

IPOG: A General Strategy for T-Way Software Testing
Yu Lei1, Raghu Kacker2, D. Richard Kuhn2, Vadim Okun2, James Lawrence3

1Dept. of Comp. Sci. and Eng. 2Information Technology Laboratory 3Dept. of Mathematics
University of Texas at Arlington National Inst. of Standards and Tech. George Mason University

Arlington, TX 76019 Gathersburg, MD 20899 Fairfax, VA 22030
Email: ylei@cse.uta.edu Email: {raghu.kacker, kuhn, Email: lawrence@gmu.edu

vadim.okun}@nist.gov

Abstract
Most existing work on t-way testing has focused on 2-way
(or pairwise) testing, which aims to detect faults caused by
interactions between any two parameters. However, faults
can also be caused by interactions involving more than two
parameters. In this paper, we generalize an existing
strategy, called In-Parameter-Order (IPO), from pairwise
testing to t-way testing. A major challenge of our
generalization effort is dealing with the combinatorial
growth in the number of combinations of parameter values.
We describe a t-way testing tool, called FireEye, and
discuss design decisions that are made to enable an
efficient implementation of the generalized IPO strategy.
We also report several experiments that are designed to
evaluate the effectiveness of FireEye.

1. Introduction
One approach to software testing is combinatorial testing,
which creates test suites by selecting values for input
parameters and by combining these parameter values. For
a system with n parameters, each of which has d values, the
number of all possible combinations of values of these

d nparameters is . Due to resource constraints, it is nearly
always impossible to exhaustively test all of these
combinations of parameter values. Thus, a strategy is
needed to select a subset of these combinations. One such
strategy, called t-way testing, requires every combination
of any t parameter values to be covered by at least one test,
where t is referred to as the strength of coverage and
usually takes a small value. The notion of t-way testing can
substantially reduce the number of tests. For example, a
system of 20 parameters that have 10 values each requires
1020 tests for exhaustive testing, but as few as 180 tests for
2-way (or pairwise) testing [6]. We can consider each
combination of parameter values to represent one possible
interaction among these parameters. The rationale behind t-
way testing is that not every parameter contributes to every
fault, and many faults can be exposed by interactions
involving only a few parameters.

To illustrate the concept of t-way testing, consider an
elementary software system consisting of three Boolean
parameters. Denote the two values of a Boolean parameter
as 0 and 1. Fig. 1 shows a pairwise test set for this system.
In the test set, each row represents a test, and each column

represents a parameter (in the sense that each entry in a
column is a value of the parameter represented by the
column). It can be checked that each of the three pairs of
columns, i.e., columns 1 and 2, columns 1 and 3, and
columns 2 and 3, contains all four pairs of values of two
Boolean parameters, i.e., {00, 01, 10, 11}. If all failures of
the system are triggered by faulty interactions between at
most two parameters, this test set would allow all the
failures to be detected. Note that an exhaustive test set for
this system would consist of 23 = 8 tests.

0 0 0
0 1 1
1 0 1
1 1 0

Figure 1. A 2-way test set for 3 boolean
parameters

Existing work on t-way testing has mainly focused on
pairwise testing, which aims to detect faults that are caused
by interactions between any two parameters. However,
faults can also be caused by interactions involving more
than two parameters [10][11]. In order to effectively detect
those faults, it is necessary to enable a higher strength of
coverage. In this paper, we generalize an existing strategy,
called In-Parameter-Order (or IPO), from pairwise testing
to general t-way testing. The resulting strategy is referred
to as In-Parameter-Order-General (or IPOG). A major
challenge of our generalization effort is dealing with the
combinatorial growth in the number of combinations of
parameter-values. We describe a t-way testing tool called
FireEye, and discuss design decisions that are made to
enable an efficient implementation of the IPOG strategy.
We also report several experiments that were conducted to
evaluate the effectiveness of FireEye. In particular, we
conducted an experiment that compared FireEye to several
existing tools. The result of this experiment indicates that
FireEye performed significantly better than the other tools
for a real-life application.

