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INTRODUCTION 
 Multiphasic tissue models have been used extensively to predict 
the behavior of cartilaginous tissues [1]. Their application to other soft 
tissues, however, has often been overlooked. Unlike the more 
commonly used continuum model of the viscoelastic solid [2], 
multiphasic models allow us to infer the behaviors and properties of 
tissue subcomponents by observing the behavior of the tissue whole. 
As a great deal of tissue function and structure is related to the control 
and transport of fluids and fluid-borne agents, there is clearly a need 
for this insight in all tissues. For example, there has been a great deal 
of interest recently in the possibility of modifying the flow properties 
of solid tumors and other tissues to allow the targeted delivery of large 
molecular weight drugs, such as chemotherapeutic or genetic agents 
[3-4]. It is well known that the high interstitial fluid pressures, 
confused vasculature, and lack of a lymphatic system prevent the 
effective distribution of directly injected or systemically administered 
drugs into tumors [3]. Increasing the effective permeability of these 
tumors can ameliorate these issues and allow for more effective 
treatment. A handful of studies have found that the biphasic model, 
along with some basic experimental tools, can reasonably represent the 
flow properties of tumors [4-5]. In this paper, we describe a technique 
using a simple confined compression experiment with the biphasic 
model to measure the hydraulic conductivity of samples of cardiac 
tissue. 
 
THEORETICAL MODEL 
 The biphasic model treats tissue as a mixture of an 
incompressible fluid and porous elastic solid. In mixture theory, each 
point in physical space is considered to be simultaneously occupied by 
some volume fraction of each phase, such that a vacuum is disallowed. 

That is, if fφ  and sφ are respectively the volume fractions of the fluid 

and the solid, then 1=+ sf φφ . The phases move independently with 

velocities fv  and sv , but interact such that each phase independently 
as well as the entire mixture obey the laws of physics. The interaction 
equations express the overall conservation of matter, momentum and 
energy. 
 The constitutive equations of each phase must ultimately be 
inferred from experiment or the fundamental principles of statistical 
mechanics. In our case, it makes sense to model the fluid as 
incompressible and the solid as elastic, so that: 
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where p is the fluid pressure, ijε  the strain, ijklH  the elastic constants 

and f
ijσ  and s

ijσ  the stresses in the fluid and solid. The volumetric 

force felt by fluid flowing through the solid may be written 
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 The confined compression experiment is set up to reduce the 
problem to 1D as follows. A plug of tissue is placed in a constricting 
chamber where it may be compressed by a piston. At one end of the 
tissue (z=0) is a filter which allows fluid to flow relatively freely from 
that end of the tissue. Thus the fluid pressure here must be zero. The 
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other end (z=h) is closed so that fluid cannot flow. Because the fluid is 
relatively incompressible, the tissue will only deform from the filter 
end as the fluid escapes. As the tissue is compressed, the net 
displacement and stress, 

 ( ) ( ) ( ) ( )tuthututU ,0,,0 =−= , (4) 

 ( ) ( ) ( ) ( )tuHttt z
fs ,0,0,0 ∂=+=Σ σσ , (5) 

(with ( ) 0,0 =tp ) are measured. Because of eq. (5), an a priori estimate 
of the maximum local strain is available given an estimate of the tissue 
elastic constant. Combining equations (1), (3), and the balance of 
forces, we arrive at: 

 ( )fs
z

f vvDuH −=∂2φ . (6) 

The continuity condition:  

 0=+ ssff vv φφ ,  (7) 

may be finally used to replace fv  in terms of sv : 

( ) uCKvCDu teff
sf

z ∂≈⎥⎦
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⎡=∂ −122 / φ , (8) 

where ( ) DK f
eff /21 φ≡−  can be identified as the Darcy law hydraulic 

conductivity. fφ is generally compression dependent, so that effK  is 

often empirically written as ( )uMK z∂−exp0 . For small strains, fφ  
may be taken as a constant, and eq. (8) is just the equation of linear 
diffusion (“heat equation”). The linear version of the equation may be 
solved analytically as an infinite series of decaying cosines, however, 
no analytic solution exists for the nonlinear equation. 
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Figure 1. The model vs. experimental stress for the second 

load cycle of sample 5. 
 
EXPERIMENTAL PROCEDURE 
 Ten right circular cylinders, about 12.5 mm in diameter and 5 mm 
in height, were cut from fresh bovine heart muscle and tested within 
24 hours of sacrifice. Samples were placed in a 12.50 mm 
polycarbonate cylinder with a close fitting piston (-0.01 mm). A 40 
μm sintered filter allowed fluid to escape from the bottom of the 
cylinder. The piston was placed in a bath of buffered saline maintained 
at 36 oC that was mounted in a commercial tensile machine. A 100 N 

load cell (0.1 % absolute error) measured load while a LVDT 
measured displacement (0.1 % absolute error). The sample was 
ramped in compression with displacement control at 0.003 mm/s until 
a peak force of 3 N was reached. The peak displacement was then held 
for 900 s.  The sample was then unloaded and allowed to recover for a 
several minutes before loading again. The applied displacement and 
the resulting force data were collected. 
 Using the applied displacement as the boundary condition, the 
solution of eq. 8 was approximated with forward finite differences in 
time and central finite differences in space as a function of the material 
constants H and Keff. The resulting stress at the boundary was then 
predicted. The rms error between the measured stress at the boundary 
and the model predicted stress was minimized by varying H and Keff 
with a Levenberg-Marquardt algorithm. The optimal H and Keff were 
determined for each of the first two cycles.  
 
RESULTS 
 The linearized model could not capture the relatively fast changes 
in the stress as it reached the peak load, but was able to predict the 
stress relaxation portion of the test (Figure 1). For the 10 samples 
tested H = 0.007 ± 0.004 MPa and Keff = 16 ± 12 MPa·s/mm2 for the 
first cycle and H = 0.011 ± 0.008 MPa and Keff = 48 ± 30 MPa·s/mm2 
for the second cycle. H (p = 0.01) and Keff  (p = 0.0007) were 
significantly different from cycle one to cycle two using a paired two-
tailed t-test. For comparison, measured values for the series of tumor 
types tested in ref. 4 ranged from H = (0.007 to 0.040) MPa and Keff =  
(0.54 to 14.5) MPa·s/mm2. 
 As the fluid flows out of one end of the tissue, the fluid channels 
at this end collapse, resulting in an effective reduction in the local 
permeability. A higher load is then needed to push additional fluid out. 
This behavior is not modeled by the linearized equation and is 
responsible for the mismatch in the load peaks. Since the samples were 
not allowed to relax completely back to the zero state between cycles, 
the effect carries over into the second cycle, resulting in new effective 
values for H, and particularly for Keff.  
 
CONCLUSION 
 Using the equations of the biphasic tissue model, we found it  
possible to measure soft tissue flow properties in a simple compression 
test. If large local strains are expected, a nonlinear correction is 
needed. 
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