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Abstract 
Most existing work on t-way testing has focused on 2-way 
(or pairwise) testing, which aims to detect faults caused by 
interactions between any two parameters. However, faults 
can also be caused by interactions involving more than two 
parameters. In this paper, we generalize an existing 
strategy, called In-Parameter-Order (IPO), from pairwise 
testing to t-way testing. A major challenge of our 
generalization effort is dealing with the combinatorial 
growth in the number of combinations of parameter values. 
We describe a t-way testing tool, called FireEye, and 
discuss design decisions that are made to enable an 
efficient implementation of the generalized IPO strategy. 
We also report several experiments that are designed to 
evaluate the effectiveness of FireEye. 

1. Introduction 
One approach to software testing is combinatorial testing, 
which creates test suites by selecting values for input 
parameters and by combining these parameter values.  For 
a system with n parameters, each of which has d values, the 
number of all possible combinations of values of these 

d nparameters is . Due to resource constraints, it is nearly 
always impossible to exhaustively test all of these 
combinations of parameter values. Thus, a strategy is 
needed to select a subset of these combinations. One such 
strategy, called t-way testing, requires every combination 
of any t parameter values to be covered by at least one test, 
where t is referred to as the strength of coverage and 
usually takes a small value. The notion of t-way testing can 
substantially reduce the number of tests. For example, a 
system of 20 parameters that have 10 values each requires 
1020 tests for exhaustive testing, but as few as 180 tests for 
2-way (or pairwise) testing [6]. We can consider each 
combination of parameter values to represent one possible 
interaction among these parameters. The rationale behind t-
way testing is that not every parameter contributes to every 
fault, and many faults can be exposed by interactions 
involving only a few parameters.  

To illustrate the concept of t-way testing, consider an 
elementary software system consisting of three Boolean 
parameters. Denote the two values of a Boolean parameter 
as 0 and 1. Fig. 1 shows a pairwise test set for this system. 
In the test set, each row represents a test, and each column 

represents a parameter (in the sense that each entry in a 
column is a value of the parameter represented by the 
column). It can be checked that each of the three pairs of 
columns, i.e., columns 1 and 2, columns 1 and 3, and 
columns 2 and 3, contains all four pairs of values of two 
Boolean parameters, i.e., {00, 01, 10, 11}. If all failures of 
the system are triggered by faulty interactions between at 
most two parameters, this test set would allow all the 
failures to be detected. Note that an exhaustive test set for 
this system would consist of 23 = 8 tests. 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Figure 1.  A 2-way test set for 3 boolean 
parameters 

Existing work on t-way testing has mainly focused on 
pairwise testing, which aims to detect faults that are caused 
by interactions between any two parameters. However, 
faults can also be caused by interactions involving more 
than two parameters [10][11]. In order to effectively detect 
those faults, it is necessary to enable a higher strength of 
coverage. In this paper, we generalize an existing strategy, 
called In-Parameter-Order (or IPO), from pairwise testing 
to general  t-way testing. The resulting strategy is referred 
to as In-Parameter-Order-General (or IPOG). A major 
challenge of our generalization effort is dealing with the 
combinatorial growth in the number of combinations of 
parameter-values. We describe a t-way testing tool called 
FireEye, and discuss design decisions that are made to 
enable an efficient implementation of the IPOG strategy. 
We also report several experiments that were conducted to 
evaluate the effectiveness of FireEye. In particular, we 
conducted an experiment that compared FireEye to several 
existing tools. The result of this experiment indicates that 
FireEye performed significantly better than the other tools 
for a real-life application. 

The remainder of the paper is organized as follows. 
Section 2 briefly reviews existing work on t-way testing. 
Section 3 describes the IPOG strategy. An algorithm that 
implements the IPOG strategy is also presented in Section 
3. Section 4 describes the FireEye tool, and discusses 
several key design decisions. Section 5 reports the design 



 

 
  

 

 

  

  
  

 
  

 

 

 

  
 

 
 

 

 

    

   

  
 

 
 

  
 

 
 

  
  

 
 

 
 

 

 

 

 

  

 

 

  

 
  

 

  
 

 

   

and the results of the experiments. Section 6 provides 
concluding remarks and our plan for further work 

