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Multiscale modeling of point defects in 
strained silicon 

 
  

V.K. Tewary and Bo Yang 

 
Abstract— A multiscale Green’s function method is described for modeling 

substitutional point defects and vacancies in strained silicon. The model seamlessly 
links the length scales from atomistic to macro. The model accounts for the discrete 
lattice effects, elastic anisotropy, nonlinear effects, and the  presence of point defects 
as well as surfaces and interfaces in the solid.  An effective force, called the Kanzaki 
force, is defined, which is a characteristic of the defect configuration. This force can 
be calculated and stored for later use, which makes the method numerically 
convenient for subsequent calculations. The Kanzaki force is used to calculate the 
dipole tensor that is a measure of the strength of the defects and can be directly used 
to calculate the strains from the familiar continuum Green’s function. Numerical 
results are presented for the lattice distortion in half-space silicon due to a Ge 
impurity and the dipole tensors for various point defects (vacancy and 
substitutional germanium and carbon impurities) in two models of strained silicon. 
Calculated values of elastic constants are reported for strained silicon.  

 
Index Terms— elastic constants of strained silicon, multiscale Green’s function, 

point defects in strained silicon, strained silicon.  
 
 

I. INTRODUCTION 
 

As characteristic dimensions of CMOS transistors reach 45 nm or even lower, strain 
engineering of silicon is becoming increasingly more important in the fabrication of high 
performance devices. Strained silicon (sSi) has significantly improved carrier mobility 
and reduced power consumption enabling much higher switching speeds. Excellent 
reviews of sSi have been published by Chidambaram et al. [1] and Lochtefeld [2]. 
Strained silicon can be made by introducing layers of germanium in silicon lattice or by 
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depositing silicon on Si1-xGex, which expands the silicon lattice and hence increases the 
carrier mobility. It is also possible to make sSi on insulator without the Si1-xGex layer [2].  

An important problem [1] in the design of sSi based devices is that it has not yet been 
possible to measure all components of strain in the finished device. It is therefore 
necessary to have reliable theoretical models for calculating strain distribution in strained 
silicon.  

A mathematical model is also needed to calculate the strains introduced by the point 
defects such as vacancies, additional Ge, and C (carbon) impurities in sSi. These defects 
may be inherently present or deliberately introduced in the device. They can affect the 
mobility of the carriers and the overall performance and reliability of the devices. In 
particular, a C impurity can act as a strain compensator in silicon containing Ge.  A very 
useful application of the mathematical model is to identify measurable parameters. A 
comparison between the calculated and the measured values of these parameters would 
validate the theory and help characterizing the state of the strain in the device.  

Strain is a macroscopic parameter of the continuum model of a solid that affects the 
measurable Raman and X-ray spectra of the solid. However, for a detailed quantum 
mechanical calculation of the electronic wave functions and the mobility of the carriers, 
knowledge of strain alone is not enough. It is necessary to know the precise location of 
the host atoms in sSi. Hence a reliable model for sSi must give the local atomistic 
distortion in the lattice as well as strains in the entire solid. The model must account for 
the local discrete structure of the lattice including nonlinear effects where necessary. It 
should also account for the presence of surfaces and interfaces in the solid. It is necessary 
to relate the characteristics of the discrete lattice model such as lattice distortion and 
interatomic forces to strains and elastic constants that are parameters of the continuum 
model. Modeling of sSi is thus a multiscale problem.  

We shall give a brief review of our multiscale Green’s function (GF) model and its 
application to half-space silicon and infinite (without free surfaces) sSi. The multiscale 
GF is calculated numerically by imposing the continuum GF as the boundary condition 
and not the Born’s periodic boundary condition. It accounts for the nonlinear and discrete 
lattice effects near the defect, and free surface and interfaces if desired to be included. 
The multiscale GF links the length scales seamlessly from atomistic to macro and relates 
the discrete lattice distortion to strain in the corresponding continuum model. One useful 
mathematical result of our theory is that the discrete lattice contributions can be 
represented in terms of an effective force, called the Kanzaki force, which is a 
characteristic of the host lattice as well as of the defect configuration. This force can be 
calculated and stored for later use which makes it numerically very convenient for 
subsequent calculations on the same system.   