The remainder of the paper is organized as follows.
Section 2 briefly reviews existing work on t-way testing.
Section 3 describes the IPOG strategy. An algorithm that
implements the IPOG strategy is also presented in Section
3. Section 4 describes the FireEye tool, and discusses
several key design decisions. Section 5 reports the design

and the results of the experiments. Section 6 provides
concluding remarks and our plan for further work

2. Related Work
Cohen et al. proposed a strategy, called Automatic Efficient
Test Generator (or AETG), which constructs a test set by
repeatedly adding one test at a time until all the
combinations of parameter values are covered [4][5]. A
greedy algorithm is used to construct the tests such that
each test covers as many uncovered combinations as
possible. Several variants of this strategy have been
reported in the literature [2][17]. These variants share the
same framework as AETG but use different heuristics for
the greedy construction of each test [6]. In [13][16], we
proposed the IPO strategy, which builds a pairwise test set
for the first two parameters, extends the test set to cover the
first three parameters, and continues to extend the test set
until it builds a pairwise test set for all the parameters.
Covering one parameter at a time allows the IPO strategy
to achieve a lower order of complexity than AETG. Most
recently, heuristic search techniques such as hill climbing
and simulated annealing have been applied to multi-way
testing [6]. Unlike AETG and IPO, which builds a test set
from scratch, heuristic search techniques start from a pre
existing test set and then apply a series of transformations
to the test set until a test set is reached that covers all the
combinations. Heuristic search techniques can produce
smaller test sets than AETG and IPO, but they typically
take longer to complete.

In addition to computational approaches, algebraic
approaches have also been reported. These approaches
construct test sets using pre-defined rules. Some algebraic
approaches compute test sets directly by a mathematical
function. These approaches are generally extensions of the
mathematical methods for constructing orthogonal arrays
[1][14]. Informally, an orthogonal array of strength t
requires that every possible combination of any t columns
be covered exactly once. Therefore, an orthogonal array
can be considered as an optimal t-way test set if we
consider each row to represent a test and each column to
represent a parameter. Other algebraic approaches are
based on the idea of recursive construction, which allows
larger test sets to be constructed from smaller ones [8][18].

Computational and algebraic approaches have their own
advantages and disadvantages. Computational approaches
can be applied to arbitrary system configurations, but they
can be expensive as they involve explicit enumeration and
there can be a large number of combinations to be
enumerated. The computations involved in algebraic
approaches are typically lightweight, and in some cases,
algebraic approaches can produce optimal test sets.
However, algebraic approaches often impose restrictions
on the system configurations to which they can be applied.

Finally, many empirical studies have been reported on
assessing the fault detection effectiveness of t-way testing.
In [3], Burr and Young showed that pairwise testing
achieves higher block and decision coverage than
traditional methods for a commercial email system. In [7],
Dalal et al. applied t-way testing to a telephone software
system and showed that several faults can only be detected
under certain combinations of input parameters. In
[10][11], Kuhn et al. studied the actual faults in several
software projects, and found that all the known faults are
caused by interactions among 6 or fewer parameters.

3. The IPOG Strategy
In this section, we present the IPOG strategy. Our
motivation for generalizing the IPO strategy is two-fold.
First, we want to develop a testing strategy that can be
applied to general software applications. Thus, the strategy
should put no restrictions on the system configuration
under test. This consideration favors computational
approaches over algebraic approaches. (Recall from
Section 2 that the former can be applied to an arbitrary
system configuration, while the latter often has restrictions
on the system configurations to which they can be applied.)
Second, general t-way testing has a more stringent demand
on the time and space requirements than pairwise testing.
This is because the number of combinations grows
exponentially as the strength of coverage increases. This
consideration favors the IPO strategy over other strategies
such as AETG and heuristic search techniques. We also
note that the IPO strategy is deterministic, i.e., it always
produces the same test set for the same system
configuration.

The framework of the IPOG strategy can be described as
follows: For a system with t or more parameters, the IPOG
strategy builds a t-way test set for the first t parameters,
extends the test set to build a t-way test set for the first t +
1 parameters, and then continues to extend the test set until
it builds a t-way test set for all the parameters. (The
parameters can be in an arbitrary order.) The extension of
an existing t-way test set for an additional parameter is
done in two steps:

•	 horizontal growth, which extends each existing
test by adding one value for the new parameter;

•	 vertical growth, which adds new tests, if needed,
to the test set produced by horizontal growth.