2. Related Work 
Cohen et al. proposed a strategy, called Automatic Efficient 
Test Generator (or AETG), which constructs a test set by 
repeatedly adding one test at a time until all the 
combinations of parameter values are covered [4][5]. A 
greedy algorithm is used to construct the tests such that 
each test covers as many uncovered combinations as 
possible. Several variants of this strategy have been 
reported in the literature [2][17]. These variants share the 
same framework as AETG but use different heuristics for 
the greedy construction of each test [6]. In [13][16], we 
proposed the IPO strategy, which builds a pairwise test set 
for the first two parameters, extends the test set to cover the 
first three parameters, and continues to extend the test set 
until it builds a pairwise test set for all the parameters. 
Covering one parameter at a time allows the IPO strategy 
to achieve a lower order of complexity than AETG. Most 
recently, heuristic search techniques such as hill climbing 
and simulated annealing have been applied to multi-way 
testing [6]. Unlike AETG and IPO, which builds a test set 
from scratch, heuristic search techniques start from a pre
existing test set and then apply a series of transformations 
to the test set until a test set is reached that covers all the 
combinations. Heuristic search techniques can produce 
smaller test sets than AETG and IPO, but they typically 
take longer to complete.  

In addition to computational approaches, algebraic 
approaches have also been reported. These approaches 
construct test sets using pre-defined rules. Some algebraic 
approaches compute test sets directly by a mathematical 
function. These approaches are generally extensions of the 
mathematical methods for constructing orthogonal arrays 
[1][14]. Informally, an orthogonal array of strength t 
requires that every possible combination of any t columns 
be covered exactly once. Therefore, an orthogonal array 
can be considered as an optimal t-way test set if we 
consider each row to represent a test and each column to 
represent a parameter. Other algebraic approaches are 
based on the idea of recursive construction, which allows 
larger test sets to be constructed from smaller ones [8][18].  

Computational and algebraic approaches have their own 
advantages and disadvantages. Computational approaches 
can be applied to arbitrary system configurations, but they 
can be expensive as they involve explicit enumeration and 
there can be a large number of combinations to be 
enumerated. The computations involved in algebraic 
approaches are typically lightweight, and in some cases, 
algebraic approaches can produce optimal test sets. 
However, algebraic approaches often impose restrictions 
on the system configurations to which they can be applied. 

Finally, many empirical studies have been reported on 
assessing the fault detection effectiveness of t-way testing. 
In [3], Burr and Young showed that pairwise testing 
achieves higher block and decision coverage than 
traditional methods for a commercial email system. In [7], 
Dalal et al. applied t-way testing to a telephone software 
system and showed that several faults can only be detected 
under certain combinations of input parameters. In 
[10][11], Kuhn et al. studied the actual faults in several 
software projects, and found that all the known faults are 
caused by interactions among 6 or fewer parameters.  

3. The IPOG Strategy 
In this section, we present the IPOG strategy. Our 
motivation for generalizing the IPO strategy is two-fold. 
First, we want to develop a testing strategy that can be 
applied to general software applications.  Thus, the strategy 
should put no restrictions on the system configuration 
under test.  This consideration favors computational 
approaches over algebraic approaches. (Recall from 
Section 2 that the former can be applied to an arbitrary 
system configuration, while the latter often has restrictions 
on the system configurations to which they can be applied.) 
Second, general t-way testing has a more stringent demand 
on the time and space requirements than pairwise testing. 
This is because the number of combinations grows 
exponentially as the strength of coverage increases. This 
consideration favors the IPO strategy over other strategies 
such as AETG and heuristic search techniques. We also 
note that the IPO strategy is deterministic, i.e., it always 
produces the same test set for the same system 
configuration.     

The framework of the IPOG strategy can be described as 
follows: For a system with t or more parameters, the IPOG 
strategy builds a t-way test set for the first t parameters, 
extends the test set to build a t-way test set for the first t + 
1 parameters, and then continues to extend the test set until 
it builds a t-way test set for all the parameters. (The 
parameters can be in an arbitrary order.) The extension of 
an existing t-way test set for an additional parameter is 
done in two steps: 

•	 horizontal growth, which extends each existing 
test by adding one value for the new parameter; 

•	 vertical growth, which adds new tests, if needed, 
to the test set produced by horizontal growth. 

Fig.  2 shows a test generation algorithm called IPOG-Test 
that implements this framework. The algorithm takes as 
input an integer t and a set ps of parameters, and produces 
as output a t-way test set for the parameters in set ps. It is 
assumed that the number n of parameters in set ps is greater 
than or equal to t. Fig. 3 shows an application of algorithm 
IPOG-Test to an example system for 3-way testing. This 



 

 

 
 

 
 

 
  

 

 
 

 

   

 
 

   

  

 
  

   
  

  

 

 

     
  

   

 
 

   

 

  

  
  

 

   

   

       

       
 
 

        
    
        

    
 

Algorithm IPOG-Test (int t, ParameterSet ps) 
{ 
1.  initialize test set ts to be an empty set 
2. denote the parameters in ps, in an arbitrary order, as P1, P2, …, and Pn 
3.  add into test set ts a test for each combination of values of the first t parameters 
4. for (int i = t + 1; i ≤ n; i ++){ 
5. 	 let π be the set of t-way combinations of values involving parameter Pi

 and t -1 parameters among the first i – 1 parameters 
6. // horizontal extension for parameter Pi 