The Kanzaki force is used to define the elastic dipole tensor of a defect, which is a 
measure of the strength of the defect and can provide a signature of the defect 
configuration. It is useful [3] for calculating the strain in the whole solid using the 
standard continuum theory. It is also possible to experimentally measure some 
components of the dipole tensor.  
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Figure 1. (a) Reference lattice XR; (b) partially relaxed defect lattice X; (c) fully relaxed defect lattice 

XF. The solid circles represent atoms while the open ones represent the reference lattice sites. The solid 
triangle represents an impurity atom or a vacancy. In (b), the dotted line defines a nominal nonlinear core 
in which the atomic position is constantly updated in the iterative solution process. 

 
 

The work described in this paper is a report of our work in progress on a project 
dealing with the modeling of sSi. We first consider a single substitutional Ge impurity in 
half-space silicon lattice. This system is of interest because sSi is often made by using 
SiGe with varying concentrations of Ge. We then consider two models of infinite sSi. 
One is a trilayer model consisting of a layer of germanium atoms in between two half 
space silicon lattices. The other is a free standing model of sSi that is laterally stretched 
to the dimensions of the germanium lattice. However, in these preliminary results, we 
have neglected the effect of free surfaces in the free standing sSi. The model is based 
upon the standard adiabatic approximation of the Born von Karman model at zero 
temperature in which the effect of electrons is included only in a phenomenological 

(a) XR 

(b) X 

(c) XF 
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manner through an effective interatomic potential. Our model, therefore, would not 
account for effects such as Jahn-Teller distortion that is normally significant for a 
vacancy in silicon. 

We will present numerical results on the lattice distortion due to an isolated Ge atom in 
half-space silicon lattice, the change in the lattice constant of the sSi due to a layer of Ge 
atoms in the trilayer model, and the dipole tensors for a vacancy and substitutional Ge 
and C impurities in a free standing model of the sSi. We will also report the calculated 
values of the elastic constants for the free standing model of the sSi. The change in the 
lattice constant of the sSi gives the overall strain in the solid. Similarly the dipole tensor 
is a measure of the state of strain in the material [3]. More detailed results on the actual 
strain field will be published elsewhere.  

II. MULTISCALE GREEN’S FUNCTION 
 

The multiscale GF method has been described in detail in earlier papers [3] – [7].  Here 
we give only the features that are specifically applicable to sSi. Consider a lattice of N 
atoms. We first define a reference state XR as shown in Fig. 1(a). We then introduce 
defects in the lattice and let the lattice relax to its final state XF as shown in Fig. 1(c). In 
some cases, as when the nonlinear effects are included using an iterative procedure, it is 
convenient to define an intermediate or a partially relaxed state X as shown in Fig. 1 (b). 

We assume that the coupling between the atoms in the reference state is given by the 
force-constant matrix Φ. We use the Tersoff potential [8] to calculate Φ. The GF for the 
reference system is defined by 
 

G  =  [Φ]−1.                             (1) 
 
Both Φ and G are 3Nx3N matrices. We assume that Φ and hence G are known. We 

introduce additional defects in the lattice and also subject it to an external force field. As 
the lattice relaxes to its final state, it gets strained. The objective is to calculate the lattice 
relaxation or distortion given by the displacement field u in the final state measured with 
respect to the reference state. Hence u =0 in the reference state. 

The effect of the defects is to change the force constant matrix and also exert forces on 
the lattice sites. If Φ∗   denotes the force constant matrix in the final state,  

 
Φ∗ 

  = Φ  -  ∆Φ,                         (2) 
 
where ∆Φ denotes the change in Φ caused by the defects. The defect GF, that is, the GF 
for the final state is defined as follows in analogy with Eq. (1): 
 

G*  =  [Φ∗]−1.                             (3) 
 
The defect GF is given [3] by the solution of the Dyson equation 
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    G* = G + G∆ΦG*.                                (4) 

 
The lattice distortion in the final state is given by [3]  
 

u = G*F                             (5) 
 
where F is the Nx1 column matrix of forces on the atomic sites and u is the Nx1 column 
matrix of atomic displacements induced by the defect. For a discrete lattice u is a discrete 
variable defined only at the discrete lattice sites. The force F may be exerted by the 
presence of the defects or by imposing an external strain. The points where F is 
nonvanishing are called the source points and the points where u is calculated are called 
the field points.  

