition of the required behavior.

2.3 Why Interface-Driven Modeling?

It may seem appropriate to first develop models from the requirements, but when developing
models for the purpose of testing, the models should be developed in conjunction with analysis of
the interfaces to the component or system under test. Modeling the behavioral requirements is
usually straightforward and easier to evolve once the interfaces and operations are understood
because the behavioral requirements, usually defined in text, must be modeled in terms of
variables that represent objects accessible through interfaces.

2.2.1 Modeling Perspectives

Models are described using specification languages, usually supported through graphical
modeling environments. Specification languages provide abstract descriptions of system and
software requirement and design information. Cooke et al. developed a hierarchical scheme that
classified specification language characteristics [CGDDTK96]. Independent of any specification
language, Figure 3 illustrates three categories of specifications based on the purpose of the
specification. Cooke et al. indicates that most specification languages usually are based on a
hybrid approach that integrates different classes of specifications.

Requirement Specification: defines
the boundary between the environment
and the system

Functional Specification: defines
the interfaces within the system

Design Specification: defines
the component

Environment

System

D. Cooke et al., 1996

Figure 3. Specification Purposes

Requirement specifications define the boundaries between the environment and the system and, as
a result, impose constraints on the system. Functional specifications define behavior in terms of
the interfaces between components, and design specifies the component itself. A specification
may include behavioral, structural, and qualitative properties. Behavioral properties define the
relationships between inputs and outputs of the system [Sim69]; structural properties provide the
basis for the composition of the system components; and qualitative requirements [YZCG84]
define nonfunctional requirements. Often, modeling languages support certain elements of both

 April 30, 2003

Page 6 of 16

requirement and functional specifications and collectively these two types of specifications are
called functional requirements [Rom85].

A verification model, in the context of this paper, is best classified as a functional specification.
The requirements are defined in terms of the interfaces of the components. The term interface is
used loosely in this paper. An interface is a component’s inputs and outputs, along with the
mechanism to set inputs, including state and history information, and retrieve the resulting outputs.
Some components or systems may require sequences of function calls to initialize a component or
system, as well as additional calls to place the system in a particular state prior to setting the inputs
for testing.

2.2.2 Database Interfaces

For database security requirements the interfaces include the data dictionary (sometimes referred
to as system tables) that hold security information and reflect the results of security operations. For
each set of modeled requirements it is important to determine the data dictionary views and the
SQL commands associated with the requirements, and determine how those database tables are
modified to reflect the “correct” or “incorrect” results. Once the interfaces and the SQL operations
that affect those tables are understood, it’s usually easy to develop the test driver mappings and
models hand-in-hand.

2.2.3 Interface Accessibility

Since the interfaces are the key to developing executable test drivers, it is necessary to understand
the interfaces of the system under test even prior to the development of the requirements model.
This will ensure that the assumed inputs and outputs that are being modeled can be realized
through the interfaces. If the interfaces are not formalized or completely understood, requirement
models can still be developed, but developing the object mappings (which map model entities to
interface components) can become a complex process. In addition, if the component interfaces are
coupled to other components, the components are typically not completely controllable through
separate interfaces. This too can complicate the modeling and testing process. Consider the
following conceptual representation of the set of components and interfaces shown in Figure 4.

