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A computationally efficient phonon Green’s-function method is described for calculation of frequency spec-
tra of single-walled carbon nanotubes containing point defects. The method is generally applicable to defects
in other nanostructures. The phonon Green’s function is used to calculate line shapes of one-phonon lines in the
nuclear resonant inelastic x-ray scattering from 57Fe embedded in a single-walled carbon nanotube. The line
shapes are anisotropic and have some unusual features that can provide insight into the physical processes in
nanomaterials at atomistic scales and can be used to characterize them. In particular, it may be possible to use
the line shapes in certain directions to determine the chirality of a nanotube.
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I. INTRODUCTION

We calculate the line shapes of one-phonon lines in the
nuclear resonant inelastic x-ray scattering �NRIXS� spectrum
from 57Fe in single-walled carbon nanotubes �SWNTs� of
different chiralities and diameters using a computationally
efficient phonon Green’s-function method. We find that the
line shapes have unusual features that can provide an insight
into the physical processes in SWNTs at the atomistic scale
and can be used to characterize them. Similar effects should
be observable in the NRIXS spectra of other nanomaterials,
particularly nanowires.

Identification of physical processes at the atomistic scale
is necessary for characterization of nanomaterials, which is
needed for their industrial applications. Conventional meth-
ods of characterization of materials that depend on their mac-
roscopic response are not adequate for nanomaterials. We
suggest that the nuclear resonance spectroscopy �NRS� can
be a valuable tool for quantitatively characterizing the nano-
materials at the atomistic scale. In particular, we show that
the NRIXS spectrum in an SWNT is quite sensitive to its
chirality as well as diameter. It should be possible, therefore,
to use NRIXS to determine the chirality and the diameter of
an SWNT.

Chirality is one of the most important parameters of an
SWNT, which determines its electronic, optical, and thermal
properties.1 For example, the chirality of an SWNT deter-
mines whether it is metallic or semiconducting. Hence, there
is a strong industrial and research interest in exploring new
physical processes which can be used for measurement of
chirality of an SWNT. Chirality of an SWNT can be deter-
mined by using transmission electron microscopy but it re-
quires manipulation of individual SWNTs. Chirality can also
be obtained from resonance Raman-scattering experiments
though the normal Raman scattering gives no information
about the chirality.1 The results of this paper should be useful
in developing NRIXS as a spectroscopic method for mea-
surement of chirality and diameter of an SWNT that would
supplement other methods of characterizing nanotubes.

NRS and, in particular, NRIXS using the highly brilliant
synchrotron radiation are techniques2–4 that have been found
to be very useful for studying phonons and their frequency

spectra in solids. The physical process underlying NRS �see
Ref. 2 for an excellent review� is very similar to Mössbauer
scattering. The scattering of a high-energy photon from a �
isotope embedded in a host solid consists of an elastic part
and an inelastic part. The elastic part corresponds to recoil-
less absorption of a photon, which is the Mössbauer effect.
However, the minimum-mass condition3 for the existence of
the recoilless absorption may not be satisfied for an SWNT.
The intensity of the Mössbauer line and its second-order
Doppler shift depend on the integral of the phonon spectrum
of the solid. These quantities, therefore, may not be very
sensitive to the details of the phonon spectrum, but may give
useful information about the location of the Mössbauer iso-
tope, its binding with the host atoms, and the diameter of the
SWNT. Of course, the diameter of an SWNT can be conve-
niently measured by other methods such as Raman
spectroscopy.1 In this paper, our interest is only in the inelas-
tic scattering.

NRIXS refers to the inelastic scattering of x rays2,3 from a
Mössbauer or a � isotope that involves exchange of one or
more phonons between a photon and the host solid. The line
shapes3 of NRIXS lines depend on the phonon frequency
spectrum �density of states� of the solid. The theoretical
problem is that the introduction of a � isotope in a lattice
changes its phonon spectrum. Hence, in order to calculate the
line shapes, it is necessary to account for the change in the
phonon spectrum of an SWNT caused by the introduction of
the � isotope. Moreover, the line shape depends not directly
on the phonon spectrum but on the projected phonon spec-
trum, which is defined in terms of the wave vector of the
incident � photon. Further, as shown in Sec. II B, only the
modes close to the impurity atom contribute to the line
shape. The NRIXS is therefore sensitive to the local environ-
ment of the impurity, which is determined by the chirality of
the nanotube.

We derive an expression for the line shape of a one-
phonon NRIXS line in an SWNT containing 57Fe in terms of
the phonon Green’s function5 that fully accounts for the
changes in the phonon spectrum caused by the defect. As an
approximation, we have assumed that 57Fe is a substitutional
isotopic defect in the SWNT lattice. The effect of this ap-
proximation and its validity has been discussed in Sec. III. A
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separate detailed calculation is needed to determine a realis-
tic and stable configuration of 57Fe in an SWNT, which
would also yield changes in force constants and bond
lengths. Once the defect configuration is known, the phonon
Green’s-function method, as given here, can be applied to
model that configuration by redefining the defect space.5–7

The Green’s-function method is a computationally effi-
cient method for modeling phonons in lattices with and with-
out defects. It has been successfully used for ordinary
solids5–7 but has not yet been applied to nanomaterials. As
shown in this paper, the calculation of the phonon spectrum
of an SWNT containing a defect is particularly convenient in
terms of the phonon Green’s function. Knowledge of the
phonon spectra of SWNTs �and other nanomaterials� con-
taining defects is essential for calculating their thermody-
namic properties and certain electronic and optical
properties.1,8 A real SWNT will always have lattice defects
such as vacancies, interstitials, etc., which affect its physical
properties.8 Such defects can be conveniently modeled by
using the Green’s-function method as described here. The
method is also applicable to other nanostructures.