For multiscale modeling, we recast Eq. (2) in the following equivalent form by using 
Eq. (4): 

 
u = GF*(u),                            (6) 

 
where 
 

F*(u) = F + ∆Φ u,                              (7) 
 
The effective force F* is called the Kanzaki force which is equal to the force exerted 

by the defect at the relaxed lattice sites.  It is a function of u. It contains all the 
characteristics of discrete lattice structure in and around the source point [3] – [7] and 
depends upon the detailed nature of the defect. The Kanzaki force also includes the effect 
of local anharmonicity, if any. Since G is a property of the reference state, it does not 
depend upon the defect. It can be calculated and stored for later calculations on different 
defects in the same host lattice.  

In the harmonic approximation ∆Φ is independent of u and Eq. (6) is a linear equation 
in u. The atomic displacements in this case can be directly calculated from Eq. (6) by 
using the method of matrix partitioning [3], [4]. When the nonlinear effects are 
significant, as in sSi, ∆Φ is a function [6] of u and Eq. (6) becomes a nonlinear equation.  
In this case we solve Eq. (6) by iteration [6] by defining an intermediate state X for each 
iteration as shown in Fig. 1 (b).  

Equation (6) is the master equation of the multiscale GF method. The multiscale 
linking is achieved through G. When the reference state is the perfect lattice and the 
harmonic approximation is applicable, Eqs. (5) and (6) reduce to those given in [3] and 
[4]. It can be shown analytically [3] that in the asymptotic limit, when the distance 
between the source and the field point is large, the lattice GF reduces to the continuum 
GF. This correspondence provides the basis for the multiscale linkage of the GF over 
different scales.  
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The discrete lattice effects are important at the field points that are near the defect. 
These points form the core structure of the defect where the nonlinear effects may also be 
significant. For such field points we use the lattice statics GF for G. In the asymptotic 
limit, when the field points are far away from the source points, the solid can be modeled 
as a continuum. In this case we can use the continuum expression for G.  

The continuum model GF is also useful for including the effect of surfaces and 
interfaces that are far enough from the defect that the asymptotic approximation is valid. 
Standard methods are available in the literature [9] for calculation of the continuum GF. 
The continuum GF is also useful for boundary element analysis [10] that is applicable to 
solids of arbitrary shapes. In this paper, however, the free surface is included in the 
discrete lattice calculation because the defects can be close enough to the surface for the 
discrete and the nonlinear effects to be significant. 

Thus we see that Eq. (6) gives the lattice distortion in and near the core of the defects 
by using the lattice GF. It also gives the macroscopic strains far away from the defect 
while still retaining the discrete lattice and nonlinear effects in the core of the defect. 
Equation (6) thus links seamlessly the atomistic scales near the core of the defect to 
macroscopic parameters of the continuum model.  

The macroscopic strains are obtained by using the continuum GF in Eq. (6) which 
automatically makes the displacement field a continuous and differentiable function. In a 
purely discrete calculation, the displacement field is a discrete variable. Its derivatives, 
and therefore strains, are not uniquely defined. The use of the continuum GF along with 
the Kanzaki force in Eq. (6) removes this lack of uniqueness.  

The strains induced by a defect in a lattice can be characterized in terms of the dipole 
tensor of the defect. It is a second rank tensor defined in the lattice theory as follows 
[3],[6] 

 
 

Mij = ∑ riF*j,                            (8) 
 

 
where r is the position vector of an atom and i,j=1,2, and 3 corresponding to the 
Cartesian coordinates x,y, and z respectively. The dipole tensor, which is a measure of 
the strength of the defect, is used to model the defect as an inclusion in the continuum 
theory and directly gives the strain field in a solid [9]. Since we define it in terms of the 
Kanzaki force, it retains all the information about the discrete structure of the core of the 
defect and includes the nonlinear effects in the core. It is thus an important multiscale 
parameter that characterizes the state of strain in the solid. 

