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Mode-Selective Acoustic Spectroscopy of
Trigonal Piezoelectric Crystals

Ward L. Johnson, Carlos F. Martino, Sudook A. Kim, and Paul R. Heyliger

Abstract—A noncontacting electromagnetic-acoustic-
resonance technique is presented for generating and detect-
ing vibrational modes with prescribed symmetries in piezo-
electric trigonal crystals with cylindrical geometry. This
technique provides the experimental basis for determining
all elastic constants from a single specimen, while over-
coming difficulties in mode identification that can occur in
traditional resonant-ultrasound spectroscopy. Narrow-band
tone-burst excitation and piezoelectric coupling are em-
ployed with various geometrical configurations of electrodes
near the surface of a quartz specimen. The geometries of the
specimen and plates include all of the symmetry elements of
the crystallographic point group, which enable selection of
the irreducible representation of excited vibrational modes
simply by switching electrical leads to the electrodes.

I. Introduction

Resonant ultrasound spectroscopy (RUS) has been
used extensively for determining the elastic constants

of materials through least-squares fitting of the resonant
frequencies to Ritz calculations [1]. In the past few years,
Ritz analysis that includes piezoelectric terms in the equa-
tion of motion has been shown to enable simultaneous de-
termination of not just elastic constants, but also piezo-
electric coefficients from RUS measurements on piezoelec-
tric crystals [2]–[6]. The application of this method to
piezoelectric crystals presents advantages over traditional
methods, which involve separate acoustic pulse-echo and
piezoelectric measurements on more than one specimen. In
addition to reducing the time of measurements and spec-
imen fabrication, it eliminates uncertainties arising from
variations in the material of multiple specimens (due, for
example, to inhomogeneity of a crystal boule). For mea-
surements as a function of temperature, it eliminates un-
certainties arising from differences in temperature dur-
ing multiple runs, which can affect the determination of
temperature-independent cuts of resonators for frequency-
control applications. These issues of accuracy and material
homogeneity are particularly relevant today, since a num-
ber of innovative piezoelectrics, including langatate and
materials with similar crystal structure, have emerged as
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candidates for replacing quartz in some applications, and
the properties of these crystals and optimal methods for
growing them are not yet established.

In this report, we present methods that extend the
metrology of resonant acoustics on trigonal piezoelectric
crystals by implementing selective excitation of modes
of prescribed symmetry with noncontacting transduction.
These methods address issues that limit the accuracy of
conventional contacting RUS measurements and Ritz anal-
ysis of these measurements. First, noncontacting transduc-
tion reduces perturbations of the boundary conditions that
affect the resonant frequencies and the corresponding accu-
racy of the determination of material constants. This is an
issue particularly with respect to accurately determining
piezoelectric coefficients [3], [7]. Note that, although forces
always must be present to support a specimen when either
contacting or noncontacting transduction is employed, the
magnitude of the perturbation of the acoustic boundary
conditions depends also on the acoustic impedance of the
supporting material. Highly mismatched low-impedance
supporting material can be employed with noncontact-
ing transduction, but such material is incompatible with
the need to effectively transmit acoustic energy between a
specimen and contacting piezoelectric transducers in con-
ventional RUS. The second issue that is addressed with
the methods presented here is the often challenging task
of identifying modes in Ritz analysis. The correct one-to-
one correspondence must be established between measured
and calculated modes before Ritz analysis is undertaken,
or the fitting algorithm may converge to an incorrect lo-
cal minimum. Therefore, although conventional RUS has
the advantage of providing the frequencies of many reso-
nant modes with a variety of symmetries, it has the corre-
sponding disadvantage of requiring fairly accurate initial
values for the elastic constants in the inverse calculation.
As summarized by Ogi et al. [8], various researchers have
attempted to address this problem by changing specimen
dimensions, switching assignments of modes in the inver-
sion algorithm, or changing positions of transducers. Ogi
et al. [4], [6], [9], [10] have used laser-Doppler interfer-
ometry to provide separate information on the displace-
ment patterns. This approach is particularly powerful be-
cause it maintains the advantage of providing informa-
tion on many modes of various symmetry. However, in
cases where measurements must be performed relatively
rapidly or access to the specimen is limited, separate mea-
surement of displacements may not be practical. A sim-
pler approach to mode identification is spatial selectivity
in transduction. Spatial selectivity is achieved naturally
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with electromagnetic-acoustic resonance (EMAR) employ-
ing Lorentz-force coupling [11], and this has been used to
excite modes with specific symmetries in metallic paral-
lelepipeds for Ritz analysis [8], [12]. In a direct compari-
son of Ritz inversion analysis applied to EMAR and RUS
data on monocrystalline copper, Ogi et al. [8] found that
the two methods yielded essentially the same elastic con-
stants, despite fewer resonant peaks in EMAR. Because
of the ability to identify modal symmetries, the inversion
analysis with EMAR data was found to be much more
robust than that with RUS data. Inaccuracies of tens of
percent in the initial guesses for the elastic constants in
the EMAR analysis had no effect on the convergence of
the calculations, while inaccuracies of ∼ 1% or less in the
initial guesses for the RUS analysis resulted in convergence
to an incorrect local minimum.