7. for (each test τ = (v1, v2, …, vi-1) in test set ts) { 
8. 	 choose a value vi of Pi and replace τ with τ’ = (v1, v2, …, vi-1, vi) so that τ’ covers the 
                 most number of combinations of values in π 
9. 	 remove from π the combinations of values covered by τ’ 
10. } 
11. // vertical extension for parameter Pi 

12. for (each combination σ in set π){ 
13. 	 if (there exists a test that already covers σ) { 
14. remove σ from π 
15. 	 } else { 
16. 	 change an existing test, if possible, or otherwise add a new test

 to cover σ and remove it from π 
17. 	 } 

18. } 

19.} 

20.return ts; 

} 


Figure 2: Algorithm IPOG-Test 

example system consists of four parameters P1, P2, P3, and 
P4, where P1, P2, P3 have two values 0 and 1, and P4 has 
three values 0, 1, and 2.  In the following, we will use this 
application as a running example to explain how algorithm 
IPOG-Test works. 

Algorithm IPOG-Test begins by initializing test set ts to be 
empty (line 1), and by putting the input parameters into an 
arbitrary order (line 2). Note that test set ts will be used to 
hold the resulting test set. Next, the algorithm builds a t-
way test set for the first t parameters. This is trivially done 
by adding into test set ts a test for every combination of the 
first t parameters (line 3).  In Fig. 3, the 3-way test set built 
for the first three parameters is shown in part (a), which 
contains all the 8 possible combinations of the first three 
parameters, i.e., P1, P2, and P3. 

If the number n of parameters is greater than the strength t 
of coverage, the remaining parameters are covered, one at 
each iteration, by the outermost for-loop (line 4). Let Pi be 
the parameter that the current iteration is trying to cover. 
We first compute the set π of combinations that must be 
covered in order to cover parameter Pi (line 5). Covering 
parameter Pi means extending test set ts so that it becomes 
a t-way test set for parameters P1, …, Pi-1, and Pi. Note that 
test set ts is already a t-way test set for parameters P1, …, 

Pi-1. Thus, we only need to cover all the t-way 
combinations involving Pi and any group of t -1 parameters 
among P1, …, Pi-1, which are the parameters that are 
already covered.  For example, in Fig. 3, in order to cover 
P4, we need to cover all the 3-way combinations of the 
following parameter groups, (P1, P2, P4), (P1, P3, P4), and 
(P2, P3, P4). We will not list each of the combination in 
those parameter groups, as they can easily be enumerated. 
Instead, we only point out that each of these groups has 12 
combinations.  Thus, there are in total 36 combinations in 
the set π computed for Fig. 3. 

The combinations in set π are covered in the following two 
steps: 

• Horizontal growth: This step extends each of the 
existing tests by adding a value for parameter Pi 
(lines 7 - 10).  These values are chosen in a greedy 
manner, i.e., at each step, the value chosen is one 
that covers the largest number of combinations in 
set π (line 8). Each time a value is added, the set 
of combinations covered due to this addition are 
removed from set π (line 9).  For example, in Fig. 
3, the 4th test is extended by adding the value 0 
for P4, which covers three combinations in set π: 
{(P1.0, P2.1, P4.0), (P1.0, P3.1, P4.0), (P2.1, 



 

 
 

 
  

 

  
 
 

 

 

 
  

  
   

 

 

 
 

  

  

 

 

  

 
  

 

 
  

  

 

 

 

 

 

  

 

  

     
 

   

 

  
  
  
  
  
  
  
  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

P3.1, P4.0)}. Here notation Pi.v indicates that v is 
a value of parameter Pi.  Note that if the 4th test 
was extended by adding the value 1 for P4, it 
would only cover two combinations in set π: 
{(P1.0, P2.1, P4.1), (P2.1, P3.1, P4.1)}.  The 
reason is that the combination (P1.0, P3.1, P4.1) 
was covered by the 2nd test and thus was removed 
from set π when the 2nd test was extended. 

•	 Vertical growth: This step covers the remaining 
uncovered combinations, one at a time, either by 
changing an existing test or by adding a new test 
(line 16). When we change a test to cover a 
combination, only don’t care values can be 
changed. A don’t care value is a value that can be 
replaced by any value without affecting the 
coverage of a test set. If no existing test can be 
changed to cover σ, a new test needs to be added 
in which the parameters involved in σ are 
assigned the same value in σ and the other 
parameters are assigned don’t care values. For 
example, in Fig. 3, after horizontal growth, 
combination (P1.1, P2.0, P4.0) has not been 
covered yet. No existing test can be found such 
that it can be changed to cover this combination. 
Thus, we create a new test (P1.1, P2.0, P3.-, P4.0), 
which is the 9th test in part (c), to cover this 
combination, where “–” denotes a don’t care 
value.  Also note that (P2.0, P3.1, P4.0) is another 
combination that was not covered either after 
horizontal growth. This combination can be 
covered by changing the value of P3 from “-” to 1 
in the 9th test. 