For a perfect lattice, G can be calculated by using the Fourier transform technique [3], 
[4].  In the present more general case, we calculate the multiscale GF directly using a 
hybrid model [5], [6]. In the reference lattice, we apply a unit force on a reference atom 
that we assume to be the source point. We draw a super cell of the lattice around the 
source. The super cell includes the free surface in the half space model of the solid. 
Atoms that directly interact with any atom outside the super cell are identified as 
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boundary atoms. For a sufficiently large super cell, the displacements of the boundary 
atoms and all the atoms outside the super cell are specified as those predicted by 
continuum GF [10] which provides the boundary condition for the hybrid GF. The 
continuum model GF used is chosen to be the half-space GF or infinite GF according to 
the model used. The calculated GF is multiscale in the Mott-Littleton sense that it is 
discrete near the defect and continuum in the far field region. We test the convergence of 
the model by varying the size of the super cell and ensuring that the results are 
independent of the size of the super cell.  

 

III. SUBSTITUTIONAL POINT DEFECTS IN SILICON 
 

In this section we present our detailed results for the lattice distortion caused by a 
single Ge atom in a half-space silicon lattice containing a free surface. The effect of the 
free surface is significant in the nanostructures and therefore must be included. This 
system is of interest because SiGe is used in making sSi. We have also calculated the 
dipole tensors for vacancy and Ge and C impurities in a perfect silicon lattice in order to 
compare their values with those for sSi which will be discussed in the next section. 

We calculate the atomic displacement field in the silicon lattice as a function of the 
depth of the Ge impurity below the free surface. We include the effect of the free surface 
in calculating G as described earlier. In this method we do not include the effect of the 
surface reconstruction and direct interaction between the defect and the free surface. This 
is a limitation of our model. 
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Figure 2. Variation of the x,y, and z components of the atomic displacements in Angstroms for atoms along 
a horizontal line (L1, L2, L3) where L2 = 0 and L3=kd for various values of the depth kd of the Ge impurity 
(a) u1 (b) u2 (c) u3. The impurity is located at (L1=0, L2 = 0, L3=kd). 

 
 
Hence, we consider only the case when the defect is least one lattice constant away 

from the surface. To take into account the surface reconstruction, the lattice at the surface 
should be modified according to experimental observations or by using a more advanced 
theory. The model must eliminate any net force in the system before introducing a defect. 

We assume a frame of reference in which the coordinate axes are parallel to the 
crystallographic axes with the Z axis pointing into the solid. We assume that the free 
surface to be the (0,0,1) plane. Silicon lattice structure consists of two interpenetrating 
fcc lattices. We refer to the lattice sites of these two lattices as type A and type B. The 
origin of the frame of reference is assumed to be at an atom of type A at the free surface. 
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The atoms of type B are shifted with respect to type A by the vector (1/4,1/4,1/4). The 
atomic coordinates are expressed in units of the lattice constant of the host silicon lattice. 
The coordinates of the type A atoms are given by (L1,L2,L3). We assume that Ge atom is 
at the lattice site (0,0,kd) so kd denotes the depth of the impurity below the free surface. 

The displacements of the atoms along the line (L1,0,kd) in the silicon lattice containing 
a substitutional Ge impurity are shown in Figs. 2 (a)-(c) for different values of kd. We see 
that the effect of the free surface is significant on the lattice distortion when the defect is 
close to the surface. However, the effect fades away quickly as the depth increases. When 
the defect is deep inside the solid (kd = 10), the atomic displacements are radial as 
expected intuitively on the basis of the continuum model. This implies u2 and u3 are 
nearly zero for atoms along the line (L1,0,kd) parallel to the X axis. Only u1 remains 
significant, which is responsible for laterally straining the silicon lattice along the X-axis.  
Further, the variation of u1 shows that the Ge impurity pulls the host atoms closer to itself 
for kd = 1, but pushes them away when kd = 10. This result is important for the 
interpretation of measurements such as those obtained by X-ray scattering, since the 
effect of the defect depends upon its depth below the free surface. 

Figure 2(c) shows that u3 has an oscillatory behavior, especially when the depth is 
small. The oscillation extends over a fairly large distance, that is, over a few unit cells, 
from the defect. The surface attracts the atoms very close to the defect but repels the 
others.  