II. THEORY

A. Phonon Green’s function for an SWNT

In this section, we present a method for calculating the
change in the phonon spectrum of an SWNT due to the pres-
ence of a lattice defect by using the phonon Green’s-function
method. We will also derive expressions for the perfect pho-
non Green’s function �PGF� for an SWNT without any de-
fects and the defect Green’s function �DGF� for an SWNT
containing a single substitutional lattice defect. The Green’s-
function method for ordinary three-dimensional �3D� lattices
has been described in detail in the classic book by Maradu-
din et al.5 for phonons and in Ref. 6 for static problems. The
Green’s-function method has not yet been applied to defects
in SWNT lattices. Our method as presented here is an adap-
tation of the technique given in Refs. 5 and 6 for ordinary
solids to nanotubes.

We assume a frame of reference, as shown in Fig. 1. The
Z axis is along the cylindrical axis of the SWNT, and the
origin of coordinates is at the center of the cylinder. The
atoms of the SWNT are located at the cylindrical surface.
The X axis is assumed to pass through an atomic site. We
will denote the Cartesian components of a vector by the
Greek indices �, �, etc., which stand for x, y, or z. Summa-
tion over repeated indices is not assumed and will be written
explicitly.

We label an atom in the SWNT lattice by a pair of indices
L�, where L labels a unit cell and � labels the atom inside a
unit cell. The label L� in the SWNT lattice is the same as in
the parent graphene lattice. Each unit cell of the SWNT lat-
tice contains two atoms,1 so �=0 or 1. The atom �=0 is
assumed to be at the origin of the unit cell. The atom on the
X axis is labeled as �00�, as shown in Fig. 1.

We define the two-dimensional �2D� position vector of an
atom L� in the parent graphene lattice with respect to its
crystallographic axes as follows:

R�L�� = R�L0� + r��� , �1�

where r��� is the position vector of the atom � with respect
to the origin of the unit cell. To avoid any confusion, we
emphasize that vectors R�L��, R�L0�, and r��� in Eq. �1� are
defined with respect to the crystallographic axes of graphene.
Unless otherwise stated, all other expressions in this paper
are given in the SWNT frame of reference shown in Fig. 1.

The SWNT lattice is constructed by folding the graphene
lattice around the Z axis and along the chiral vector. Hence,
the angle ��L�� with respect to the X axis subtended by the
projection of the atom L� on the chiral vector is given by

��L�� = RC�L��/RS, �2�

where RS is the radius of the SWNT and RC�L�� is the pro-
jection of R�L�� on the chiral vector in the graphene lattice.
The SWNT lattice is invariant against a rotation by ��L0�
about the Z axis. This is equivalent to the translation sym-
metry of the graphene lattice by the vector R�L0�. The ma-
trix of rotation about the Z axis by an angle ��L�� is given by

SZ�L�� = �cos���L��� − sin���L��� 0

sin���L��� cos���L�� 0

0 0 1
� . �3�

We represent the phonons in SWNTs using the Born–von
Karman model. The main approximations5 of this model are
�i� adiabatic approximation, �ii� harmonic approximation,
and �iii� periodic boundary conditions. We use the fourth
neighbor interaction model for the force constants with cur-
vature correction, as described by Saito et al.1 The 3�3
force-constant matrix between two atoms L� and L��� is
denoted by ��L� ,L����. If m�L�� denotes the mass and

FIG. 1. The frame of reference showing the origin and the X and
Y axes for a cylindrical SWNT. The Z axis is along the axis of the
cylinder, which is normal to the plane of the paper. All the atoms
are located at the surface of the cylinder. The figure shows the
locations of atoms in two adjacent unit cells, L=0 and L=1, each
containing two atoms, �=0 and �=1, and also the angular separa-
tion between atoms 00 and 10.
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u�L�� the 3D displacement of the atom L�, we can write the
following equation for the atomic displacements:

m�L��	2u��L�� = �
L���

����L�,L����u��L���� . �4�

Equation �4� represents a set of 6N homogeneous equations
corresponding to three Cartesian coordinates of 2N atoms,
where N is the total number of unit cells, each containing
two atoms. We write Eq. �4� in the form of full-crystal ma-
trices in the vector space of the lattice sites as follows:

�M	2 − ��u , �5�

where � is a 6N�6N square matrix and u is a 6N dimen-
sional column matrix. Their matrix elements are
����L� ,L���� and u��L��, respectively. The matrix M is a
6N�6N diagonal matrix of atomic masses. Its matrix ele-
ments are as follows:

M���L�,L���� = m�L��
K�L�,L����
K��,�� , �6�

where 
K denotes Kronecker’s delta which is unity if its two
arguments are equal and zero otherwise. The eigenvalues of
the left-hand-side �LHS� matrix in Eq. �5� give the phonon
frequencies. There will be 6N eigenvalues, some of which
may be degenerate.