Fig. 2 shows a test generation algorithm called IPOG-Test
that implements this framework. The algorithm takes as
input an integer t and a set ps of parameters, and produces
as output a t-way test set for the parameters in set ps. It is
assumed that the number n of parameters in set ps is greater
than or equal to t. Fig. 3 shows an application of algorithm
IPOG-Test to an example system for 3-way testing. This

Algorithm IPOG-Test (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set
2. denote the parameters in ps, in an arbitrary order, as P1, P2, …, and Pn
3. add into test set ts a test for each combination of values of the first t parameters
4. for (int i = t + 1; i ≤ n; i ++){
5. 	 let π be the set of t-way combinations of values involving parameter Pi

 and t -1 parameters among the first i – 1 parameters
6. // horizontal extension for parameter Pi

7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. 	 choose a value vi of Pi and replace τ with τ’ = (v1, v2, …, vi-1, vi) so that τ’ covers the
 most number of combinations of values in π
9. 	 remove from π the combinations of values covered by τ’
10. }
11. // vertical extension for parameter Pi

12. for (each combination σ in set π){
13. 	 if (there exists a test that already covers σ) {
14. remove σ from π
15. 	 } else {
16. 	 change an existing test, if possible, or otherwise add a new test

 to cover σ and remove it from π
17. 	 }

18. }

19.}

20.return ts;

}

Figure 2: Algorithm IPOG-Test

example system consists of four parameters P1, P2, P3, and
P4, where P1, P2, P3 have two values 0 and 1, and P4 has
three values 0, 1, and 2. In the following, we will use this
application as a running example to explain how algorithm
IPOG-Test works.

Algorithm IPOG-Test begins by initializing test set ts to be
empty (line 1), and by putting the input parameters into an
arbitrary order (line 2). Note that test set ts will be used to
hold the resulting test set. Next, the algorithm builds a t-
way test set for the first t parameters. This is trivially done
by adding into test set ts a test for every combination of the
first t parameters (line 3). In Fig. 3, the 3-way test set built
for the first three parameters is shown in part (a), which
contains all the 8 possible combinations of the first three
parameters, i.e., P1, P2, and P3.

If the number n of parameters is greater than the strength t
of coverage, the remaining parameters are covered, one at
each iteration, by the outermost for-loop (line 4). Let Pi be
the parameter that the current iteration is trying to cover.
We first compute the set π of combinations that must be
covered in order to cover parameter Pi (line 5). Covering
parameter Pi means extending test set ts so that it becomes
a t-way test set for parameters P1, …, Pi-1, and Pi. Note that
test set ts is already a t-way test set for parameters P1, …,

Pi-1. Thus, we only need to cover all the t-way
combinations involving Pi and any group of t -1 parameters
among P1, …, Pi-1, which are the parameters that are
already covered. For example, in Fig. 3, in order to cover
P4, we need to cover all the 3-way combinations of the
following parameter groups, (P1, P2, P4), (P1, P3, P4), and
(P2, P3, P4). We will not list each of the combination in
those parameter groups, as they can easily be enumerated.
Instead, we only point out that each of these groups has 12
combinations. Thus, there are in total 36 combinations in
the set π computed for Fig. 3.

The combinations in set π are covered in the following two
steps:

• Horizontal growth: This step extends each of the
existing tests by adding a value for parameter Pi
(lines 7 - 10). These values are chosen in a greedy
manner, i.e., at each step, the value chosen is one
that covers the largest number of combinations in
set π (line 8). Each time a value is added, the set
of combinations covered due to this addition are
removed from set π (line 9). For example, in Fig.
3, the 4th test is extended by adding the value 0
for P4, which covers three combinations in set π:
{(P1.0, P2.1, P4.0), (P1.0, P3.1, P4.0), (P2.1,

P3.1, P4.0)}. Here notation Pi.v indicates that v is
a value of parameter Pi. Note that if the 4th test
was extended by adding the value 1 for P4, it
would only cover two combinations in set π:
{(P1.0, P2.1, P4.1), (P2.1, P3.1, P4.1)}. The
reason is that the combination (P1.0, P3.1, P4.1)
was covered by the 2nd test and thus was removed
from set π when the 2nd test was extended.