We see from Fig. 2 (b) that, as mentioned before, u2 is nearly zero for kd = 10. This 
agrees with the continuum solution assuming the cubic anisotropy of the host lattice and 
spherical dilatational defects [9]. When the defect is close to the surface, u2 becomes 
significant due to the effect of the lattice asymmetry caused by the presence of the 
surface. As we will see in the next section, the local asymmetry near the interface makes 
the dipole tensor nondiagonal. In contrast, the continuum model predicts a zero value of 
u2 independent of kd. 

 

 
 

Figure 3. Schematic of a trilayer lattice of  Si/Ge/Si or Ge/Si/Ge 
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IV. SUBSTITUTIONAL IMPURITIES IN STRAINED SILICON 
 

Strained silicon is usually made by depositing silicon on Si1-xGex. It is now possible to 
have x = 1 that corresponds to just a layer of Ge atoms. Here we consider this extreme 
case. This system can be modeled as a trilayer material system consisting of a layer of Ge 
atoms sandwiched between two semi-infinite or half-space silicon lattices as shown in 
Fig. 3. This system can be visualized as a Ge quantum well in silicon, which will have 
the effect of locally stretching the silicon lattice. This model is symmetric about the 
germanium layer and amounts to having two layers of sSi separated by a layer of 
germanium atoms. Although not relevant for the present paper, a corresponding system 
can also be modeled for silicon quantum well in germanium.  

Now it is also possible [2] to stretch the silicon lattice by depositing it on SiGe and 
removing the SiGe layer. This leads to the sSi  on an insulator. If we neglect the effect of 
the insulator substrate, this system can be modeled as a free standing sSi.  In this paper 
we consider the two limiting cases: the free standing sSi that has been laterally stretched 
to the lattice constant of germanium and the trilayer system described above.  

We are presently in the process of calculating the effect of the Si1-xGex substrate for 
different values of x and also the insulator substrate on strains in sSi  by using the 
multiscale GF as described in Sec. II.  

We first consider the free standing sSi. The lattice constants of normal silicon and 
germanium lattices as predicted by the Tersoff potential are 5.4320 Ǻ and 5.6567 Ǻ 
respectively. We stretch the silicon lattice in the (1,0,0) plane so as to match with the 
lattice constant of the germanium lattice. We then allow the lattice to relax in the 
perpendicular direction keeping the lateral dimensions fixed. This decreases the lattice 
constant of silicon (the Poisson effect) in the perpendicular direction from 5.4320 Ǻ  to 
5.1952 Ǻ .  The symmetry of the resulting structure is reduced from cubic to tetragonal. 
This gives a model of free standing sSi.  

An important mechanical parameter for sSi is the fourth rank elastic constant tensor 
with components Cijkl. We calculate the elastic constants for the sSi as given below. In 
these calculations we account for the full elastic anisotropy. 

The stress in the solid is given by 
 

 
ij

ij
V
ε

σ
∂
∂

= ,                                                                                                                                 (9) 

 
where V is change in the potential energy of the solid on relaxation and εij is the 
infinitesimal strain, defined by 
 
 )( ,,2

1
ijjiij uu +=ε .                                                                                                     (10) 

 
We assume that the lattice is in the final relaxed state and is subjected to no body force. 

We first calculate the “stress” at an atom called the reference atom. We identify all the 
neighboring atoms that directly interact with the reference atom. Now we apply a 
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displacement field on the neighboring atoms according to a specified infinitesimal strain 
in the finite-difference form of Eq. (9). We then calculate the potential energy of the 
reference atom in the field of all the neighboring atoms with and without relaxation. The 
difference between the two gives the relaxation energy.  

From Eq. (9) the relaxation energy is equal to the product of the stress and the 
perturbing strain tensors. Repeating the above process six times with different perturbing 
strains, we obtain six such equations. We solve this set of six equations for the six 
components of the symmetric stress tensor. For computational convenience, we can 
assume that at any one time only one component of the perturbing strain is nonzero.  

The elastic constants of a solid are defined by 
 

 
kl

ij
ijklC

ε
σ

∂

∂
= ,                                                                                                                  (11) 

 
where the indices i,j,k, and l range over 1 to 3 corresponding to the Cartesian components 
of the tensor. The fourth rank elastic constant tensor is in general anisotropic and can be 
represented as a 6x6 matrix using the standard Voigt notation. 