The acoustic-resonance method that we present here for
application to piezoelectric crystals is similar to previous
EMAR methods in the sense that it uses noncontacting
distributed transduction to selectively couple to modes
with prescribed symmetries. It employs direct piezoelec-
tric coupling through a switchable pattern of electrodes
surrounding a trigonal crystal in the form of a cylinder.
The use of a cylindrical geometry, with the trigonal axis
oriented along the cylindrical axis of the specimen, main-
tains all of the symmetry operations of the crystallographic
point group and, therefore, allows complete categorization
of the modes according to group theory. Correspondingly,
the Ritz eigenvalue problem is divided into submatrices of
minimal size [13], [14].

Although one of the intended applications of the tech-
niques presented here is the simultaneous determination
of elastic constants and piezoelectric coefficients, the in-
clusion of piezoelectric effects in an analysis of the vibra-
tional modes is not necessary for demonstrating methods
of coupling to acoustic modes with prescribed symmetries,
as described below. Therefore, piezoelectric terms in the
equations of motion are not included here in the Ritz anal-
ysis of spectra.

II. Specimen Geometry and Crystallographic

Symmetry

The specimen is a monocrystal of quartz that was
ground into the shape of a cylinder with a radius of
5.389 ± 0.001 mm and a height of 15.064 ± 0.001 mm.
The crystallographic space group of quartz is P3121, and
the corresponding trigonal point group is 32 in the in-
ternational notation, or D3 in the Schoenflies notation.
The three-fold crystallographic axis was oriented along the
cylindrical axis of the specimen.

The lack of inversion symmetry of D3 is reflected in
the piezoelectric character of quartz. Exact analysis of the
vibrational modes must include piezoelectric terms, in ad-
dition to elastic terms, in the equation of motion. However,
the piezoelectric coefficients of quartz are not large (com-
pared to those of other materials, such as lithium niobate,

that are commonly used for acoustic transducers) and
introduce only slight perturbations to the displacement
patterns and resonant frequencies of a specimen. There-
fore, for the purposes of demonstrating mode selectivity of
transduction, we consider the vibrational modes entirely
within linear elastic theory. Since linear elastic vibrations
are insensitive to a lack of inversion, the inversion operator
can be included in the analysis of symmetries of vibrational
modes, and the D3 point group becomes elastically equiv-
alent to the trigonal point group with the greatest number
of symmetry operations, D3d [14].

Fig. 1 depicts an object with symmetry including the
group elements of D3d, which are defined to be spatial
transformations that leave the appearance of the object
unchanged. In addition to the axes shown in the figure,
axis d̂ is defined to be in the same plane as x̂ and f̂ and
halfway between them on the back side of the object. The
group elements include a rotation of 2π/3 about ẑ (de-
noted by C3z); a rotation of −2π/3 about ẑ (denoted by
C−1

3z ); rotations of π about x̂, f̂ , and d̂ (C2x, C2f , C2d,
respectively); inversion (I); the identity operation (E, no
spatial transformation); and the products of inversion and
rotations (IC3z , IC−1

3z ,IC2x, IC2f , IC2d).
There are six group-theoretical irreducible representa-

tions (IRs) of the crystallographic point group D3d, as
shown in Table I: four one-dimensional representations,
labeled A1g, A2g, A1u, and A2u, and two two-dimensional
representations, labeled Eg and Eu [15]. The subscripts “g”
or “u” indicate that the corresponding vibrational modes
(basis functions for the IRs) are, respectively, even or odd
under inversion. The column labels in Table I designate the
classes, which are defined to include the following symme-
try elements [15]:

C1 ≡ E,

C2 ≡ C3z , C
−1
3z ,

C3 ≡ C2x, C2f , C2d,

C4 ≡ I,

C5 ≡ IC3z , IC−1
3z ,

C6 ≡ IC2x, IC2f , IC2d.

(1)

The focus of this paper is only on vibrational modes
that are basis functions for the one-dimensional repre-
sentations. Within this context, the interpretation of the
values (“characters”) in Table I is simple. A vibrational
displacement pattern that forms a basis for a particular
representation is unchanged by application of a symmetry
operation that has a character of 1, and it is reversed in
sign by application of a symmetry operation that has a
character of −1.