•	 Vertical growth: This step covers the remaining
uncovered combinations, one at a time, either by
changing an existing test or by adding a new test
(line 16). When we change a test to cover a
combination, only don’t care values can be
changed. A don’t care value is a value that can be
replaced by any value without affecting the
coverage of a test set. If no existing test can be
changed to cover σ, a new test needs to be added
in which the parameters involved in σ are
assigned the same value in σ and the other
parameters are assigned don’t care values. For
example, in Fig. 3, after horizontal growth,
combination (P1.1, P2.0, P4.0) has not been
covered yet. No existing test can be found such
that it can be changed to cover this combination.
Thus, we create a new test (P1.1, P2.0, P3.-, P4.0),
which is the 9th test in part (c), to cover this
combination, where “–” denotes a don’t care
value. Also note that (P2.0, P3.1, P4.0) is another
combination that was not covered either after
horizontal growth. This combination can be
covered by changing the value of P3 from “-” to 1
in the 9th test.

Now we consider the complexity of algorithm IPOG-
Test. The space complexity is dominated by the
storage of π (line 5) for covering each new parameter.
Let n be the number of parameters and d the largest
domain size of the parameters. The space requirement

t	 t −1for 	π is Ο(d ×n) . The time complexity is

dominated by horizontal extension. In Section 4, we
describe a data structure for storing all the
combinations. With this data structure, it takes
Ο()1 time to determine whether or not a t-way

combination is already covered, and it
t −1takes Ο(n) time to determine the number of

combinations covered by a test. Thus, it takes

d nt −1Ο(×) to determine which value of the new

parameter covers the most t-way combinations. As
shown in [5] and supported by the experiments in
Section 5, the number of tests generated by algorithm

tIPOG-Test is in Ο(d × log n) . Thus, the time

complexity of horizontal extension, and that of the
t +1 t −1entire algorithm, is Ο(d ×n × log n) .

0 0 1 0 0 1 1 0 0 1 1
0 1 0 0 1 0 2 0 1 0 2
0 1 1 0 1 1 0 0 1 1 0
1 0 0 1 0 0 1 1 0 0 1
1 0 1 1 0 1 2 1 0 1 2
1 1 0 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1

1 0 1 0

P1 P2 P3 P1 P2 P3P4 P1 P2 P3 P4
0 0 0 0 0 0 0 00 0 0

(a)	 (b 0 1 0 1
0 0 1 2
1 1 0 2
- 0 0 2
- 1 1 2

Figure 3. An illustration of algorithm IPOG-Test

4. FireEye: A T-Way Testing tool
We built a t-way testing tool, called FireEye, which
implements the IPOG strategy. FireEye is written in Java
and consists of the following major components: (1)
CombinatoricsHelper, which is a utility class that is
responsible for all the computations related to
combinatorics; (2) CombinationManager, which manages
the combinations in a way such that they can be stored and
checked efficiently; (3) TestEngine, which implements
algorithm IPOG-Test; (4) TestGenerator, which drives the
entire test generation process. FireEye also provides a
graphic user interface (GUI) to facilitate the use of this
tool. The GUI allows the user to create, edit, and inspect
system configurations, to set up runtime options, and to
view the resulting test sets.
Due to the combinatorial effect, the number of t-way
combinations can be large. To enable an efficient
implementation, these combinations must be managed
carefully. In Section 4.1, we discuss how FireEye computes
t-way combinations. In Section 4.2, we describe the data
structure for storing these combinations in FireEye.

4.1 Computing T-Way Combinations
In order to cover a new parameter, we first need to
compute the set π of t-way combinations involving the new
parameter and t-1 parameters that have already been
covered (line 5 of Fig. 2). In the following, we consider a
more general problem: How can we compute all n-way
combinations of values of m parameters, where n ≤ m?
Conceptually, this problem needs to be solved in two steps.
First, we generate all possible combinations of n
parameters out of m parameters. Second, for each
combination of n parameters, we enumerate all possible
combinations of values of these n parameters. In the