 April 30, 2003

Page 7 of 16

B.1 B.2 B.3

Well-Defined Interfaces
Support Direct

Controllability and
Observability for

Component

Coupled Interfaces
Complicate Access to
Component and Limit

Controllability that
Requires Test Inputs

to be Provided Upstream

A B CA B C

Key

-Well-defined Interface

- Coupled Interface

Figure 4. Conceptual Components of System

To support a systematic verification approach that can be performed in stages where each
component is completely verified with respect to the requirements allocated to it, the interfaces to
the component should be explicitly and completely accessible, either using global memory, or
better through get and set methods/procedures as reflected in Figure 4. For example, if the inputs
to the B.2 component of higher-level component B are completely available for setting the inputs
to B.2, and the outputs from the B.2 functions can be completely observed, then the functionality
within B.2 can be completely specified and systematically verified. However, if interfaces from
other components, such as B.1 are not accessible, then some of the functionality of the B.2
component is coupled with B.1, and the interfaces to B.2, must also include interfaces to B.1, or to
other upstream components, such as component A. This interface coupling makes the test driver
interfaces more complex to describe, but also forces the behavioral modeling to be described in
terms of functionality allocated to combinations of components. The coupling reduces the reuse of
components, and increases the regression testing effort due to the coupled aspects of the system
components. The problems associated with testing highly coupled systems can be problematic for
model-based testing, but also negatively impacts any type of testing. As discussed in Section 2.3,
we have observed that interface-driven modeling has helped foster better system design by
reducing the coupling, but also helps provide better support for testing.

Systematic test coverage can typically be achieved directly from the verification model if the
components of the system can be tested individually. Component integration testing can later be
performed from higher-level models to ensure that the integration of the components (i.e., the
contractual obligation of the integration) is systematically and completely verified.

2.3 Organizational Best Practices

Interface-driven modeling can be applied after development is complete as is the case for security
testing of an Oracle database. However, significant benefits have been realized when it was
applied during development. Ideally, test engineers work in parallel with developers to stabilize
interfaces, refine requirements, and build models to support iterative test and development. Test
engineers write the requirements for the products (which in some cases are very poorly
documented) in the form of models, as opposed to hundreds or thousands of lines of test scripts.

 April 30, 2003

Page 8 of 16

They generate the tests vectors and test drivers automatically. During iterative development, if the
component behavior, the interface, or the requirements change, the models are modified, and test
cases and test drivers are regenerated, and re-executed. The key advantages are that testing
proceeds in parallel to development. Users like Lockheed Martin state that test is being reduced by
about fifty percent or more, while describing how early requirement analysis significantly reduces
rework through elimination of requirement defects (i.e., contradiction, inconsistencies, feature
interaction problems) [Saf00, KSSB01]. This typical and pragmatic use of TAF parallels eXtreme
Programming (XP) [Bec99] where tests are created before the program. However, others refer to
this model-based method as Extreme Modeling (XM) [PL01; BBWL00], which applies the
principles to write tests prior to coding. With XP test code is developed manually, but with XM
the requirements are modeled and the tests are generated.

3 Developing the Verification Model for Oracle Database

As already stated, a verification model consists of a requirement (behavioral) model defined in
terms of interface components. In our case study, the requirements model for Oracle 8.0.5 product
was developed using the security functional requirements and associated function definitions
found in the Oracle’s Common Criteria Security Target document [Ora00]. The interfaces for
Oracle DBMS product consists of JDBC commands, SQL commands and the Oracle data
dictionary views. The JDBC commands were obtained from JDBC commands in the Sun’s Web
site, data dictionary views from Oracle8 Reference document, and the SQL commands were
obtained from the Oracle8 SQL Reference document, the last two being supplied with the Oracle
software.

Prior efforts focused on developing verification models for the security functionality, referred to as
“Granting Object Privilege Capability (GOP)” [BBNC01]. While extending the model to support
Identification & Authentication, Security Management, and Session Management, we observed
that it reduces work when “low-level” primitive models and their associated test driver mappings
are developed first so that the low-level models and test driver mappings can be reused as
primitives in higher-level requirement models. Developing from the lowest-level interfaces is not
an absolute requirement, but if this approach is applied to a larger verification effort, the resulting
verification model leverages reusable model elements that are directly related to reusable test
driver interface mappings.

3.1 Security Requirement Interfaces Analysis

Prior to, or in conjunction with, modeling the requirements, the database interfaces associated with
the requirements are analyzed to identify common tables, SQL commands, and common test
driver mappings that can be extended and maintained as the product evolves. Model variables are
used to represent database tables, objects, privileges and relationships. Consider the example of
Granting Object Privilege. The requirements state:

A normal user (the grantor) can grant an object privilege to another user, role
or PUBLIC (the grantee) only if:
 a) the grantor is the owner of the object; or
 b) the grantor has been granted the object privilege with the GRANT OPTION.