First, we consider a perfect lattice without defects. For a
perfect lattice, m�L�� is independent of L. In the present case
of SWNT, the masses of both atoms in the unit cell are the
same. So, m�L��=mC for all L�, where mC is the mass of a
carbon atom. In a normal perfect lattice, which has a trans-
lation symmetry, Eq. �5� can be block diagonalized by using
the Fourier transform. An SWNT has a helical symmetry10

about the Z axis. Popov et al.11 have given an elegant trans-
formation that uses the helical symmetry10 to block diagonal-
ize Eq. �5� for an SWNT. We use a slight variant of this
transformation to block diagonalize Eq. �5�.

We transform the atomic displacements by using the rota-
tion operator defined in Eq. �3� as follows:

v�L�� = �SZ�L���−1u�L�� , �7�

which transforms Eq. �5� to

��	2�v = 0, �8�

where

��	2� = M	2 − � , �9�

and � is the effective force-constant matrix. Its matrix ele-
ments are given by

��L�,L���� = �SZ�L���−1��L�,L����S��L���� . �10�

Since the lattice is invariant against a rotation by ��L0� about
the Z axis10 for any L, ��L� ,L���� will be independent of L
and will depend only on the difference of L� and L. We will
refer this symmetry as the angular translation symmetry in
analogy with the linear translation symmetry exhibited by
normal lattices. Equation �5� can be, therefore, block diago-
nalized by using the Fourier transform over the Brillouin
zone of the SWNT, as shown by Popov et al.11 This gives the

following block-diagonalized force-constant matrix in the
Fourier space:

�−��
F ��,��;q� = �

L��

����0�,L���exp�− q · �R�L���

− R�0���	 , �11�

where  is 
�−1� and q is a 2D wave vector in the Brillouin
zone of the graphene lattice.1,11 The dynamical matrix for
phonons is defined by

D����,��;q� = �1/mC����
F ��,��;q� . �12�

The eigenvalues of D�q� give the phonon frequencies of the
perfect SWNT. The matrices �F�q� and D�q� are 6�6 and
can be diagonalized or inverted numerically. Some authors,
as Refs. 1 and 11, define the Fourier transform with respect
to the unit-cell coordinates. In Eq. �11�, we have defined the
Fourier transform with respect to the atomic coordinates as
in Ref. 5. This introduces a phase factor in the eigenvectors
of D but does not change its eigenvalues.

The transformed perfect-lattice PGF matrix G�	2� is de-
fined in the usual way5,6 as follows:

G�	2� = �M	2 − ��−1. �13�

For a perfect lattice, M is simply mC times a unit matrix. By
using the orthogonal property of the Fourier transform, we
can derive the following expression for the matrix elements
of G�	2� in terms of its Fourier transform from Eqs. �11� and
�13�.

G���L�,L���,	2� = �1/N��
q

G��
F ��,��;q,	2�

�exp�q · �R�L���� − R�L���	 ,

�14�

where

GF�q,	2� = �mC	2I6 − �F�q��−1, �15�

and I6 is the 6�6 unit matrix.
The sum in Eq. �14� is over all values of q in the first

Brillouin zone of the SWNT lattice. Since �F�q� is only a
6�6 matrix, it can be inverted numerically. Equations �14�
and �15�, therefore, provide a numerically convenient
method for calculating the PGF. Before considering the ef-
fect of the defect, we will relate the PGF to the phonon
frequency spectrum.

The dynamical matrix as defined by Eq. �12� has six ei-
genvalues for each q, which gives a total of 6N phonon
frequencies for the lattice corresponding to N allowed values
of q. These 6N frequencies are the same as the eigenvalues
of the LHS matrix in Eq. �5�. It is the usual practice to label
the phonon frequencies as 	�qj�, where j=1,2 . . . ,6 labels
the six branches of the dispersion or six eigenvalues of Eq.
�12� for each q. For our present purposes, it is more conve-
nient to label all the eigenvalues by a single index s and
denote the phonon frequencies by 	s, where s=1,2 . . . ,6N.
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From Eqs. �11� and �12�, we note that the eigenvalues of
the 6N�6N matrix � are mC	s

2. Using standard matrix al-
gebra, we can write the PGF defined by Eq. �13� in the fol-
lowing form:

G���L�,L���;	2� = �1/mC��
s

e�
S�L��e�

S�L����/�	2 − 	S
2� ,

�16�

where eS denotes the orthonormalized eigenvector of � cor-
responding to the eigenvalue 	S

2. The spectrum of squared
frequencies, that is, the number of frequencies between 	2

and d	2, can be formally written as

��	2� = �1/6N��
S


�	2 − 	S
2� , �17�

where 
 denotes the Dirac delta function. The frequency
spectrum or the density of states g�	� can be related to ��	2�
as follows:

g�	�d	 = ��	2�d	2, �18�

which gives

g�	� = 2	��	2� . �19�

Equation �16� shows that the PGF has simple poles on the
real axis in the frequency space. Hence, we obtain from from
Eqs. �16� and �17�

��	2� = mC�1/6N��lim�→+0 Im �
�L�

G���L�,L�;	2 − �� ,

�20�

where Im denotes the imaginary part. In deriving Eq. �20�,
we have used the following representation of the delta func-
tion:


�x� = �1/��lim�→+0 Im 1/�x − �� . �21�

Now, we consider the effect of a lattice defect on phonon
frequencies and obtain an expression for the defect Green’s
function. The mathematical formalism is similar to that for
ordinary lattices, which has been given in detail in Refs. 5
and 6. Here, we only sketch the technique and describe those
features that are specific to the calculation of the DGF for a
defect in an SWNT.

The effect of a defect is to change the mass and the force-
constant matrices. We denote these changed or the perturbed
matrices by M* and �*, respectively, such that

M* = M − �M , �22�

and

�* = � − �� . �23�

Using Eqs. �22� and �23� in Eq. �8�, we obtain the following
eigenvalue equation for the phonon frequencies of the defect
lattice:

���	2� − ���	2��v = 0, �24�

where

���	2� = �M	2 − �� . �25�

From Eq. �24�, we obtain

�I6N − G�	2����	2��v = 0, �26�

where I6N is the 6N�6N unit matrix.
Equation �26� gives the perturbed phonon frequencies

which are solutions of the following equation:

��	2� = 0, �27�

where ��	2� is the determinant of �I6N−G�	2����	2��.
The solution of Eq. �27� gives only the frequencies of per-
turbed modes and not the unperturbed modes.5 It is apparent
from Eq. �26� that these modes are characteristics of the
defect represented by �� and its coupling with the host
atoms represented by G. The new frequencies may lie inside
or outside the band of frequencies of the perfect lattice.
When they lie within the band, they are called resonance
modes5 and have a wavelike solution. When they lie outside
the band, their amplitude decays rapidly with the distance
from the impurity and are called localized modes.5 Their
existence depends on the relative change in the mass of the
defect and its interaction with the host lattice. If there is no
change or only a small change in the force constants, then
the localized modes can occur only if the mass of the defect
is less than that of the host atoms.

In analogy with the PGF defined by Eq. �13�, we define
the DGF as follows:

G*�	2� = �M*	2 − �*�−1 = ���	2� − ���	2��−1. �28�

In the presence of a defect, M* is still diagonal but all its
elements are not equal. Similarly, the matrix �* does not
have the angular translation symmetry. Hence, it is not pos-
sible to write �* or G* in terms of its Fourier transform.
Using Eq. �13� in Eq. �28�, we can derive the following
Dyson equation that gives a relation between G* and G:

G*�	2� = G�	2� + G�	2����	2�G*�	2� , �29�

or

G*�	2� = �I6N − G�	2����	2��−1G�	2� . �30�

We see from Eq. �28� that, like the PGF, the DGF has simple
poles on the real axis at the eigenvalues of ��	2�−���	2�.
The DGF, therefore, has contributions from the perturbed
mode frequencies given by Eq. �27� as well as the unper-
turbed modes. Both perturbed and unperturbed modes con-
tribute to the perturbed frequency spectrum of the defect lat-
tice.

Following the steps leading to Eq. �20�, we can show that
the perturbed spectrum of squared frequencies is given by

�*�	2� = �1/6N��lim�→+0 Im �
�L�

m�L��G��
* �L�,L�;	2 − �� .

�31�

From Eqs. �19�, �20�, �27�, and �31�, we obtain5 the follow-
ing expression for the change in the phonon spectrum of an
SWNT caused by a substitutional lattice defect:
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�g�	� = �1/6N��lim�→+0 Im d/d	�ln ��	2 − ��� .

�32�

The matrices in Eq. �30� and the determinant ��	2� in Eqs.
�27� and �30� are all 6N�6N. Since N is usually a large
number which may be of the order of several thousands,
these equations are not convenient for numerical computa-
tions. However, the order of the matrix which actually needs
to be inverted in Eq. �30� and that of the determinant which
needs to be calculated are substantially reduced in those
cases in which �� is nonzero only for a finite number of
lattice sites. The lattice sites, for which �� is nonzero, de-
fine a vector space called the defect space. The defect space
is obviously a subspace of the vector space of the lattice. If
the defect space consists of n lattice sites, the order of the
matrix that needs to be inverted in Eq. �30� and the order of
��	2� will be 3n�3n. For example, in the case of an isoto-
pic defect, n=1 since an isotopic defect does not involve any
changes in the force-constant matrix. In the case the nearest-
neighbor force constants are also changed, n=4 correspond-
ing to the site containing the defect plus three of its nearest
neighbors.

From Eq. �31�, we note that �*�	2� involves sum over the
DGF of all the atoms—not just the defect atom. This is of
course expected because the frequency spectrum of the
whole solid accounts for all the modes of all the atoms in the
lattice. Qualitatively speaking, each term on the RHS of Eq.
�31� can be visualized as the contribution of the atom L� to
the collective vibration modes of the lattice. In the case of a
perfect solid, all the atoms in the lattice are equivalent.
Hence, each atom contributes equally to the total frequency
spectrum. The trace of the PGF in Eq. �20� is therefore sim-
ply 2N times the term for any atom.