III. Transducers

Direct piezoelectric transduction was employed to ex-
cite vibrations in the specimen from radio frequency (RF)
tone bursts applied to noncontacting electrodes, and the
inverse effect was employed to detect resonant vibrations
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Fig. 1. Symmetry and definitions of axes for an object belonging to
the D3d point group. An additional two-fold rotation axis on the
back side of the image (not shown) is in the plane of x̂ and f̂ and
halfway between them.

TABLE I
Irreducible Representations, Classes of Symmetry

Transformations, and Corresponding Characters for the

D3d Point Group.

C1 C2 C3 C4 C5 C6

A1g 1 1 1 1 1 1
A2g 1 1 −1 1 1 −1
A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1
Eg 2 −1 0 2 −1 0
Eu 2 −1 0 −2 1 0

of the specimen following excitation. This method is re-
ferred to here as EMAR because it employs noncontact-
ing electromagnetic coupling to resonant acoustic modes,
although this acronym previously has been applied only
to techniques employing Lorentz-force or magnetostrictive
coupling.

As shown in Fig. 2, a single geometric configuration of
electrodes was used, and several different patterns of volt-
ages, indicated by the shading of electrodes, were used to
selectively couple to modes with prescribed symmetries.
The electrodes were fabricated from copper tape mounted
on the outer surface of a hollow plastic/fabric composite
cylinder with an inner diameter of 10.9 mm, a wall thick-
ness of 1.1 mm, and a length of 22 mm. The specimen was
centered inside this cylinder with its base resting on a mica
washer. Mica was chosen for the support because acoustic
coupling and transmission through this material are low.
The symbol Ξ in each image of the figure corresponds to
a two-fold symmetry axis of the specimen (x̂, f̂ , or d̂ in
Fig. 1).

The electrodes depicted in Fig. 2 are driven with RF
tone bursts, as described in the next section, with the
lightly and darkly shaded electrodes having opposite po-
larities. For each of the configurations, the instantaneous

Fig. 2. Configurations of electrodes surrounding the cylindrical spec-
imen. The voltages on the dark and light electrodes have opposite
polarity. The symbol Ξ corresponds to a two-fold symmetry axis.

potentials are either unchanged or inverted under each of
the symmetry transformations of (1), so that the potentials
form bases for the one-dimensional IRs. This also is true
of the electric fields and piezoelectrically induced strain
fields. Appendix A presents an analysis of the symmetries
of the potentials, electric fields, and strain fields for each
of the configurations, and the results of this analysis are
summarized in Table II.

The particular configurations of Fig. 2 certainly are not
the only ones that could be employed to produce potentials
and fields with the general symmetries listed in Table II.
For example, the IRs would be unchanged, except for that
of configuration A, if the central ring of smaller electrodes
were eliminated.

The transducers shown in Fig. 2 couple to three of the
four one-dimensional representations of D3d. Our focus is
primarily on configurations A-D, between which one can
switch simply by switching the connections of the electrode
leads, since the crystallographic orientation of the speci-
men is the same in these configurations. Configuration E,
which involves an axial rotation of the specimen relative to
the other configurations, was used primarily to facilitate
initial alignment of the two-fold axis of the specimen, as
described below.
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TABLE II
Symmetries of the Electric Potentials V , Electric Fields

�E, and Piezoelectrically Induced Strain Fields S for Each

of the Electrode Configurations.

Configuration V �E S

A A1g A1g A1u

B A1g A1g A1u

C A2u A2u A2g

D A2u A2u A2g

E A1u A1u A1g

IV. Experimental and Analytical Techniques

The electronic apparatus for EMAR measurements is
based on a RITEC RAM-5000 (SNAP; Ritec, Inc., War-
wick, NJ)1, which includes a gated amplifier and a phase-
sensitive receiver that are synchronized using a continu-
ous sine wave [16]. The output of the gated amplifier is
a narrow-band sinusoidal tone burst, typically 1 to 5 ms
in duration, that drives the electrodes of the transducer
in one of the configurations described above. The receiver
is connected to the electrodes through an active diplexer
that breaks the connection during the driving tone burst
to protect the receiver. With a driving frequency ωo near
the frequency ωr of an acoustic mode, the ringdowns of
RF voltages induced on the electrodes after the driving
tone burst are processed by the receiver to produce two
simultaneous outputs Vn (n = 0, 1), given by

Vn = A exp(−αt) cos
[
(ωo − ωr)t − nπ

2
− φ

]
, (2)

where α is the acoustic damping, φ is a constant phase
shift introduced in the electronics, and A is a constant de-
pendent on the gain of the receiver and the strength of the
RF signal. Apart from the phase shift φ, the outputs with
n = 0 and n = 1 are proportional to the instantaneous
magnitudes of the signal that are, respectively, in phase
and out of phase with the reference sine wave (analogous
to the outputs from a lock-in amplifier).