The SQL operations that are directly related to the granting of the object privileges include:

 April 30, 2003

Page 9 of 16

GRANT <privilege> ON <object> TO <user | role | PUBLIC> [WITH GRANT OPTION]

Where <privilege> can be: ALTER, EXECUTE, INDEX, INSERT, READ, REFERENCES,
SELECT, UPDATE, ALL, and the GRANT OPTION is optional.

And, where <object> is a database schema object like a table, view, sequence,
procedure, function, package, or snapshots.

And, where <user> is a database user, <role> is a defined database role, and
<PUBLIC> represents all users.

However, there are some initial privileges and dependent SQL commands that are related to the
GRANT SQL command. These involve the creation of a user, role, or session.

• When a user is created with the CREATE USER command, the user’s privilege is empty.

• To log on to Oracle, a user must have CREATE SESSION system privilege. After
creating a user, the user must be granted this privilege.

There are numerous other cases where additional constraints restrict grant privileges on various
object types. These details are beyond the scope of this paper, and are not discussed.

The data dictionary table that is affected, or can be used to determine if a particular GRANT
operation is successful, is DBA_TAB_PRIVS. The data dictionary view (based on this table) lists
all grants on objects in the database. It has attributes that indicate, the GRANTEE (user to whom
access was granted), object owner, name of the object, GRANTOR (user who performed the grant
operation), privilege, and an indication of whether the privilege can be propagated by the grantee
to another user.

3.2 Security Models and Interface Specifications

As shown in Figure 5, the behavioral requirements are derived from the requirement text in the
Oracle Security Target, like Grant Object Privilege. The requirements are defined in terms of the
model variables that represent the interface defined in terms of the data dictionary and SQL
commands. The interfaces are declared as model variables using the modeling tool. The mapping
for the model variable defines how to affect that variable within the test execution environment.
For example, a GRANT SQL command must be issued to affect an object’s privilege.

 April 30, 2003

Page 10 of 16

Test
Results

Verification Model

Test Vector
Generator

Test Driver
Generator

Expected Outputs

Actual
Outputs

Cross
Comparison

Data dictionary
and

SQL commands

Interfaces
Data dictionary

and
SQL commands

Interfaces

Object
Mapping

Test
Driver

Schema

JDBC

Oracle8 Security
Target

Database
System

Oracle8 Reference
Oracle8 SQL Reference

Behavior

Java
Environment

Figure 5. Detailed Process Flow

As shown in Figure 5, the model is input to the test vector generator, and the resulting test vectors
are combined with the object mappings and test driver schema (details provided in Section 4) to
produce a Java test driver. The executing test driver communicates with the Oracle database
through a JDBC connection to carry out the tests. The actual outputs for each test are captured by
the test driver during test execution and stored for post processing. Finally a cross comparison tool
compares the expected outputs against the actual outputs and produces a test results log that
indicates the pass/fail status for each test vector.

3.2.1 Modeling Security Properties

Each security property is modeled as a Boolean object in a manner similar to Grant Object
Privileges as shown in Figure 6. The conditions associated with the TRUE output or the positive
sense for the model is the valid set of conditions required for Granting Object Privilege. Each test
case for the TRUE case should result in valid actions with respect to the security relationships
established for that case. The FALSE cases are negative conditions, which establish realistic
database relationship, but the corresponding test attempts to execute invalid operations, from a
security perspective that should be denied as an invalid security response. Some operations cause
failures because the database responds with an error message when improper or unauthorized
actions are requested. This general approach is used to model each security requirement to ensure
that proper security exists for authorized actions, while unauthorized actions are not permitted.