In the case of the DGF in Eq. �31�, the translation sym-
metry is lost and each term is different. Equation �31� is
therefore not convenient for numerical calculation of the fre-
quency spectrum of the imperfect lattice. However, the
change in the frequency spectrum caused by the defect can
be calculated from Eq. �32� since, as described in the preced-
ing paragraph, the determinant ��	2� is only of the order
3n�3n. Only the atoms in the defect space contribute to
��	2�. In Sec. II B, we will derive an expression for the line
shapes in the NRIXS spectrum of an SWNT containing a �
isotope in terms of the DGF.

B. Calculation of the line shapes in the NRIXS spectra of a �
isotope in an SWNT

We consider a Born–von Karman lattice in thermal equi-
librium as described in the preceding section. We calculate
the one-phonon scattering cross section of an x-ray photon
from a Mössbauer or a � isotope embedded in an SWNT
lattice. As defined by Sturhahn and Kohn,3 the self-
intermediate scattering function S for a photon of wave vec-
tor K is given by

S�K,t� = �exp�K · u�L�;t��exp�− K · u�L�;0��� , �33�

where u�L� ; t� is the instantaneous displacement of the atom
at L� at time t and angular brackets denote the average over

the canonical ensemble described by the crystal Hamiltonian.
In the harmonic approximation, we can express S in terms of
the exponent of the displacement correlation function pro-
jected on K and write the cross section ��	� for the absorp-
tion of a photon from the atom L� that exchanges a phonon
of frequency 	 in the solid as follows:9

��	� = ��0/2�� exp�− 2W�
−�

�

dt

�exp�	t − ��t��exp�Dc�K,L�;t�� , �34�

where

Dc�K,L�;t� = �K · u�L�;t�K · u�L�;0�� , �35�

where �0 is the resonance absorption cross section for the
absorbing nucleus, � is the half-width of the excited state of
the nucleus, and exp�−2W� is the Debye-Waller or the Lamb-
Mössbauer factor. A rigorous analysis of ��	� has been
given in Refs. 2 and 3. Here, we follow the technique given
in Ref. 9. By using the normal-mode expansion of the corre-
lation function, its Fourier transform over time can be
related5 to the phonon Green’s function G* of the lattice as
follows:

�1/2��
−�

�

dt exp�	t��u��L�;t�u��L�;0��

= ��/���sgn�	�/�1 − exp�− �B�	��	lim�→+0

�Im G��
* �L�,L�,	2 − �� , �36�

where �B=1/kBT, kB is the Boltzmann constant, � is
Planck’s constant divided by 2�, and T is the temperature of
the solid. We assume the displacements to be small and ex-
pand the exponential of the correlation function in Eq. �34�.
Keeping only the linear term in the correlation function and
using Eq. �36�, we obtain the following expression for the
cross section for the one-phonon process:

��1��	� = ��0� exp�− 2W��sgn�	�/�1 − exp�− �B�	��	��	� ,

�37�

where

��	� = lim�→+0 ���K�K� Im G��
* �L�,L�,	2 − �� .

�38�

The scattering cross section as a function of the phonon fre-
quency 	, as given by Eq. �37�, gives the line shape of the
one-phonon line. From Eqs. �31� and �38�, we observe that
the scattering cross section depends on the projected fre-
quency spectrum �projected on the vector K� and not on the
frequency spectrum as such that is given by the trace of the
Green’s-function matrix weighted by the atomic masses. In
Eq. �38�, depending on the direction of K, the off-diagonal
elements of the Green’s-function matrix also contribute. This
introduces anisotropy in the NRIXS spectra. The frequency
spectrum, on the other hand, is not anisotropic. As is appar-
ent from Eqs. �20� and �31�, the frequency spectrum is given
by the trace of the Green’s-function matrix, which averages
out the anisotropy.
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Another important point is that the NRIXS line shape
does not depend on the total frequency spectrum which is the
sum of the Green’s-function matrix for all the atoms in the
lattice. As we see from Eq. �38�, it only depends on the
atoms in the defect space. The atoms in the defect space
contribute resonance modes to the frequency spectrum and
their frequencies depend largely on the local environment of
the defect. Only for a perfect lattice, as remarked in the pre-
ceding section, the trace of the Green’s-function matrix for a
single atom gives the total frequency spectrum.

For the qualitative analysis in this paper, our interest is
only in the function ��	� that represents the lattice contribu-
tion to the line shape. We have used G* and not G in Eq. �36�
for the correlation function. It is essential to use the DGF
rather than the PGF in Eq. �36� because of the presence of
57Fe in the SWNT which is a lattice defect. Equation �37� is
valid only for the band or the resonance modes. The contri-
bution of localized modes,9 if any, has to be included sepa-
rately. In the case of 57Fe in an SWNT that we consider in
this paper, there will be no localized modes since the mass of
57Fe is much larger than that of 12C.