Now we consider the complexity of algorithm IPOG-
Test. The space complexity is dominated by the 
storage of π (line 5) for covering each new parameter. 
Let n be the number of parameters and d the largest 
domain size of the parameters. The space requirement 

t	 t −1for 	π is Ο(d ×n ) . The time complexity is 

dominated by horizontal extension.  In Section 4, we 
describe a data structure for storing all the 
combinations. With this data structure, it takes 
Ο( )1 time to determine whether or not a t-way 

combination is already covered, and it 
t −1takes Ο(n ) time to determine the number of 

combinations covered by a test. Thus, it takes 

d nt −1Ο( × ) to determine which value of the new 

parameter covers the most t-way combinations. As 
shown in [5] and supported by the experiments in 
Section 5, the number of tests generated by algorithm 

tIPOG-Test is in Ο(d × log n) . Thus, the time 

complexity of horizontal extension, and that of the 
t +1 t −1entire algorithm, is Ο(d ×n × log n) . 

0 0 1 0 0 1 1 0 0 1 1 
0 1 0 0 1 0 2 0 1 0 2 
0 1 1 0 1 1 0 0 1 1 0 
1 0 0 1 0 0 1 1 0 0 1 
1 0 1 1 0 1 2 1 0 1 2 
1 1 0 1 1 0 0 1 1 0 0 
1 1 1 1 1 1 1  1 1 1 1 

1 0 1 0 

P1 P2 P3 P1 P2 P3P4 P1 P2 P3 P4 
0 0 0 0 0 0 0 00 0 0 

(a)	 (b 0 1 0 1 
0 0 1 2 
1 1 0 2 
- 0 0 2 
- 1 1 2 

Figure 3. An illustration of algorithm IPOG-Test 

4. FireEye: A T-Way Testing tool 
We built a t-way testing tool, called FireEye, which 
implements the IPOG strategy.  FireEye is written in Java 
and consists of the following major components: (1) 
CombinatoricsHelper, which is a utility class that is 
responsible for all the computations related to 
combinatorics; (2) CombinationManager, which manages 
the combinations in a way such that they can be stored and 
checked efficiently; (3) TestEngine, which implements 
algorithm IPOG-Test; (4) TestGenerator, which drives the 
entire test generation process. FireEye also provides a 
graphic user interface (GUI) to facilitate the use of this 
tool. The GUI allows the user to create, edit, and inspect 
system configurations, to set up runtime options, and to 
view the resulting test sets. 
Due to the combinatorial effect, the number of t-way 
combinations can be large. To enable an efficient 
implementation, these combinations must be managed 
carefully. In Section 4.1, we discuss how FireEye computes 
t-way combinations. In Section 4.2, we describe the data 
structure for storing these combinations in FireEye. 

4.1 Computing T-Way Combinations 
In order to cover a new parameter, we first need to 
compute the set π of t-way combinations involving the new 
parameter and t-1 parameters that have already been 
covered (line 5 of Fig. 2). In the following, we consider a 
more general problem: How can we compute all n-way 
combinations of values of m parameters, where n ≤  m? 
Conceptually, this problem needs to be solved in two steps. 
First, we generate all possible combinations of n 
parameters out of m parameters. Second, for each 
combination of n parameters, we enumerate all possible 
combinations of values of these n parameters. In the 



 

 

 

 
 

 

  

 

 

 
 

 

  

 
  

    
  

  

  
  

                                                                 
 

 
 

 

  
 

  

   
 

 
   

 
 
 

  
 

   
 

  

 
   

  

  
 

  

  
  

  

 