 April 30, 2003

Page 11 of 16

Row 1 of the model for Grant Object Privilege, shown in Figure 6, with the assignment TRUE
describes the conditions in which the grant object privilege should be permitted. When the grantee
and the grantor are valid database users, then an object privilege should be granted if the grantor
owns the object, or if the grantor has been granted object privileges with the GRANT OPTION. In
addition, the model defines additional conditions where the grantee (reflected by granteeType) can
be a user, PUBLIC or role. The term variable tcUserObjectPrivileges references another condition
table that enumerates the set of objectPrivileges (e.g., ALTER, DELETE, INDEX, INSERT, etc.)
that are valid, and should be tested. If the granteeType is a role, then the term
tcRoleObjectPrivileges defines a subset of the valid ObjectPrivileges that apply to roles.

Grant Object Privilege
tcUserObjectPrivileges

tcRoleObjectPrivileges

Figure 6. Example Model for Grant Object Privilege

3.3 Relationship of Security Requirements and Interfaces

Table 1 provides a summary for several modeled requirements. Each row provides a brief
summary of a requirement, the related data dictionary views, associated SQL command that are
primarily used to affect the operation, and related commands that are referred to as dependent
commands.

For example, the Grant Role Privilege command, like the Grant Object Privilege command
describes the requirements for granting and revoking role privileges. The primary data dictionary
table from which the results of the granted role privilege can be retrieved is the
DBA_ROLE_PRIVS (database administrator role privileges). The SQL commands that are used
to grant/revoke privileges are GRANT and REVOKE, and the related SQL commands include
CREATE, INSERT, SELECT and others. The operations and test driver commands required to
support Grant Role Privilege overlap Grant Object Privilege. More importantly, much of the
functionality for other requirements like DISABLE and ENABLE roles subsume many of the
tested requirements developed for GRANT and REVOKE roles.

 April 30, 2003

Page 12 of 16

Table 1. Detailed Security Specification Analysis

Requirement
Summary Data Dictionary Items

SQL
Command

Dependant
Command

Disable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE

GRANT,
ALTER,

Enable roles
DBA_ROLE_PRIVS
SESSION_ROLES SET ROLE GRANT

Grant object privileges DBA_TAB_PRIVS GRANT

CREATE,
INSERT,
SELECT

Grant/revoke role
privileges DBA_ROLE_PRIVS

GRANT/
REVOKE

CREATE,
INSERT,
SELECT

Grant system
privileges DBA_SYS_PRIVS GRANT

CREATE,
INSERT,
SELECT

Revoke privileges DBA_TAB_PRIVS REVOKE GRANT

Every object uniquely
identified, even if
deleted ALL_OBJECTS

CREATE,
INSERT,
SELECT,
DELETE

4 Test Driver Generation

This section provides a brief summary of test driver generation. The details of the models, test
vectors and test drivers are beyond the scope of this paper. In addition, to understand the test
driver support requires some understanding of Java, SQL and operational details of an Oracle
database. Additional details including the security requirement models (in HTML), test vectors,
object mappings, test driver schema, test drivers and instructions for installing and executing the
test drivers against an Oracle database are available for download from:
http://www.software.org/pub/taf/Reports.html.

4.1 Creation of Test Oracle Database

The test driver dynamically creates and deletes database information in the form of users, roles,
database tables and values. Although most manual database-related testing is performed using
populated databases, model-based test generation systematically populates the database with test
data derived from the model. This allows automated test execution without manual assistance. The
models are constructed in a way that is independent of any specific populated database. There are
some specific database conditions that must be established prior to the execution of the tests. For
example a database administrator must install the database and the Oracle database test execution
requires the “TEMPORARY” tablespace to be available during execution.

4.2 Test Driver Application Programming Interface and Language

The test driver API discussed in this paper is based on JDBC API using Java that makes SQL calls
to the database. In prior work Perl test drivers used an Object Database Connectivity (ODBC) API
to inject SQL calls to both Oracle and Interbase databases. Although each language provides
suitable support for performing the test execution, we believe that there is more effort involved in
developing the Java/JDBC support as opposed to the Perl/ODBC support for test driver
generation.