The digitized outputs of the receiver were analyzed
by a computer in real time with two different methods.
For the purpose of acquiring approximate spectra over a
broad range, the integral of (V 2

0 + V 2
1 )1/2 over the ring-

down (proportional to the time-integrated RF signal am-
plitude) was calculated for each driving frequency in a
computer-controlled series between 0.2 MHz and 1.0 MHz
with 100 Hz steps. For the purpose of accurately deter-
mining each individual resonant frequency, the driving
frequency was set near the resonance, a complex Fourier
transform was performed of V0 and V1, and the frequency
of the peak in this transform was recorded.

1Identification of commercial equipment, instruments, or materi-
als does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the
equipment, instruments, or materials identified are necessarily the
best available for the purpose.

To align the crystallographic two-fold rotation axes of
the specimen for EMAR measurements, the A1g mode with
a calculated frequency near 0.32 MHz was employed. This
is the only mode with a significant peak height observed
below 0.600 MHz in configuration E. To set up this config-
uration, the specimen was rotated about its axis to find the
position at which the height of this peak was maximized.
In a similar manner, the height of this peak was minimized
to set up configurations A, B, C, and D. This procedure
for configurations A–D achieves accurate alignment of the
two-fold axis more easily than directly maximizing A1u or
A2g modes, because the magnitude of coupling to these
modes is at the maximum of an approximate sinusoidal
angular dependence (with zero slope) in these configura-
tions. Once the two-fold-axis alignment was accomplished
for configurations A–D, the position of the crystal was left
undisturbed during measurements in these configurations,
and only the polarities of the electrodes were changed to
generate the different symmetries of electric fields.

Conventional RUS also was used to measure resonant
frequencies of the specimen. These measurements em-
ployed two piezoelectric transducers that supported the
specimen by mechanical contact on opposite edges. The
frequencies determined from RUS were fit to Ritz cal-
culations in cylindrical coordinates with the elastic con-
stants as adjustable parameters. This inversion analy-
sis was based on the formulation of the Ritz method in
cylindrical coordinates derived by Heyliger and Johnson
[13], [14].

A demonstration of the degree to which the EMAR con-
figurations of Fig. 2 selectively couple to modes of partic-
ular symmetry is somewhat of a “chicken before the egg”
challenge. This is accomplished here by 1) performing RUS
measurements (which provide no direct information on
symmetry); 2) performing a forward Ritz calculation us-
ing published elastic constants of quartz; 3) estimating, by
inspection, the range of lower frequencies over which there
is a one-to-one correspondence of the RUS and forward-
Ritz frequencies; 4) performing inverse Ritz analysis of the
RUS data over this frequency range to confirm the one-
to-one correspondence, provide a more accurate compari-
son of frequencies, and clearly identify modal symmetries;
5) aligning the two-fold axis of the specimen according to
the EMAR configurations of Fig. 2 with the resonant am-
plitude of a single strong A1g mode (identified from the
Ritz analysis) as a guide; 6) performing EMAR measure-
ments with each of the electrode configurations; 7) pairing
each of the significant EMAR peak frequencies with the
closest matching RUS frequency; and 8) comparing the
symmetries of the modes determined by Ritz analysis of
the RUS data with the expected modal symmetries listed
in Table II for EMAR.

V. Results

RUS measurements of resonant frequencies of the
quartz specimen were performed at ambient temperatures
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TABLE III
Elastic Constants (GPa) of Quartz Determined by

Bechmann [7] and in This Study by Ritz Analysis of RUS

Data.

C11 C33 C44 C12 C13 C14

This study 87.16 105.8 58.34 6.69 12.02 −18.20
Bechmann [17] 86.74 107.2 57.94 6.98 11.91 −17.91