remainder of this paper, we will refer to a combination of
parameters as a parameter combination, and a combination
of parameter values as a value combination.
One approach to generating combinations of n elements is
to use a nested loop of n levels, each iterating through the
possible values of each element. This approach can be
applied to generate both n-way parameter combinations,
with care given to avoid generating the same combination
of parameters in different orders, and n-way value
combinations. This approach, however, suffers from the
problem that such a nested loop must be hard-coded. As
described below, FireEye uses a generic approach that
allows parameter and value combinations to be generated
without hard-coding any loops1 .
We first discuss how to generate parameter combinations.
Center to our approach is the use of parameter vectors. A
parameter vector has m dimensions, one for each
parameter. Consider each parameter vector as representing
a parameter combination as follows: Each dimension takes
on a binary value, 0 or 1, which indicates whether the
corresponding parameter is excluded or included,
respectively, in the parameter combination. For example,
assume that there are 5 parameters {P0, P1, P2, P3, P4}.
Then a parameter vector 10101 represents a parameter
combination {P0, P2, P4}. Thus, the problem of generating
all the n-way parameter combinations is transformed to the
problem of generating all the parameter vectors in which
the number of 1s is exactly n.
One naïve approach to solving the above problem is to
enumerate all possible parameter vectors of m dimensions,
and then filter out those in which the number of 1s is not n.
This enumeration can be accomplished as follows.
Consider each vector to represent a numeric value, where
each dimension represents a digit whose base is 2 and the
significance of the digits decreases from left to right.
Starting from a vector of all 0s, whose numeric value is 0,
we can enumerate all the parameter vectors by repeatedly
adding 1 until a vector of all 1s is reached. The addition of
1 to a vector can be done by setting the least significant
digit g whose value is 0 to 1 and changing all the digits that
are less significant than g to 0. For example, let 10011 be a
parameter vector. Observe that the third digit (from left) is
the least significant digit whose value is 0. In order to add 1
to this vector, we change the third digit from 0 to 1, and set
the last two digits to 0. Doing so results in a new vector
10100.
Instead of enumerating all possible parameter vectors and
then filtering out invalid ones, FireEye implements a more
efficient approach that only generates valid vectors, i.e.,

1 We developed the described approach independently, but were
made aware of [15] that provides a similar solution in the
review process.

those in which the number of 1s is exactly n. The
framework of our approach is similar to that of the naïve
approach, except for the following two differences. First,
we start from a parameter vector in which the least
significant n digits are set to 1, instead of the vector of all
0s. For example, let m = 5, and n = 3. Then, we start from
00111. Note that such a parameter vector is the smallest
one, in terms of its numeric value, that consists of three 1s.
Second, every time we derive a new parameter vector, we
ensure that the number of 1s in the current vector is
preserved. There are two cases to consider, depending on
whether the last digit in the vector is 1 or 0.

•	 Case 1: If the last digit is 1, we find the least
significant digit g that is 0 and is followed by 1.
Then, we change g from 0 to 1 and the digit
following g from 1 to 0. For example, assume that
the current vector is 01011. Then, the third digit
(from left) is the least significant digit that is 0
and is followed by 1. Thus, we generate the next
parameter vector by changing the third digit from
0 to 1 and the fourth digit from 1 to 0, which
produces 01101. Note that this new vector is the
smallest one that is greater than the current
vector, in terms of their numeric values, and that
preserves the same number of 1s.

•	 Case 2: If the last digit is 0, we find the least
significant digit g that is 0 and is followed by 1,
which is similar to Case 1. At the same time, we
count the number of 1s, say c, that appear before
g. Then, we change g from 0 to 1, and set the
digits that are less significant than g to 0, except
for the last n - c - 1 digits, which are set to 1. For
example, assume that the current vector is 10110.
Then, the second digit (from left) is the least
significant digit that is 0 and is followed by 1.
Since the first digit is 1, c = 1. Thus, we generate
the next parameter vector by changing the second
digit from 0 to 1, and by setting the third and
fourth digits to 0, and the last digit to 1, which
results in 11001. Note that this new vector is the
smallest one that is greater than the current
vector, in terms of their numeric values, and that
preserves the same number of 1s.

Next we discuss how to enumerate all possible value
combinations for each parameter combination. Similar to
the way we consider a parameter combination, we consider
each value combination to represent a numeric value,
where each dimension represents a digit whose base is the
same as the domain size of the corresponding parameter
and the significance of the digits decreases from left to
right. Starting from a value combination of all 0s, whose
numeric value is 0, we can enumerate all the value
combinations by repeatedly adding 1 until we reach a value
combination in which the value of each digit is its base

minus 1. The addition of 1 to a value combination can be
accomplished by incrementing the least significant digit g
whose value is less than its base minus 1 and setting all the
digits that are less significant than g to 0. For example,
assume that there are three parameters P1, P2, and P3, each
having three values. Let 112 be a value combination of the
three parameters. The second digit is the least significant
digit whose value is less than its base minus 1. We can add
1 to this combination by incrementing the second digit and
by setting the last digit to 0, which results in a new value
combination 120.