 April 30, 2003

Page 13 of 16

4.3 Java Test Driver Support

The test driver generation support capabilities are provided by a Java infrastructure to:

• Retrieve global test configuration settings that can be configured to direct the test
driver mechanisms to use user-specified options such as log directory, output file
directory, system user and password, etc.

• Retrieve test vector parameters during test execution
• Log test operation
• Create test output file
• Establish an Oracle database connection and SQL execution through JDBC
• Specify an interface to which each test must conform along with helper methods
• Provide global constants
• Provide a framework for test execution

4.3.1 Test Driver Packaging

The test driver support is packaged using a Java package com.tvec.support, which contains the
following classes:

• ConfigManager – provides access to the global test configuration settings
• Constants – set of constants used by the tests
• Context – used to retrieve and set test vector parameters
• Logger – provides classes to write log files and output files
• SQLUtils – provides database access
• TestImpl – abstract class with the test interface and helper methods
• TestRunner – framework for running classes that implement TestImpl

4.3.2 Operational Scenario

The TestRunner class contains the entry point for running tests that implement TestImpl.
Executing TestRunner performs as follows:

1. Read the global configuration file to determine the log file directory, the output file
directory, and the maximum number of users

2. Initialize the test database, which deletes existing test table space, create a new test table
space

3. Get the test vectors from TestImpl by calling TestImpl.getTestVectors. For each test
vector:
1. Create default data based on the user-specified number of standard users
2. Call TestImpl.setupTest to setup the test environment further
3. Call TestImpl.runTest to perform the test and return a Boolean result
4. Write the result of the test to the output file
5. Call TestImpl.cleanupTest to do standard cleanup needed to restore test environment.
6. Perform cleanup of standard users, tables, roles, and profiles

 April 30, 2003

Page 14 of 16

4. Exit.

4.3.3 TestImpl Interface

The TestImpl class contains four methods that must be implemented when creating a test,
including: setupTest, runTest, cleanupTest, and getTestVectors.

• setupTest performs additional database configuration beyond the creation of the
standard users

• runTest performs test execution
• cleanupTest restores the database to a known state to support the next test vector
• getTestVectors retrieves the inputs for the current test.

4.3.4 SQLUtils

The SQLUtils class handles the database connectivity and SQL execution. It maintains a user-
authenticated connection that is used to execute SQL commands. The connection is only lost
when a disconnection-related operation or another connect call is performed.

5 Summary

This paper provides pragmatic guidance for combining interface analysis and requirement
modeling to support model-based test automation. The model-based testing method and tools
described in this paper have been demonstrated to significantly reduce cost and effort for
performing testing, while being demonstrated to identify requirement defects that reduce costly
rework. These recommendations for defining interfaces that provide better support for testability
are valid for all forms of testing. Although this paper describes why interface-driven modeling has
benefits for testing a released product, it has been applied during development with many
additional benefits. Organizations see the benefits of using interface driven model-based testing to
help stabilize the interfaces of the system early, while identifying common test driver support
capabilities that can be constructed once and reused across related tests. In addition, parallel
development of verification modeling is beneficial in development and helps identify requirement
defects early to reduce rework. This concept has been characterized as eXtreme modeling, which
is similar to eXtreme programming.

Although this paper discusses modeling and test automation for security requirements, the tools
and method are generally applicable because they have been used in several other application
domains. Finally, this paper discusses the use of Java test drivers, but in prior work Perl test
drivers were developed for both Oracle and Interbase databases. Although each language provides
suitable support for performing the test execution, we believe that there is more effort involved in
developing the Java support as opposed to the Perl support for test driver generation.

6 References
[Asi02] Aissi, S.,Test Vector Generation: Current Status and Future Trends, Software Quality

Professional, Volume 4, Issue 2, March 2002.