 
 

remainder of this paper, we will refer to a combination of 
parameters as a parameter combination, and a combination 
of parameter values as a value combination. 
One approach to generating combinations of n elements is 
to use a nested loop of n levels, each iterating through the 
possible values of each element. This approach can be 
applied to generate both n-way parameter combinations, 
with care given to avoid generating the same combination 
of parameters in different orders, and n-way value 
combinations. This approach, however, suffers from the 
problem that such a nested loop must be hard-coded. As 
described below, FireEye uses a generic approach that 
allows parameter and value combinations to be generated 
without hard-coding any loops1 . 
We first discuss how to generate parameter combinations. 
Center to our approach is the use of parameter vectors. A 
parameter vector has m dimensions, one for each 
parameter. Consider each parameter vector as representing 
a parameter combination as follows: Each dimension takes 
on a binary value, 0 or 1, which indicates whether the 
corresponding parameter is excluded or included, 
respectively, in the parameter combination. For example, 
assume that there are 5 parameters {P0, P1, P2, P3, P4}. 
Then a parameter vector 10101 represents a parameter 
combination {P0, P2, P4}. Thus, the problem of generating 
all the n-way parameter combinations is transformed to the 
problem of generating all the parameter vectors in which 
the number of 1s is exactly n. 
One naïve approach to solving the above problem is to 
enumerate all possible parameter vectors of m dimensions, 
and then filter out those in which the number of 1s is not n. 
This enumeration can be accomplished as follows. 
Consider each vector to represent a numeric value, where 
each dimension represents a digit whose base is 2 and the 
significance of the digits decreases from left to right. 
Starting from a vector of all 0s, whose numeric value is 0, 
we can enumerate all the parameter vectors by repeatedly 
adding 1 until a vector of all 1s is reached. The addition of 
1 to a vector can be done by setting the least significant 
digit g whose value is 0 to 1 and changing all the digits that 
are less significant than g to 0. For example, let 10011 be a 
parameter vector. Observe that the third digit (from left) is 
the least significant digit whose value is 0. In order to add 1 
to this vector, we change the third digit from 0 to 1, and set 
the last two digits to 0. Doing so results in a new vector 
10100. 
Instead of enumerating all possible parameter vectors and 
then filtering out invalid ones, FireEye implements a more 
efficient approach that only generates valid vectors, i.e., 

1 We developed the described approach independently, but were 
made aware of [15] that provides a similar solution in the 
review process. 

those in which the number of 1s is exactly n. The 
framework of our approach is similar to that of the naïve 
approach, except for the following two differences. First, 
we start from a parameter vector in which the least 
significant n digits are set to 1, instead of the vector of all 
0s. For example, let m = 5, and n = 3. Then, we start from 
00111. Note that such a parameter vector is the smallest 
one, in terms of its numeric value, that consists of three 1s. 
Second, every time we derive a new parameter vector, we 
ensure that the number of 1s in the current vector is 
preserved. There are two cases to consider, depending on 
whether the last digit in the vector is 1 or 0. 

•	 Case 1: If the last digit is 1, we find the least 
significant digit g that is 0 and is followed by 1. 
Then, we change g from 0 to 1 and the digit 
following g from 1 to 0. For example, assume that 
the current vector is 01011. Then, the third digit 
(from left) is the least significant digit that is 0 
and is followed by 1. Thus, we generate the next 
parameter vector by changing the third digit from 
0 to 1 and the fourth digit from 1 to 0, which 
produces 01101. Note that this new vector is the 
smallest one that is greater than the current 
vector, in terms of their numeric values, and that 
preserves the same number of 1s.  

•	 Case 2: If the last digit is 0, we find the least 
significant digit g that is 0 and is followed by 1, 
which is similar to Case 1. At the same time, we 
count the number of 1s, say c, that appear before 
g. Then, we change g from 0 to 1, and set the 
digits that are less significant than g to 0, except 
for the last n - c - 1 digits, which are set to 1. For 
example, assume that the current vector is 10110. 
Then, the second digit (from left) is the least 
significant digit that is 0 and is followed by 1. 
Since the first digit is 1, c = 1. Thus, we generate 
the next parameter vector by changing the second 
digit from 0 to 1, and by setting the third and 
fourth digits to 0, and the last digit to 1, which 
results in 11001. Note that this new vector is the 
smallest one that is greater than the current 
vector, in terms of their numeric values, and that 
preserves the same number of 1s.  

Next we discuss how to enumerate all possible value 
combinations for each parameter combination. Similar to 
the way we consider a parameter combination, we consider 
each value combination to represent a numeric value, 
where each dimension represents a digit whose base is the 
same as the domain size of the corresponding parameter 
and the significance of the digits decreases from left to 
right. Starting from a value combination of all 0s, whose 
numeric value is 0, we can enumerate all the value 
combinations by repeatedly adding 1 until we reach a value 
combination in which the value of each digit is its base 



 

 

 

 
 

  

 
  

  

 

 

 
 

  

 

  

 

 

 
    

  
 
  

  
 

  

 

 
 

  

  
 

 
 

 
 

 
 

  
 

 

 

 

minus 1. The addition of 1 to a value combination can be 
accomplished by incrementing the least significant digit g 
whose value is less than its base minus 1 and setting all the 
digits that are less significant than g to 0. For example, 
assume that there are three parameters P1, P2, and P3, each 
having three values. Let 112 be a value combination of the 
three parameters. The second digit is the least significant 
digit whose value is less than its base minus 1. We can add 
1 to this combination by incrementing the second digit and 
by setting the last digit to 0, which results in a new value 
combination 120. 