4.2 Storing T-Way Combinations
In this section, we describe the data structure used by
FireEye for storing t-way combinations. On the one hand,
we want the storage to be as compact as possible. On the
other hand, we want to be able to quickly determine
whether or not a given combination has been covered,
which is the most frequently performed operation in
algorithm IPOG-Test.

BitMap

BitMap
0 0 1

1 1 0

1 0 1

0 1 1

1 0 0

1 1 1

Figure 4. A two-level hierarchy for storing

combinations

As shown in Fig. 4, the data structure is a hierarchy of two
levels. At the first level is an array of pointers, each of
which represents one possible parameter combination and
points to a bitmap at the second level. The pointers are
indexed in such a way that for a given parameter
combination, we can directly compute its index and thus
locate the corresponding pointer quickly without having to
search through the array. We use an example to illustrate
the indexing scheme. Assume that there are 4 parameters,
P0, P1, P2, and P3. There are 4 combinations of 3
parameters out of the 4 parameters, and we index them in
the following order: (P0, P1, P2), (P0, P1, P3), (P0, P2,
P3), and (P1, P2, P3). The index of a given parameter
combination (Pi, Pj, Pk) can be computed using the
following formula 3 i 2 (j i 1) (k j 1) .× + × − − + − −
For instance, the index of (P0, P2, P3) is
3 0 2 (2 0 1) (3 2 1) 2× + × − − + − − = . This formula
can be easily generalized to any number of parameters.

At the second level, each bitmap has one bit for each value
combination. The bit value 0 indicates that the
corresponding value combination has not been covered yet,
and the value 1 indicates the corresponding value
combination has already been covered. Again, we consider
each value combination to represent a numeric value. The
numeric value of a value combination is used to index the
bit that corresponds to the combination.
In order to determine whether or not a given value
combination is covered, we first find the pointer that points
to the bitmap to which the value combination belongs.
Then, we check the value of the bit corresponding to the
combination in the bitmap. Both steps take constant time.

5. Experimental Results
Our experiments have two goals. First, we want to study
the growth in the size of the test sets generated by
algorithm IPOG-Test, as well as the time taken to produce
those test sets, in terms of the strength of coverage, the
number of parameters, and the domain size, respectively.
Second, we want to compare the performance of FireEye to
existing tools, both in terms of the size of the resulting test
sets and the time taken to produce these test sets.

To accomplish the first goal, we applied FireEye to three
series of system configurations. In the first series, the
number of parameters is fixed to 10, the domain size of
each parameter is fixed to 5, and the strength of coverage is
varied from 2 to 6. In the second series, the strength of
coverage is fixed to be 4, the domain size of each
parameter is fixed to be 5, and the number of parameters is
varied from 5 to 15. In the third series, the strength of
coverage is fixed to be 4, the number of parameters is fixed
to be 10, and the domain size is varied from 2 to 10.

Tables 1, 2 and 3 show the experimental results for the
three series of system configurations, respectively. The
columns in the three tables are self-explanatory. Note that
the execution times are shown in seconds, and all the
results were collected using a laptop running Windows XP
with 1.6GHZ CPU and 1GB memory.

In [5], it was shown that the growth in the size of a test set
d tis in Ο(log n) , where t is the strength of coverage, d is

the domain size, and n is the number of parameters. We
performed curve fitting analysis on the sizes of the test sets
in the three tables. The analysis showed that our
experimental results were consistent with the theoretical
results. In particular, we note that the number of tests in a
t-way test grows very quickly as the strength of coverage t
increases.