[Bec99] Beck, K., Extreme Programming Explained: Embrace Change. Addison Wesley, 1999.

 April 30, 2003

Page 15 of 16

[BBN01a] Blackburn, M.R., R.D. Busser, A.M. Nauman, Removing Requirement Defects and
Automating Test, STAREAST, May 2001.

[BBN01b] Blackburn, M. R., R.D. Busser, A.M. Nauman, How To Develop Models For Requirement
Analysis And Test Automation, Software Technology Conference, May 2001.

[BBN01c] Blackburn, M. R., R.D. Busser, A.M. Nauman, Eliminating Requirement Defects and
Automating Test, Test Computer Software Conference, June 2001.

[BBNC01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Chandramouli, Model-based Approach to
Security Test Automation, In Proceeding of Quality Week 2001, June 2001.

[BBNKK01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Knickerbocker, R. Kasuda, Mars Polar
Lander Fault Identification Using Model-based Testing, Proceeding in IEEE/NASA 26th
Software Engineering Workshop, November 2001.

[BBN01d] Busser, R. D., M. R. Blackburn, A. M. Nauman, Automated Model Analysis and Test
Generation for Flight Guidance Mode Logic, Digital Avionics System Conference, 2001.

[BBWL00] Boger, M., T. Baier, F. Wienberg, and W. Lamersdorf. Extreme modeling. In Proc. Extreme
Programming and Flexible Processes in SW Engineering (XP’00), 2000.

[CGDDTK96] Cooke, D., A. Gates, E. Demirors, O.Demirors, M. Tankik, B. Kramer, Languages for the
Specification of Software, Journal of Systems Software, 32:269-308, 1996.

[Cha99] Chandramouli R., Methodology for Automated Security Testing”, NIST Request for
Proposal, Nov 1999.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking of Requirements
Specifications. ACM TOSEM , 5(3):231-261, 1996.

[KSSB01] Kelly, V. E.L.Safford, M. Siok, M. Blackburn, Requirements Testability and Test
Automation, Lockheed Martin Joint Symposium, June 2001.

[PL01] Pretschner, A., H. Lotzbeyer, Model Based Testing with Constraint Logic Programming:
First Results and Challenges, Proc. 2nd ICSE Intl. Workshop on Automated Program
Analysis, Testing and Verification (WAPATV'01), Toronto, May 2001.

[PM91] Parnas, D., J. Madley, Functional Decomposition for Computer Systems Engineering
(Version 2), TR CRL 237, Telecommunication Research Inst. of Ontario, McMaster
University, 1991.

[Rob00] Robinson, H., http://www.model-based-testing.org/.

[Rom85] Roman, G.C., A Taxonomy of Current Issues in Requirements Engineering, IEEE
Computer, 18(4):14-23, 1985.

[RR00] Rosario, S., H. Robinson, Applying Models in Your Testing Process, Information and
Software Technology, Volume 42, Issue 12, 1 September 2000.

[Sch90] van Schouwen, A.J., The A-7 Requirements Model: Re-Examination for Real-Time System
and an Application for Monitoring Systems. TR 90-276, Queen's University, Kinston,
Ontario, 1990.

 April 30, 2003

Page 16 of 16

[Sta00] Statezni, David. Test Automation Framework, State-based and Signal Flow Examples,
Twelfth Annual Software Technology Conference, April 30 - May 5, 2000.

[Sta01] Statezni, David. T-VEC’s Test Vector Generation System, Software Testing & Quality
Engineering, May/June 2001.

[Saf00] Safford, Ed L. Test Automation Framework, State-based and Signal Flow Examples,
Twelfth Annual Software Technology Conference, April 30 - May 5, 2000.

[YZCG84] Yeh, R.T., P. Zave, A.P. Conn, G.E. Cole, Software Requirements: New Directions and
Perspectives, in Handbook of Software Engineering, Editors C. R. Vick and C. V.
Ramamoorthy), Van Nostrand Reinhold, 1984.