4.2 Storing T-Way Combinations 
In this section, we describe the data structure used by 
FireEye for storing t-way combinations. On the one hand, 
we want the storage to be as compact as possible. On the 
other hand, we want to be able to quickly determine 
whether or not a given combination has been covered, 
which is the most frequently performed operation in 
algorithm IPOG-Test.  

BitMap 

BitMap 
0 0 1 

1 1 0 

1 0 1 

0 1 1 

1 0 0 

1 1 1 

Figure 4. A two-level hierarchy for storing 

combinations
 

As shown in Fig. 4, the data structure is a hierarchy of two 
levels. At the first level is an array of pointers, each of 
which represents one possible parameter combination and 
points to a bitmap at the second level. The pointers are 
indexed in such a way that for a given parameter 
combination, we can directly compute its index and thus 
locate the corresponding pointer quickly without having to 
search through the array. We use an example to illustrate 
the indexing scheme. Assume that there are 4 parameters, 
P0, P1, P2, and P3. There are 4 combinations of 3 
parameters out of the 4 parameters, and we index them in 
the following order: (P0, P1, P2), (P0, P1, P3), (P0, P2, 
P3), and (P1, P2, P3). The index of a given parameter 
combination (Pi, Pj, Pk) can be computed using the 
following formula 3 i 2 ( j i 1)  (k j 1)  .× + ×  − − +  − −  
For instance, the index of (P0, P2, P3) is 
3 0  2  (2  0  1)  (3  2  1)  2× + ×  − − +  − − =  . This formula 
can be easily generalized to any number of parameters.  

At the second level, each bitmap has one bit for each value 
combination. The bit value 0 indicates that the 
corresponding value combination has not been covered yet, 
and the value 1 indicates the corresponding value 
combination has already been covered. Again, we consider 
each value combination to represent a numeric value. The 
numeric value of a value combination is used to index the 
bit that corresponds to the combination.  
In order to determine whether or not a given value 
combination is covered, we first find the pointer that points 
to the bitmap to which the value combination belongs. 
Then, we check the value of the bit corresponding to the 
combination in the bitmap. Both steps take constant time.  

5. Experimental Results 
Our experiments have two goals.  First, we want to study 
the growth in the size of the test sets generated by 
algorithm IPOG-Test, as well as the time taken to produce 
those test sets, in terms of the strength of coverage, the 
number of parameters, and the domain size, respectively. 
Second, we want to compare the performance of FireEye to 
existing tools, both in terms of the size of the resulting test 
sets and the time taken to produce these test sets.   

To accomplish the first goal, we applied FireEye to three 
series of system configurations. In the first series, the 
number of parameters is fixed to 10, the domain size of 
each parameter is fixed to 5, and the strength of coverage is 
varied from 2 to 6. In the second series, the strength of 
coverage is fixed to be 4, the domain size of each 
parameter is fixed to be 5, and the number of parameters is 
varied from 5 to 15. In the third series, the strength of 
coverage is fixed to be 4, the number of parameters is fixed 
to be 10, and the domain size is varied from 2 to 10.  

Tables 1, 2 and 3 show the experimental results for the 
three series of system configurations, respectively. The 
columns in the three tables are self-explanatory. Note that 
the execution times are shown in seconds, and all the 
results were collected using a laptop running Windows XP 
with 1.6GHZ CPU and 1GB memory.   

In [5], it was shown that the growth in the size of a test set 
d tis in Ο( log  n) , where t is the strength of coverage, d is 

the domain size, and  n is the number of parameters.  We 
performed curve fitting analysis on the sizes of the test sets 
in the three tables. The analysis showed that our 
experimental results were consistent with the theoretical 
results.  In particular, we note that the number of tests in a 
t-way test grows very quickly as the strength of coverage t 
increases. 