In the next section, we shall apply the above formulas to
calculate the frequency spectra of SWNTs, change in the
frequency spectra due to 57Fe impurities in SWNTs, and the
line shapes of NRIXS spectra for different SWNTs.

III. RESULTS AND DISCUSSION

First, we consider a perfect SWNT lattice. We assume the
most general form of the interatomic force constants extend-
ing up to fourth nearest neighbors of each atom including the
curvature correction.1 We use the same numerical values of
the force constants as given by Saito et al.1 The geometry of
an SWNT is defined in terms of its chirality, which is ex-
pressed as the index pair �N ,M� in the conventional
notation.1 This should not cause any confusion with our no-
tation N for the number of atoms and M for the mass matrix
because this will be clear from the context and also because
the chiral indices �N ,M� will always occur in pairs.

We calculate G from Eqs. �14� and �15� by using the
Fourier-transform method. The number of points taken along
the Z axis in the Brillouin zone was 80, which was found to
be adequate by checking the convergence of the inverse Fou-
rier transform. The frequency spectrum g�	� for a perfect
SWNT is given by Eqs. �19� and �20�. The PGFs are calcu-
lated for 1000 frequency intervals in the range 	=0−	0,
where 	0 is the maximum allowed phonon frequency for that
SWNT. The value of � is taken to be equal to the length of
one interval. This value is chosen on the consideration that
the numerical integral of the right-hand side �RHS� of Eq.
�21� should be close to unity. The frequency spectrum is
calculated for 200 frequency intervals in the same range and
is obtained by integrating the values of the Green’s functions
over five frequency intervals. The frequency interval for
g�	� is chosen to be larger than that for G in order to avoid
too much structure in the curve for reasons of visual clarity.
In an actual application, the frequency interval for the calcu-
lation of g�	� would be determined by the resolution of the
measurements.

The calculated values of g�	� for different SWNTs have
been shown in Figs. 2 and 3 as functions of the normalized
frequency f =	 /	0. In each figure, the curves for different
�N ,M� are shown in different panels in the interest of greater
visual clarity. Figure 2 shows g�	� for �N ,M�= �6,6�, �8,8�,
and �10,10�. These SWNTs have similar chirality but their
circumferences are 20.8, 27.7, and 34.6, respectively, in units
of a, where 2a=2.49 Å is the lattice constant.1 We see from
this figure that g�	� is sensitive to the diameter of an SWNT.
The frequency spectrum has only a weak dependence upon
chirality, as is apparent from Fig. 3 that shows g�	� for
�N ,M�= �14,0�, �10,6�, and �8,8�. The circumferences of
these SWNTs are almost the same being equal to 28, 28, and
27.7, respectively, in units of a, but their chiralities are dif-
ferent.

One important difference between the phonon spectra of
an SWNT and a macroscopic solid arises from the fact that
the number of allowed wave vectors in the Brillouin zone of
an SWNT is much smaller than that in a macroscopic solid.

FIG. 2. �Color online� Frequency spectra g�	�
of perfect SWNTs of similar chiralities but differ-
ent diameters as function of frequency. The chiral
indices and diameters are the following: top
panel, �10,10�, 34.6; middle panel, �8,8�, 27.7;
and bottom panel, �6,6�, 20.8. The diameters are
in units of a /�, where 2a is the lattice constant of
the SWNT lattice. Functions g�	� are normalized
such that their integral over the entire frequency
range is unity. The frequencies are normalized
with respect to the maximum phonon frequency
for the SWNT.
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Because a macroscopic solid has a large number of atoms in
a supercell �of the order of Avogadro number�, the wave
vectors in the Brillouin zone are almost continuously distrib-
uted. This makes the phonon spectra of macroscopic solids
almost continuous. The number of allowed wave vectors in
the Brillouin zone of an SWNT is small �10–1000 depending
on its chirality� which makes phonon spectrum discrete and
gives a lot of structure to the line shape. Moreover, an
SWNT, in contrast to ordinary solids, has a 2D lattice struc-
ture over a cylindrical surface. The phonon spectrum of a 2D
lattice has singularities5 that are characteristics of the sym-
metry of the lattice.

Now, we consider an SWNT containing a single 57Fe
atom as a point defect. We assume that 57Fe is a substitu-
tional isotopic defect located at 00 in the SWNT lattice.
Thus, the 12C atom at 00 is replaced by 57Fe. We will denote
the mass of 57Fe by mD. We further assume that the defect is
isotopic which implies that there is no change in the force-
constant matrix. Hence, from Eq. �25�,

���	2� = �M	2. �39�

By using Eqs. �6� and �22�, the elements of the diagonal
matrix �M can be written as

�M���L�,L���� = �m
K�L�,00�
K�L�,L����
K��,�� ,

�40�

where

�m = mC − mD. �41�

We see from Eq. �40� that in our assumed defect configura-
tion, �� is nonzero only for one lattice site 00. Hence, n for
the defect space is 1 and only a 3�3 matrix has to be in-
verted in Eq. �28�. The order of the determinant ��	2� is 3
�3. Thus, by using the method of matrix partitioning5,6 in
the defect space, we obtain from Eq. �30�

G*�00,00,	2� = �I3 − �m	2G�00,00,	2��−1G�00,00,	2� ,

�42�

and

��	2� = det�I3 − �m	2G�00,00,	2�� , �43�

where I3 is the 3�3 unit matrix. All matrices in Eqs. �42�
and �43� are 3�3. Since mC�mD in the present case, all the
phonon frequencies lie within the band of frequencies of the
perfect lattice and there are no localized modes.5

We calculate �g�	� by using Eqs. �32� and �43� for the
same SWNTs, as in Figs. 2 and 3. The results are shown in
Figs. 4 and 5. The curves have been normalized such that the
area under the curve is unity. The normalization factors, de-
noted by A, used in Figs. 4 and 5 are A10,10=2.9�10−6,
A6,6=9.1�10−5, A8,8=8.5�10−5, A14,0=2.1�10−5, and
A10,6=2.9�10−6. We see that the magnitude of the change
�g is small compared to the magnitude of g, the perfect-
lattice frequency spectrum. Since the total number of modes
is 6N, the change caused by a single impurity atom is ex-
pected to be of the order 1 /6N.

We see from Figs. 4 and 5 that �g�	� is sensitive to the
chirality as well as the diameter of the SWNTs. We also
observe that �g�	� is 0 at 	=0 and almost 0 for low values
of 	. This is physically expected because low frequencies
correspond to long-wavelength phonons that are not sensitive
to the defect and its local environment. The spectrum in this
region �f �0.1� can be approximately represented by the
continuum model. The change is more pronounced for larger
values of 	. This can be understood by recalling that g�	� is
the number of frequencies in a certain interval around 	. The
function �g�	� is not the change in the frequencies but the
change in the number of frequencies in that frequency inter-
val. The function g�	� is highly oscillatory for larger values
of 	 and a slight change in frequency of a mode pushes it
into a different frequency interval. The vibration frequency
of the impurity atom is lower than that of the host atom since
it is proportional to the inverse square root of the mass of the

FIG. 3. �Color online� Same as in Fig. 2 for
SWNTs of different chiralities but almost equal
diameters. The chiral indices and diameters are
the following: Top panel, �8,8�, 27.7; middle
panel, �10,6�, 28; and bottom panel, �14,0�, 28.
The units and normalization are the same as in
Fig. 2.
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atom. The actual change in the normal-mode frequencies is,
therefore, more in the lower-frequency modes. However, it
does not change the frequency spectrum of the whole lattice
significantly since the solid behaves like a continuum in the
long-wavelength limit.

Finally, we calculate the line-shape function ��	� by us-
ing Eqs. �38� and �42� for different values of �N ,M� and
directions of K. The results are shown in Figs. 6–8. In these
curves, we have shown ��	� for 1000 frequency intervals
over the full frequency range. This is in order to display a
detailed structure of the line shape since it is an observable
quantity. We have normalized ��	� such that its integral over
the entire frequency range is unity. For an SWNT, ��	� is
anisotropic and depends on the direction of K relative to the
axis of the SWNT. Figures 6–8 give the line shapes for K
along the X, Y, and Z directions, respectively.

We will refer the X direction as the radial direction since
it joins the center of the circle with the impurity atom located

at the circumference. A perfect SWNT, of course, has a radial
symmetry in which the X and Y directions are equivalent. In
the present case, the radial symmetry is violated because the
impurity atom is located on the X axis. This introduces an-
isotropy in the NRIXS spectrum, which should be observable
because the spectra in different directions should be differ-
ent. Experimentally, it is perhaps not possible to observe the
exact location of the defect on the surface of the SWNT.
However, if the spectra are observed in different directions
on the plane normal to the axis of the SWNT, the difference
in the spectra should show the anisotropy and give useful
information about the chirality of the SWNT as well as the
location of the defect.

As physically expected, the line shape for K along the
radial direction �X axis� is not sensitive to the chirality but is
sensitive to the diameter of the SWNT. Its dependence on
chirality is, therefore, not shown here. Figure 6 shows the
line shapes for �N ,M�= �6,6�, �8,8�, and �10,10�, which have
similar chirality but their diameters are different. The line

FIG. 4. �Color online� Change in the fre-
quency spectra �g�	� due to substitutional 57Fe
defects in SWNTs of similar chiralities but differ-
ent diameters as function of frequency. Functions
�g�	� are normalized such that their integral
over the entire frequency range is unity. Other
notations are the same as in Fig. 2.

FIG. 5. �Color online� Same as in Fig. 4 for
SWNTs of different chiralities but almost equal
diameters. Chiral indices and diameters are the
same as in Fig. 3.
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shapes in the Y and Z directions are quite sensitive to chiral-
ity. These results are shown in Figs. 7 and 8 for �N ,M�
= �10,6�, �14, 0�, and �8,8� which have about the same diam-
eter. The distinguishing features in the line shapes are the
number of peaks, their positions, and their relative heights.
The line shapes in the Y and Z directions also depend on the
diameter of the SWNT. This dependence is similar to that in
the radial direction and is not shown here.