We evaluate each component numerically by first drawing a sufficiently large cell of 
atoms, for instance, a block of 20 x 20 x 20 unit cells. We impose a displacement field on 
the atoms according to the strain field specified above. The system is then relaxed while 
the boundary atoms are tightly held. The physical cell boundary consists of two layers of 
atoms. This is because in the Tersoff potential each atom interacts with up to its second 
neighbor atoms.  

Finally, we calculate the stress at the reference atom as described above. The change of 
stress is set equal to the product of the elastic constants and perturbing strain according to 
Eq. (11). This again gives a set of six independent equations. Repeating the above 
process six times with different perturbing strains, we obtain 6 x 6 such equations that we 
solve for all 6 x 6 components of the elastic constant tensor in the Voigt contracted 
notation. The calculated elastic constant tensor exhibits the full symmetry of the solid. 

The calculated values of the elastic constants for the free standing sSi that has 
tetragonal symmetry are given below in units of eV/ Ǻ3 

 
C11 =  0.867, C12 = 0.381, C13 = 0.404, C33 = 0.700,  
C44 = 0.387,  and C66 = 0.464.  
 
The  values of the elastic constants of silicon in the same units, as predicted by the 
Tersoff potential, are C11=0.89, C12=0.471, and C44=0.432.  

  
We now calculate the effect of the substitutional defects in the sSi. The substitutional 

defects that we consider are vacancy, C and Ge impurities. As mentioned earlier, the 
defect can be fully characterized in terms of M, the dipole tensor, defined in Eq. (8).  We 
calculate the values of the dipole tensor M in the sSi and compare these values with those 
obtained for the same defects in ordinary silicon. Ordinary silicon lattice has cubic 
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symmetry whereas sSi has tetragonal symmetry. Consequently M is diagonal and 
M11=M22 in both the cases. In the cubic case M33 is equal to M11 and M22,  but different in 
the tetragonal case.  

For the cubic case of ordinary silicon, using the method described in Sec. III, we obtain 
the following values in eV for vacancy, Ge and C, respectively: M11 = 5.37, 1.45, and -
16.2. For the sSi, the corresponding values of M11 and M33 in the same order and the 
same units are: M11=8.22, 1.32, and -15.3; M33=5.31, 1.52, and -13.7. We notice that the 
values of the components of M for C are negative which shows that C can act as strain 
compensator. The values of M are significantly different in the two cases, which shows 
the effect of large strain in the sSi. These values can also be measured in principle, and 
used to characterize the defects. 

Now we consider the trilayer system described at the beginning of this section. As 
shown in Fig. 3, we form the reference state by placing a layer of compressed germanium 
lattice between two half-space silicon lattices. All layers are assumed to be parallel to the 
(0,0,1) plane of the silicon lattice.  

The germanium layer is compressed enough in the lateral direction so that its lattice 
constant matches with that of the silicon lattice. We then allow the lattice to relax in the 
perpendicular direction keeping the lateral dimensions fixed. Similar to the previous case, 
this increases the lattice constant of germanium in the perpendicular direction from 
5.6567 Ǻ to 5.8145 Ǻ, which we obtain by minimizing the energy under fixed lateral 
dimensions. The symmetry of the compressed germanium lattice is also reduced from 
cubic to tetragonal. We then allow the reference system to relax to its final equilibrium 
state leading to the sSi. The structure of the relaxed state is calculated by using the hybrid 
multiscale GF as described in Sec. II.  

The relaxation of the lattice changes the interplanar spacings in the final state of the 
sSi. The interplanar spacings are a measure of strain in the sSi. We have calculated the 
interplanar spacing for the (0,0,1) planes as a function of the distance of the planes from 
the Si-Ge interface by minimizing the total energy [5]. The values are: 1.458 at the 
interface, and 1.3542, 1.3583, and 1.3580  in Ǻ  at the first, second, and third planes 
respectively in sSi.  On the germanium side of the interface, the corresponding spacings 
are 1.4580, 1.4533, and 1.4536 in Ǻ. We see that the spacing at the interface is almost 
equal to the average of the long distance interplanar spacings in silicon and germanium at 
large distances. These spacings can be measured and used to characterize the strain in the 
sSi.  
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