To accomplish the second goal, we identified the following 
existing tools that support t-way testing and are either open 
source or free for academic use: (1) Intelligent Test Case 



 

 
 

 
 

 
 

 
 
 

 

  
 

 

  

 

 

 
 

  
  

 
 

   
  

  
 
 

 

 

 

 
 

        

  

  

 

  

Handler (or ITCH), which is from IBM [19]; (2) Jenny, 
which is from www.burtleburtle.net [20]; (3) TConfig, 
which is from University of Ottawa [21]; and (4) Test 
Vector Generator (or TVG), which is from 
www.SourceForge.com [22]. Based on limited information 
available in the literature, ITCH implements a combination 
of several algebraic methods (the details of the combination 
are not known), and TConfig implements a recursive 
construction method. Both Jenny and TVG seem to 
implement a computational method, but the details of their 
algorithms are not clear. Note that all these tools are 
written in Java, except for Jenny, which is written in C. 

t-way 2 3 4 5 6 

Size 48 308 1843 10119 50920 

Time 0.11 0.56 6.38 63.8 791.35 

Table 1: Results for 10 5-value parameters for 2- 
to 6-way testing 

We applied FireEye and the above tools to a Traffic 
Collision Avoidance System (TCAS) module. It 
implements part of an aircraft collision avoidance system 
specified by the Federal Aviation Administration, and has 
been used in other studies of software testing [9][12]. The 
TCAS module has twelve parameters: seven parameters 
have 2 values, two parameters have three values, one 
parameter has four values, and two parameters have 10 
values. Table 4 shows the sizes of the test sets generated by 
each tool and the times taken to generate these test sets. 

The execution times are shown in seconds, if not specified 
otherwise. The sizes of some test sets are not available, 
shown as NA, as their construction seems to take an 
excessive amount of time. In all cases, FireEye has 
performed better than the other tools, both in terms of the 
sizes of the test sets and the execution times. In several 
cases, FireEye has performed substantially better, 
especially for 5- and 6-way testing. If we compare FireEye 
to a particular tool, the extent to which FireEye 
outperformed increases as the strength of coverage 
increases. 

6. Conclusion and Future Work 
We consider t-way testing to be a very promising testing 
technique for several reasons. First, as a specification-
based technique, it requires no knowledge about the 
implementation under test. Moreover, the specification 
required by t-way testing is lightweight, as a basic system 
configuration only needs to identify the input parameters 
and the possible values of each of those parameters. 
Second, t-way testing can be very effective for various 
types of applications.  Kuhn et al. studied actual faults in 
several industrial applications, showing that all the known 
faults in these applications are caused by up to 6-way 
interactions [11]. Finally, test input generation for t-way 
testing can be automated as a push-button feature, which is 
a key to industrial acceptance. 

# of params 5 6 7 8 9 10 11 12 13 14 15 

Size 784 1064 1290 1491 1677 1843 1990 2132 2254 2378 2497 

Time 0.19 0.45 0.92 1.88 3.58 6.38 10.83 17.52 27.3 41.71 61.26 

Table 2: Results for 5 to 15 5-value parameters for 4-way testing  

# of values 2 3 4 5 6 7 8 9 10 

Size 46 229 649 1843 3808 7061 11993 19098 28985 

Time 0.16 0.547 1.8 6.33 16.44 38.61 83.96 168.37 329.36 

Table 3: Results for 10 parameters with 2 to 10 values for 4-way testing 

t-way 
FireEye ITCH Jenny TConfig TVG 

Size Time Size Time Size Time Size Time Size Time 

2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75 

3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07 

4 1361 3.05 1484 5400 1536 3.54 1476 >21 hour 64696 127 

5 4219 18.41 NA >1 day 4580 43.54 NA >1 day 313056 1549 

6 10919 65.03 NA >1 day 11625 470 NA >1 day 1070048 12600 

Table 4: Results of different tools for the TCAS configuration 

http:www.SourceForge.com
http:www.burtleburtle.net


 

  
 

 
 

 
 

  
 

  

  
 

 
   

 

  
 

   

   

 

  
 

 

         
 

         
  

    
 

 

 
 

 

 

 
   

  
 

 

  

 

 
 

 

     

  

  

 

 
 
 
   

We are continuing our work in the following directions. 
First, the IPOG strategy needs to explicitly enumerate all 
possible combinations. When the number of combinations 
is large, explicit enumeration can be prohibitive. We are 
developing techniques to reduce the number of 
combinations that are enumerated. Second, we are 
extending algorithm IPOG-Test to support parameter 
relations and constraints. Parameter relations are used to 
avoid exercising combinations between parameters that do 
not interact with each other. Parameter constraints are used 
to exclude combinations that are not meaningful from the 
domain semantics. Finally, t-way testing can generate a 
large number of tests, which makes it impractical to 
manually execute the tests and evaluate their results. We 
plan to integrate our test generation tool with other tools to 
automate the entire testing process, i.e., including test 
generation, test execution, and test evaluation.  

Acknowledgement 
The authors would like to thank Profs. Renee Bryce and 
Richard Carver for their comments on an earlier version of 
this paper. The authors would also like to thank Chinmay 
Jayaswal for conducting the experiments. This paper is also 
greatly improved by the anonymous review comments. 
This work is partly supported by a grant (Award No. 
60NANB6D6192) from the Information Technology Lab 
(ITL) of National Institute of Standards and Technology 
(NIST). 