To accomplish the second goal, we identified the following
existing tools that support t-way testing and are either open
source or free for academic use: (1) Intelligent Test Case

Handler (or ITCH), which is from IBM [19]; (2) Jenny,
which is from www.burtleburtle.net [20]; (3) TConfig,
which is from University of Ottawa [21]; and (4) Test
Vector Generator (or TVG), which is from
www.SourceForge.com [22]. Based on limited information
available in the literature, ITCH implements a combination
of several algebraic methods (the details of the combination
are not known), and TConfig implements a recursive
construction method. Both Jenny and TVG seem to
implement a computational method, but the details of their
algorithms are not clear. Note that all these tools are
written in Java, except for Jenny, which is written in C.

t-way 2 3 4 5 6

Size 48 308 1843 10119 50920

Time 0.11 0.56 6.38 63.8 791.35

Table 1: Results for 10 5-value parameters for 2-
to 6-way testing

We applied FireEye and the above tools to a Traffic
Collision Avoidance System (TCAS) module. It
implements part of an aircraft collision avoidance system
specified by the Federal Aviation Administration, and has
been used in other studies of software testing [9][12]. The
TCAS module has twelve parameters: seven parameters
have 2 values, two parameters have three values, one
parameter has four values, and two parameters have 10
values. Table 4 shows the sizes of the test sets generated by
each tool and the times taken to generate these test sets.

The execution times are shown in seconds, if not specified
otherwise. The sizes of some test sets are not available,
shown as NA, as their construction seems to take an
excessive amount of time. In all cases, FireEye has
performed better than the other tools, both in terms of the
sizes of the test sets and the execution times. In several
cases, FireEye has performed substantially better,
especially for 5- and 6-way testing. If we compare FireEye
to a particular tool, the extent to which FireEye
outperformed increases as the strength of coverage
increases.

6. Conclusion and Future Work
We consider t-way testing to be a very promising testing
technique for several reasons. First, as a specification-
based technique, it requires no knowledge about the
implementation under test. Moreover, the specification
required by t-way testing is lightweight, as a basic system
configuration only needs to identify the input parameters
and the possible values of each of those parameters.
Second, t-way testing can be very effective for various
types of applications. Kuhn et al. studied actual faults in
several industrial applications, showing that all the known
faults in these applications are caused by up to 6-way
interactions [11]. Finally, test input generation for t-way
testing can be automated as a push-button feature, which is
a key to industrial acceptance.

of params 5 6 7 8 9 10 11 12 13 14 15

Size 784 1064 1290 1491 1677 1843 1990 2132 2254 2378 2497

Time 0.19 0.45 0.92 1.88 3.58 6.38 10.83 17.52 27.3 41.71 61.26

Table 2: Results for 5 to 15 5-value parameters for 4-way testing

of values 2 3 4 5 6 7 8 9 10

Size 46 229 649 1843 3808 7061 11993 19098 28985

Time 0.16 0.547 1.8 6.33 16.44 38.61 83.96 168.37 329.36

Table 3: Results for 10 parameters with 2 to 10 values for 4-way testing

t-way
FireEye ITCH Jenny TConfig TVG

Size Time Size Time Size Time Size Time Size Time

2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75

3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07

4 1361 3.05 1484 5400 1536 3.54 1476 >21 hour 64696 127

5 4219 18.41 NA >1 day 4580 43.54 NA >1 day 313056 1549

6 10919 65.03 NA >1 day 11625 470 NA >1 day 1070048 12600

Table 4: Results of different tools for the TCAS configuration

http:www.SourceForge.com
http:www.burtleburtle.net

We are continuing our work in the following directions.
First, the IPOG strategy needs to explicitly enumerate all
possible combinations. When the number of combinations
is large, explicit enumeration can be prohibitive. We are
developing techniques to reduce the number of
combinations that are enumerated. Second, we are
extending algorithm IPOG-Test to support parameter
relations and constraints. Parameter relations are used to
avoid exercising combinations between parameters that do
not interact with each other. Parameter constraints are used
to exclude combinations that are not meaningful from the
domain semantics. Finally, t-way testing can generate a
large number of tests, which makes it impractical to
manually execute the tests and evaluate their results. We
plan to integrate our test generation tool with other tools to
automate the entire testing process, i.e., including test
generation, test execution, and test evaluation.

Acknowledgement
The authors would like to thank Profs. Renee Bryce and
Richard Carver for their comments on an earlier version of
this paper. The authors would also like to thank Chinmay
Jayaswal for conducting the experiments. This paper is also
greatly improved by the anonymous review comments.
This work is partly supported by a grant (Award No.
60NANB6D6192) from the Information Technology Lab
(ITL) of National Institute of Standards and Technology
(NIST).