TABLE IV
Modal Symmetry (IR), Calculated Frequency fcal, RUS

Frequency frus, EMAR Frequency femar, EMAR

Configuration in Which Each Peak is Significant, and

Fractional Difference in Experimental Frequencies

∆f/f ≡ (frus − femar)/femar) for Modes with A1g , A2g , or A1u

Symmetry below 0.600 MHz.
∗

IR fcal frus femar Config. ∆f/f

A1u 0.143542 0.143646 — — —
A1g 0.204860 0.204974 — — —
A2g 0.280852 0.281132 0.280854 D 0.0010
A1g 0.286056 0.286187 — — —
A1g 0.319607 0.319623 0.319510 E 0.0004
A1u 0.359310 0.359820 0.359718 A 0.0003
A1g 0.365205 0.364276 — — —
A2g 0.368648 0.369177 0.369081 C,D 0.0003
A1g 0.392141 0.391593 — — —
A1u 0.407157 0.408503 0.408492 A,B 0.0000
A1u 0.422937 0.423144 0.423022 A,B 0.0003
A2g 0.430285 0.431062 0.430986 C,D 0.0002
A1g 0.440131 0.439784 ——– — ——
A2g 0.482148 0.482364 0.482055 C,D 0.0006
A1u 0.489834 0.490186 0.490026 A,B 0.0003
A1u 0.537979 0.538021 0.537795 A,B 0.0014
A2g 0.538701 0.538528 0.538391 C,D 0.0003
A1g 0.540192 0.539491 — — —
A1g 0.566885 0.565676 — — —
A2g 0.573919 0.573496 0.573301 C,D 0.0003

∗EMAR peaks with heights < 0.01 are not included. Frequencies are
in MHz.

(near 22◦C) in a roughing vacuum of approximately 0.2 Pa.
Initial values of the elastic constants in the Ritz analy-
sis of these measurements were those of Bechmann [17],
which are listed in Table III. The density was fixed at
2649.7 ± 0.2 kg/m3, which was determined by Archimedes’
method [18] using distilled water as a standard. The ini-
tial forward Ritz calculation with these values indicated
a one-to-one correlation with measured RUS frequencies
below 0.600 MHz. The subsequent Ritz inversion analy-
sis of the RUS data over this frequency range also was
consistent with this correlation, with an rms difference of
0.11% between the calculations and measurements. Ta-
ble IV presents the calculated frequencies fcal and mea-
sured RUS frequencies frus for modes with A1u, A2g, or
A1g symmetry. Although only modes with these symme-
tries are presented in this table, all ninety RUS frequencies
below 0.600 MHz were used in the inversion analysis, in-
cluding those with A2u, Eg, and Eu symmetry.

Fig. 3. Resonant spectrum for configuration A.

Fig. 4. Resonant spectrum for configuration B.

The elastic constants Cij determined from the Ritz
analysis are listed in Table III. Our values for the Cij are
consistent with the range of values for quartz that are re-
ported in the literature [19]. They are presented here for
the sake of completeness, but the central goal of the present
study is the demonstration of the mode-selective EMAR
technique, rather than accurate determination of Cij with
RUS. More complete analysis would include piezoelectric
perturbations to the frequencies in the Ritz calculation,
and this is not pursued here.

Figs. 3–7 show resonant spectra acquired with the five
EMAR configurations A–E at ambient temperatures and
atmospheric pressure. The baseline noise in these spectra
is in the range of 0.002–0.003. Table IV lists the frequencies
femar of all EMAR modes detected below 0.600 MHz with
peak heights greater than 0.01 (approximately four times
the noise level). These frequencies are entered in this table
in the row of the most closely matching RUS frequencies.
The last column of Table IV lists the fractional differences
∆f/f between the measured RUS and EMAR frequencies.

Uncertainties in the frequencies at constant tempera-
ture in both RUS and EMAR were on the order of a few
hertz. However, day-to-day variations in ambient temper-
atures were found to introduce variations in measured fre-
quencies on the order of 10–20 Hz. These temperature-
induced variations are significantly less than most of the
differences in frequencies of RUS and EMAR listed in Ta-
ble IV.
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Fig. 5. Resonant spectrum for configuration C.

Fig. 6. Resonant spectrum for configuration D.

Table V presents forward Ritz calculations of modes of
all symmetries between 0.59 and 0.64 MHz using the above
Cij determined from the inversion analysis of frequencies
below 0.600 MHz. This table illustrates the types of prob-
lems in mode identification that can occur in Ritz analysis
of RUS data, as described in the next section. The three
EMAR frequencies in this table are paired with the closest
calculated modes having the symmetry expected from the
EMAR configurations (instead of being paired with the
closest RUS frequency, as in Table IV).

Fig. 7. Resonant spectrum for configuration E.

TABLE V
Modal Symmetry (IR), Calculated Frequency fcal, RUS

Frequency frus, EMAR Frequency femar, EMAR

Configuration in Which Each Peak is Significant, and

Fractional Difference in Experimental Frequencies

∆f/f ≡ (frus − femar)/femar) for Modes with All Symmetries

Between 0.591 MHz and 0.640 MHz.
∗

IR fcal frus femar Config. ∆f/f

Eg 0.591228 0.591278 — — —
0.591228 0.591354 — — —

Eg 0.597143 0.596599 — — —
0.597143 0.596783 — — —

Eu 0.600455 0.599477 — — —
0.600455 0.599727 — — —

A2g 0.602264 0.602064 0.602276 C −0.0004
Eu 0.602633 0.602592 — — —

0.602633 0.602731 — — —
A1g 0.604852 0.603262 — — —
Eg 0.608025 0.607137 — — —

0.608025 0.607710 — — —
A1u 0.609445 0.608173 — — —
Eu 0.609757 0.609384 — — —

0.609757 0.609662 — — —
A2u 0.609804 0.610629 — — —
Eu 0.619425 0.618912 — — —

0.619425 0.619730 — — —
Eg 0.623708 0.623186 — — —

0.623708 0.623434 — — —
A1g 0.627528 0.626825 0.627404 E -0.0009
Eu 0.628368 0.627035 — — —