Disclaimer: Certain software products are identified in 
this document. Such identification does not imply 
recommendation by NIST, nor does it imply that the 
products identified are necessarily the best available for the 
purpose. 

References 
[1]	 K. A., Bush, “Orthogonal arrays of index unity,” 

Annals of Mathematical Statistics, 23 (1952), 426-434. 
[2]	 R. Bryce, A Deterministic Density Algorithm for 

Pairwise Interaction Coverage, Proceedings of the 
International Conference on Software Engineering (SE 
2004). Innsbruck, Austria, pp. 245-252. 

[3]	 K. Burr and W. Young, “Combinatorial test 
techniques: Table-based automation, test generation 
and code coverage,” in Proc. of the Intl. Conf. on 
Software Testing Analysis & Review, 1998. 

[4]	 D.  M.  Cohen,  S.  R.  Dalal, J.  Parelius, G.  C.  
Patton, “The Combinatorial Design Approach to 
Automatic Test Generation,” IEEE Software, Vol.  13, 
No. 5, pp. 83-87, September 1996. 

[5]	 D.  M.  Cohen, S.  R.  Dalal, M. L. Fredman, and G. 
C.  Patton, “The AETG System: An Approach to 
Testing Based on Combinatorial Design,” IEEE 
Transactions on Software Engineering, 23:7, 1997. 

[6]	 M.  B.  Cohen, C.  J. Colbourn, P. B. Gibbons and 
W.  B.  Mugridge, “Constructing test suites for 
interaction testing,” In Proc. of the Intl.  Conf.  on 
Software Engineering, (ICSE 2003), 2003, pp.  38-48, 
Portland. 

[7]	 S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. 
M. Lott, G. C. Patton, and B. M. Horowitz, “Model
based testing in practice,” in Proc. of the Intl. Conf. on 
Software Engineering, (ICSE), 1999, pp. 285–294. 

[8]	 Alan Hartman, Leonid Raskin, “Problems and 
algorithms for covering arrays,” Discrete Mathematics 
284(1-3): 149-156 (2004) 

[9]	 M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. 
Experiments on the effectiveness of dataflow- and 
controlflow-based test adequacy criteria. In Proc. 
Sixteenth Internat. Conf. On Software Engineering, pp. 
191–200, May 1994. 

[10] D. R. Kuhn and M. J. Reilly, “An Investigation of 
the Applicability of Design of Experiments to 
Software Testing,” Proceedings of the 27th 
NASA/IEEE Software Engineering Workshop, NASA 
Goddard Space Flight Center, December 2002. 

[11] D. R. Kuhn, D.  Wallace, A.  Gallo, “Software Fault 
Interactions and Implications for Software Testing,” 
IEEE Transactions on Software Engineering, June 
2004, Vol.  30, No. 6. 

[12] D. R. Kuhn, V. Okun, “Pseudo-exhaustive Testing For 
Software,” 30th NASA/IEEE Software Engineering 
Workshop, April 25-27, 2006. 

[13] Y. Lei and K.  C. Tai , “In-parameter-order: a test 
generation strategy for pairwise testing,” Proceedings 
of 3rd IEEE Intl. Conf. on High-Assurance Systems 
Engineering Symposium, 1998, pp.  254-261. 

[14] R.  Mandl, “Orthogonal Latin squares: an application 
of experiment design to compiler testing,” 
Communications of the ACM, v.28 n.10, p.1054-1058, 
Oct.  1985. 

[15] D. Stanton and D. White, Constructive Combinatorics, 
Springer, 1986. 

[16] K. C.  Tai and Y. Lei, “A Test Generation Strategy 
for Pairwise Testing,” IEEE Transactions on Software 
Engineering, 2002, Vol.  28, No. 1. 

[17] Y. W.  Tung and W.  S. Aldiwan, “Automating test 
case generation for the new generation mission 
software system,” Proceedings of IEEE Aerospace 
Conference, 2000, pp.  431-437. 

[18] A. W.  Williams and R.  L. Probert. A practical 
strategy for testing pair-wise coverage of network 
interfaces. In Proceedings of the 7th International 
Symposium on Software Reliability Engineering 
(ISSRE), White Plains, New York, 1996. 

[19] ITCH, http://www.alphaworks.ibm.com/tech/whitch. 
[20] Jenny, http://www.burtleburtle.net/bob/math/. 
[21] TConfig, http://www.site.uottawa.ca/~awilliam/. 
[22] TVG, http://sourceforge.net/projects/tvg/. 

http://sourceforge.net/projects/tvg
http://www.site.uottawa.ca/~awilliam
http://www.burtleburtle.net/bob/math
http://www.alphaworks.ibm.com/tech/whitch