Disclaimer: Certain software products are identified in
this document. Such identification does not imply
recommendation by NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

References
[1]	 K. A., Bush, “Orthogonal arrays of index unity,”

Annals of Mathematical Statistics, 23 (1952), 426-434.
[2]	 R. Bryce, A Deterministic Density Algorithm for

Pairwise Interaction Coverage, Proceedings of the
International Conference on Software Engineering (SE
2004). Innsbruck, Austria, pp. 245-252.

[3]	 K. Burr and W. Young, “Combinatorial test
techniques: Table-based automation, test generation
and code coverage,” in Proc. of the Intl. Conf. on
Software Testing Analysis & Review, 1998.

[4]	 D. M. Cohen, S. R. Dalal, J. Parelius, G. C.
Patton, “The Combinatorial Design Approach to
Automatic Test Generation,” IEEE Software, Vol. 13,
No. 5, pp. 83-87, September 1996.

[5]	 D. M. Cohen, S. R. Dalal, M. L. Fredman, and G.
C. Patton, “The AETG System: An Approach to
Testing Based on Combinatorial Design,” IEEE
Transactions on Software Engineering, 23:7, 1997.

[6]	 M. B. Cohen, C. J. Colbourn, P. B. Gibbons and
W. B. Mugridge, “Constructing test suites for
interaction testing,” In Proc. of the Intl. Conf. on
Software Engineering, (ICSE 2003), 2003, pp. 38-48,
Portland.

[7]	 S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C.
M. Lott, G. C. Patton, and B. M. Horowitz, “Model
based testing in practice,” in Proc. of the Intl. Conf. on
Software Engineering, (ICSE), 1999, pp. 285–294.

[8]	 Alan Hartman, Leonid Raskin, “Problems and
algorithms for covering arrays,” Discrete Mathematics
284(1-3): 149-156 (2004)

[9]	 M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc.
Sixteenth Internat. Conf. On Software Engineering, pp.
191–200, May 1994.

[10] D. R. Kuhn and M. J. Reilly, “An Investigation of
the Applicability of Design of Experiments to
Software Testing,” Proceedings of the 27th
NASA/IEEE Software Engineering Workshop, NASA
Goddard Space Flight Center, December 2002.

[11] D. R. Kuhn, D. Wallace, A. Gallo, “Software Fault
Interactions and Implications for Software Testing,”
IEEE Transactions on Software Engineering, June
2004, Vol. 30, No. 6.

[12] D. R. Kuhn, V. Okun, “Pseudo-exhaustive Testing For
Software,” 30th NASA/IEEE Software Engineering
Workshop, April 25-27, 2006.

[13] Y. Lei and K. C. Tai , “In-parameter-order: a test
generation strategy for pairwise testing,” Proceedings
of 3rd IEEE Intl. Conf. on High-Assurance Systems
Engineering Symposium, 1998, pp. 254-261.

[14] R. Mandl, “Orthogonal Latin squares: an application
of experiment design to compiler testing,”
Communications of the ACM, v.28 n.10, p.1054-1058,
Oct. 1985.

[15] D. Stanton and D. White, Constructive Combinatorics,
Springer, 1986.

[16] K. C. Tai and Y. Lei, “A Test Generation Strategy
for Pairwise Testing,” IEEE Transactions on Software
Engineering, 2002, Vol. 28, No. 1.

[17] Y. W. Tung and W. S. Aldiwan, “Automating test
case generation for the new generation mission
software system,” Proceedings of IEEE Aerospace
Conference, 2000, pp. 431-437.

[18] A. W. Williams and R. L. Probert. A practical
strategy for testing pair-wise coverage of network
interfaces. In Proceedings of the 7th International
Symposium on Software Reliability Engineering
(ISSRE), White Plains, New York, 1996.

[19] ITCH, http://www.alphaworks.ibm.com/tech/whitch.
[20] Jenny, http://www.burtleburtle.net/bob/math/.
[21] TConfig, http://www.site.uottawa.ca/~awilliam/.
[22] TVG, http://sourceforge.net/projects/tvg/.

http://sourceforge.net/projects/tvg
http://www.site.uottawa.ca/~awilliam
http://www.burtleburtle.net/bob/math
http://www.alphaworks.ibm.com/tech/whitch