0.628368 0.627421 — — —
Eg 0.629105 0.627553 — — —

0.629105 0.627664 — — —
A1u 0.630672 0.631089 0.630772 A, B 0.0005
A1g 0.637569 0.636784 — — —

∗EMAR peaks with heights < 0.01 are not included. Frequencies are
in MHz.

VI. Discussion

In Table IV, the symmetries of the modes determined
through the Ritz analysis correspond exactly to the sym-
metries expected from Table II for each of the EMAR con-
figurations. A few weaker EMAR peaks with heights less
than 0.01 (not included in Table IV) correspond to calcu-
lated modes with symmetries that do not match expecta-
tions. These modes include ones with A2g symmetry that
were weakly detected in configuration A (contrary to the
expectation from Table II) but strongly detected in con-
figurations C and D (consistent with Table II). The slight
coupling to these modes in configuration A may arise from
imperfections in the symmetry of the electrodes.

EMAR has not detected all vibrational modes below
0.600 MHz with A1g symmetry, as indicated by the dashed
lines in Table IV. The lack of detection of these modes is
understood to arise from features of the displacement pat-
terns that are not included in the general categorization
of the modes according to group theory. As described by
Johnson and Heyliger [14], A1g modal displacement pat-
terns can be described by Ritz approximation functions
with a number of different detailed symmetries for the
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azimuthal, radial, and axial components of the displace-
ments. The specific configuration E couples only to a sub-
set of these modes. For example, the three-fold symme-
try of configuration E is not expected to couple signifi-
cantly to the lowest-frequency A1g mode near 0.205 MHz
because of weak azimuthal variation of the displacements
of this mode. This expectation is based on the calculations
of Heyliger and Johnson [13], which show weak azimuthal
variation for the lowest A1g mode of a langatate cylin-
der (with the orientation of the three-fold crystallographic
axis the same as that of the quartz specimen in the present
study).

The lowest A1u mode (near 0.144 MHz) also is absent
in the EMAR spectra. This mode is not expected in the
spectra, because the low-frequency limit of the electronics
is approximately 0.20 MHz.

The relative sparseness of the EMAR spectra is not ex-
pected to be a limitation with respect to accurately de-
termining Cij through Ritz inversion analysis. The Ritz
analysis indicates that the set of A1u and A2g modes de-
tected in EMAR includes significant sensitivity to each of
the Cij . Also, similarly sparse spectra have successfully
been used in previous studies to extract values of Cij that
are consistent with those extracted from full RUS spectra
[8], [12].

The measured RUS frequencies in Table IV are slightly
higher (by 0.02 to 0.14%) than the corresponding EMAR
frequencies, with the exception of 0.4085 MHz, which is
almost identical. Increases in frequencies are expected from
the perturbation of stress-free boundaries introduced by
mechanical contact of transducers in RUS measurements,
and such increases have been reported in previous studies
that directly compared RUS and EMAR results [8], [12].
Systematic differences in sample temperature during the
RUS and EMAR measurements (arising, for example, from
slight resistive heating of the sample in EMAR) also may
contribute to the observed differences in frequency.

Difficulties in RUS mode identification become appar-
ent in the extension of forward Ritz calculations above
0.600 MHz (Table V). For example, the difference in fre-
quency of the calculated A2g and Eu modes at 0.602264
and 0.602633 is comparable to the listed difference in frus
of the doubly degenerate Eu modes (which arises from im-
perfections in the geometry or crystal alignment of the
specimen). Therefore, if the inverse calculation were ex-
tended into this frequency range, simply pairing calculated
and measured RUS frequencies in sequence (as in Table V)
might be incorrect. In fact, the negative value for ∆f/f of
the A2g mode in Table V suggests that such pairing is in-
correct in this case, since the lower modes in Table IV show
only positive values of ∆f/f . An alternate identification
of the A2g mode with the RUS modes at either 0.602592
or 0.602731 MHz would make ∆f/f equal to 0.0005 or
0.0008, respectively, and these values are more consistent
with those in Table VI. A similar situation occurs with the
A1g and Eu modes near 0.628 MHz, where an even larger
negative value for ∆f/f results from sequential pairing of
the RUS and calculated frequencies. The final A1u mode in

Table V has a greater difference in frequency from adjacent
modes, so that the RUS mode identification is more clear,
and the value of ∆f/f with sequential pairing of calcula-
tions and RUS measurements falls back in line with values
in Table IV.