The number and density of the peaks in the line shape are
characteristics of the chirality of the SWNT. Peaks in the line
shape occur at the poles of the Green’s function, which cor-
respond to the resonance modes induced by the defect as
well as the discrete unperturbed frequencies of host lattice.
The discrete phonon frequencies are located at the allowed
discrete values of the angular wave vector in the Brillouin
zone, which, for an SWNT, is determined by its chirality.1

The number of allowed angular wave vectors is smaller for
SWNTs having higher symmetries as for N=M or M =0 as
compared to those with lower symmetries. For example, this
number is 16 for �8,8�, 20 for �10,10�, 28 for �14,0�, and 196
for �10,6�. When the number of peaks is large in a frequency

interval, their density may become too large to resolve. Then,
the line-shape curve will be averaged out and appear to be
smooth in that region. This is apparent in the curves for
�10,6� in Figs. 7 and 8. Thus, the number and the density of
the peaks in the line-shape function are identifiers for the
chirality of the SWNTs. In practice, it may be more conve-
nient to analyze the observed line-shape function in terms of
its Fourier transform or moments.

As discussed in the preceding section, the NRIXS spec-
trum does not depend on the total frequency spectrum but
depends on the modes in which the impurity atom vibrates
and would include resonance modes. The dependence on
chirality arises from the coupling between the modes. This is
reflected in Figs. 6–8. We note from Figs. 6–8 that the peaks
occur at the lower end of the spectrum, that is, for f �0.5.
This is expected because the impurity atom 57Fe is about
4.75 times heavier than the host 12C. A crude estimate of the
change in frequencies can be made as follows. For un-
coupled atoms, the vibration frequency varies as inverse
square root of the mass. So, the vibration frequency of an
uncoupled 57Fe will be about 1 / 
4.75=0.46 times that of C.
This estimate is consistent with the behavior of the curves in

FIG. 6. �Color online� Dependence of the line
shape UX of the one-phonon NRIXS line in the
radial direction �X direction in Fig. 1� on the di-
ameter of SWNTs with similar chiralities. Line
shapes are normalized such that their integral
over the entire frequency range is unity. Other
notations are the same as in Fig. 2.

FIG. 7. �Color online� Dependence of the line
shape UY of the one-phonon NRIXS line in the Y
direction on the chirality of SWNTs with almost
equal diameters. Chiral indices and diameters,
same as in Fig. 3. Normalization as described in
Fig. 6.
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Figs. 6–8 since all the peaks occur for f �0.5 of the maxi-
mum frequency. It is interesting to note that the NRIXS picks
up low frequencies even in the region f �0.1 which would
not show up in the total frequency spectrum because they get
smeared out in the continuum.

We have made a rather crude approximation that the de-
fect does not change the interatomic force constants. How-
ever, our results should be at least qualitatively reliable be-
cause a change in force constants is qualitatively equivalent
to a change in the effective mass of the impurity. If the bind-
ing between the impurity and the host is stronger, its effec-
tive mass will be reduced and the peaks in the line-shape
function will shift toward the higher end of the spectrum. We
have not included the effect of other point defects such as
vacancies, self-interstitials, etc., which would normally be
present in real SWNTs and will affect the frequency spectra
and the line shape. However, because the mass of Fe is much
larger than the effective mass of the vacancy and the self-
interstitials, its effect is likely to dominate over the changes
in the phonon spectra induced by other defects, particularly
at low frequencies.

Another major approximation in this paper is that we have
assumed the defect to be substitutional. In a real case, the
defect may be attached to a C atom and located off the sur-
face of the nanotube. This case may also be qualitatively
modeled by assuming a heavier substitutional defect of mass
equal to the combined mass of Fe and C atoms. This will
result into a further shift toward the lower-frequency end of
the phonon spectrum. It would require a detailed molecular-
dynamics or ab initio calculation to determine the exact lo-
cation of the defect. If the location of the defect is known
theoretically, the NRIXS line shapes can be calculated by
using the Green’s-function method described in this paper.

Alternatively, an experimental study of NRIXS or NRS spec-
tra can yield information about the location of the defect.

To summarize, this paper makes two contributions: A pho-
non Green’s-function method for calculation of change in the
phonon spectrum of an SWNT due to a lattice defect and a
theoretical analysis of the NRIXS spectra of 57Fe in SWNTs.
We have calculated the line shape of one-phonon lines in the
NRIXS spectra of 57Fe in SWNTs of different chiralities and
diameters. We show that the NRIXS can yield useful infor-
mation about the chirality, diameter, and orientation of an
SWNT.

An important feature of NRIXS �Ref. 2� is that only the
Mössbauer isotope contributes to the signal and the nonac-
tive material does not contribute any background noise. So,
if an active SWNT �the one containing the Mössbauer iso-
tope� is part of a bundle of randomly oriented nonactive
SWNTs, it can be examined by NRIXS without the spectrum
being clouded by the nonactive SWNTs in the bundle.

A more detailed theory will be needed for a quantitative
interpretation of the experimental data and actual determina-
tion of chirality and other parameters of an SWNT from the
observed NRIXS data. We hope this work will inspire more
theoretical and experimental work to explore the use of NRS,
in particular, NRIXS, for characterization of SWNTs and
other nanostructures, particularly nanowires. Our results
should be useful in designing such experiments and for their
qualitative interpretation.
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