VII. Conclusion

This work provides an experimental basis for determin-
ing elastic and piezoelectric constants of trigonal piezo-
electric crystals from noncontacting mode-selective mea-
surements on a single cylindrical specimen. It provides the
first demonstration of a method for switching the coupling
between resonant modes belonging to different group-
theoretical irreducible representations simply by switching
the leads to a single set of electrodes. It demonstrates and
analyzes the selectivity of the transduction technique with
respect to modal symmetry, while leaving to subsequent
research the logical next step of determining the elastic
and piezoelectric constants through Ritz inversion analy-
sis of the EMAR measurements.

Ritz inversion analysis of RUS data has been employed
here as a means of demonstrating the modal selectivity
of the EMAR technique. Potential problems with incor-
rect pairing of calculated frequencies and RUS frequencies
have been avoided by limiting the analysis to a frequency
range over which there is no apparent uncertainty in modal
identification, a practice that is standard among RUS prac-
titioners. Difficulties in determining the correspondence of
calculated and measured RUS modes at higher frequen-
cies have been considered only for the purposes of illustra-
tion. However, the situation described here is a best-case
scenario in which initial guesses for the elastic constants
are relatively good because of previously published results
from many studies that employed a variety of acoustic
techniques. In cases where little or no published informa-
tion on the elastic constants is available, the frequency
range over which RUS modal identification is unambiguous
can be inadequate for effective inversion analysis. Difficul-
ties in identification also arise in measurements performed
as a function of temperature, even in fairly well charac-
terized materials, since modes of different symmetry often
become nearly degenerate at certain temperatures.

The principal application that is targeted in this study
is the simultaneous measurement of elastic and piezoelec-
tric constants as a function of temperature in innovative
materials for frequency-control and sensing applications.
For such measurements, the technique presented here has
several advantages relative to RUS and other conventional
acoustic methods. Because the transduction is noncontact-
ing, it minimizes perturbations to the frequencies, which
are particularly critical in the extraction of piezoelectric
constants. It maintains the RUS advantage of providing in-
formation on all of the elastic and piezoelectric constants
from measurements on one specimen in a single orienta-
tion. At the same time, it provides selectivity in the exci-
tation and detection of acoustic modes, which eliminates
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TABLE VI
Effect of Symmetry Transformations on Coordinates and

Factors Multiplying Unit Vectors.

φ z φ̂ ẑ

E φ z φ̂ ẑ

C3z φ + 2π/3 z φ̂ ẑ

C−1
3z φ − 2π/3 z φ̂ ẑ

C2x −φ −z −φ̂ −ẑ

C2f −φ + 4π/3 −z −φ̂ −ẑ

C2d −φ − 4π/3 −z −φ̂ −ẑ

CI −φ + π −z φ̂ −ẑ

potential difficulties in modal identification at all temper-
atures.

Appendix A

Symmetry Analysis

This appendix presents analysis of the symmetries of
the potential V , electric field �E, and strain field S in a
trigonal crystal with cylindrical geometry surrounded by
each of the configurations of electrodes shown in Fig. 2. For
a given configuration, the symmetry of the induced strain
field belongs to one of the one-dimensional irreducible rep-
resentations of the D3d point group, and resonant acoustic
modes with these symmetries are excited if the potential
varies at the corresponding resonant frequency.

Within the present context of spatial transformations,
the elements gi of the group D3d are identified with trans-
formations R(gi) of coordinate axes [15]. For example, C3z

is a rotation of the coordinate axes by 2π/3 performed in
the right-hand screw sense about ẑ. Corresponding to each
of the coordinate-transformation operators is an operator
P (gi) that acts on functions. Following the usual Wigner
convention [20], the P (gi) rotate contours of functions in
the opposite direction to the corresponding rotation of co-
ordinate axes, so that, for scaler functions f(�r) of position
�r,

P (gi)f(�r) = f(R−1�r). (A1)

Therefore, scalar functions are transformed under the sym-
metry operations of D3d by substituting, for the coordi-
nates φ and z, the entries listed under the corresponding
columns in Table VI. (The coordinate r is unchanged by
the symmetry operations.) Transformations of expressions
for vector fields also include these substitutions and, in ad-
dition, the introduction of factors of 1 or −1 multiplying
the unit vectors φ̂ and ẑ, according to the last two columns
of Table VI [14].

In the absence of the specimen, the potential is given by

V (r, φ, z, t) = V0(r, φ, z)f(t), (A2)

where f(t) is proportional to the gated RF voltage applied
to the electrodes. Therefore, the symmetry of V in each of

the electrode configurations is that of the corresponding
image in Fig. 2 (considering the polarities indicated by
the shading), which is easily determined by inspection. In
configuration C, for example,

P (C3z)V0(r, φ, z) = V0(r, φ + 2π/3, z)
= V0(r, φ, z),

P (C−1
3z )V0(r, φ, z) = V0(r, φ − 2π/3, z)

= V0(r, φ, z),
P (C2x)V0(r, φ, z) = V0(r,−φ,−z)

= −V0(r, φ, z),
P (C2f )V0(r, φ, z) = V0(r,−φ + 4π/3,−z)

= −V0(r, φ, z),
P (C2d)V0(r, φ, z) = V0(r,−φ − 4π/3,−z)

= −V0(r, φ, z),
P (CI)V0(r, φ, z) = V0(r,−φ + π,−z)

= −V0(r, φ, z)ẑ.

(A3)

Therefore, V in this configuration is a basis for A2u. V in
each of the other configurations similarly can be shown to
transform according to the IRs listed in Table II.

The applied electric field �E is given by

�E = �E0(r, φ, z)f(t)

= [Er(r, φ, z)r̂ + Eφ(r, φ, z)φ̂ + Ez(r, φ, z)ẑ]f(t)
= −∇V

= −∂V

∂r
r̂ − 1

r

∂V

∂φ
φ̂ − ∂V

∂z
ẑ.

(A4)

From Table VI and (A3) and (A4), the transformation of
�E under C2x in configuration C is given by

P (C2x) �E0(r, φ, z) = −∂V0(r,−φ,−z)
∂r

r̂

+
1
r

∂V0(r,−φ,−z)
∂(−φ)

φ̂

+
∂V0(r,−φ,−z)

∂(−z)
ẑ

=
∂V0(r, φ, z)

∂r
r̂

+
1
r

∂V0(r, φ, z)
∂φ

φ̂

+
∂V0(r, φ, z)

∂z
ẑ

= − �E0(r, φ, z).

(A5)

Similarly, �E can be shown to transform in the same manner
as V under all of the symmetry operations in each of the
configurations, as summarized in Table II.

The fact that �E0 transforms according to the same IR
as V0 can be demonstrated more generally and succinctly
in the language of differential forms [21]. The electric field
is a 1-form that is defined by

E0 = −d∧V0, (A6)
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where d∧ denotes the exterior derivative. The operators
P (gi) are pull-backs, which commute with the exterior
derivative [21]. Therefore, the transformations of E0 are
given by

P (gi)E0 = −P (gi)�d∧V0

= −d∧[P (gi)�V0].
(A7)

The equivalence of the transformation properties of �E0 and
V0 are fairly transparent in this equation. In the case of a
one-dimensional IR, the changes in sign of V0 under each
of the gi results in the same change in sign of �E0.

In the absence of an applied stress, the components
of strain S that are piezoelectrically induced by a time-
independent electric field are given by the electromechan-
ical constitutive equation [22],

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎣

d11 cos 3φ −d11 sin 3φ 0
−d11 cos 3φ d11 sin 3φ 0

0 0 0
d14 0 0
0 −d14 0

−2d11 sin 3φ −2d11 cos 3φ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

Er

Eφ

Ez

⎤
⎦ .

(A8)

The conventional contracted notation in cylindrical coor-
dinates is used here for the components of S: S1 ≡ Srr,
S2 ≡ Sφφ, S3 ≡ Szz, S4 ≡ Sφz , S5 ≡ Srz, and S6 ≡
Srφ) [22]. Eq. (A8) can be expressed in dyadic notation as

S = [Erd11 cos 3φ − Eφd11 sin 3φ]r̂r̂

+ [−Erd11 cos 3φ + Eφd11 sin 3φ]φ̂φ̂

+ [Erd14]φ̂ẑ − [Eφd14]r̂ẑ

+ [−Erd11 sin 3φ − Eφd11 cos 3φ]r̂φ̂.

(A9)

Applying each of the symmetry transformations (Ta-
ble VI) to (A9) and using the results for �E summarized in
Table II, S is found to transform in the same manner as
V and �E, except that the inversion symmetry is reversed.

With electric fields driven at a frequency near an acous-
tic resonance, the strains in the material will be larger
than those given by the time-independent analysis of S,
above, and the detailed spatial dependence will be deter-
mined predominantly by the resonant modal displacement
patterns. However, the general symmetries (IRs) of the
resonantly driven strains will be the same as in the time-
independent case.
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