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Abstract— We have recently demonstrated the coherent transfer 
of an optical signal over a 251 km link of optical fiber by use of 
the standard Doppler-cancellation approach to remove the 
effects of the fiber-link noise. The fundamental limit to the 
frequency instability on the transmitted optical frequency is set 
by residual phase noise on the optical frequency resulting from 
the unavoidably imperfect Doppler cancellation of the fiber-link 
noise. Here we demonstrate that it is possible to quantitatively 
predict the phase noise and instability of the Doppler-cancelled 
transmitted optical frequency directly from the measured fiber-
link noise. The ability to predict the frequency instability from 
the measured fiber noise can be a useful tool in evaluating 
whether a coherent fiber optic link is operating at its 
fundamental limit, or whether there is additional excess noise 
from the measurement system present in the link. 

I. INTRODUCTION 
As atomic clocks continue to improve in their stability, it 

has become increasingly difficult to compare the frequency of 
two remote clocks, or to faithfully deliver the clock frequency 
to an end user.  The difficulty arises from the fact that any 
variation in the path length connecting end sites results in a 
Doppler shift of the transmitted frequency, thereby degrading 
its phase noise and stability to levels well below those of the 
original clock signal.  A variety of techniques have been 
demonstrated to transport frequencies faithfully despite these 
Doppler shifts. A “common-view” global positioning satellite 
system (GPS) has traditionally been used that allows 
flexibility in the receiver’s position and fractional frequency 
stabilities of a few parts in 10-15 with one-day averaging.[1]. 
However, the latest generation of optical clocks operate at 
significantly lower instabilities.  In several recent articles, we 
have explored the long-distance transport of an optical 
frequency over a fiber optic link of up to 251 km in length [2, 
3], using the previously developed techniques for Doppler 
cancellation of Ref. [4-6].  We find that it is indeed possible to 
transport an optical frequency over such lengths of optical 
fiber with sufficient stability to support the current and next 
generation of optical clocks.  At the end sites, the optical 
frequency can be translated to a different optical frequency, or 
to the RF, through an optical frequency comb.[7] 

 

The limitation to the frequency instability of the delivered 
optical frequency is set by two factors. For very long gate 
times, the instability is limited by the system noise of the 
transmitter or receiver.  In contrast, at short gate periods the 
instability is limited by the actual noise imposed on the optical 
frequency from the variations in the fiber link length (through 
the Doppler shifts).  Hereafter, we refer to this noise as “fiber-
link phase noise”. Because of the long millisecond delay 
involved in transporting the signal over the fiber, the fiber-link 
phase noise cannot be completely suppressed through 
feedback, and the residual phase noise on the delivered optical 
frequency will cause a corresponding instability in the 
delivered frequency.  This second effect is the subject of this 
paper.   

In Refs. [2, 3], we outline in some detail the various 
important effects for the long-distance transport of an optical 
frequency. We presented results on the achievable phase noise 
and instability over a series of fiber link lengths up to 251 km, 
as well as simple expressions for the timing jitter (integrated 
phase noise) and instability.  These simple expressions relied 
on the assumption that the fiber-link phase noise falls off as  
1/f 2 up to some cutoff frequency, where f is the Fourier 
frequency. In general, of course, the fiber-link phase noise will 
have a more complicated structure. The basic theory presented 
in Appendix A of Ref. [3] is in fact completely general and 
can be applied to any fiber-link phase noise. In fact, if one 
measures the free-running fiber-link phase noise for any link, 
then one can use the theory to predict the quality of the 
ultimate Doppler-cancelled optical frequency in terms of both 
its residual phase noise and instability. This prediction 
capability is useful because it is relatively simple to measure 
fiber-link phase noise. One can then use the predicted 
instability to determine whether the link is sufficiently quiet, 
or to evaluate the performance of the fully operational 
Doppler-cancelled coherent link.  Here we demonstrate such a 
calculation, and compare it to actual measurements on an 80 
km fiber link. The experimental setup was identical to that 
described in Refs. [2, 3]. 
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II. FIBER COMB 

A. Free-running fiber-link phase noise 
 

 
Figure 1.  Simplified schematic of the phase-locked loop for the Doppler 

cancellation, which defines the various contributions to the open-loop gain.  

Fig. 1 gives a schematic of the phase-locked loop (PLL) 
for the Doppler cancellation using standard Laplace 
notation.[8]  Assuming a phase perturbation, ( ),z tδϕ , on the 
fiber at time t and position z with respect to some reference 
path, the phase noise accumulated by light traveling forward 
in length of optical fiber starting at position z=0 and exiting 
the fiber at z=L at time t is   

 ( ) ( )
0

, ( )
L

fiber nt z t z c dzϕ δϕ τ= − −∫ ,  (1) 

where nL cτ = is the propagation delay in the fiber, and cn is 
the speed of light in the fiber. The phase noise on the round-
trip light exiting the fiber at a time t is  
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The Fourier transforms of the above equations are 
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Assuming that the noise is uncorrelated with position, the 
fiber-link phase noise power spectral density (PSD) on the 
one-way transmitted light is  

( ) ( ) ( )2 2

0

, .
L

fiber fiberS z dzω ϕ ω δϕ ω= = ∫  (4) 

The round-trip light has a phase noise PSD 

( ) ( ) ( ) ( )( )2

, , 2 1 sinc 2fiber RT fiber RT fiberS Sω ϕ ω ω τω= = + ,

 (5) 
under the simplifying assumption that the noise is independent 
of position. Similar expressions were derived in Ref. [9].  To 
simplify the math, we will continue to make the assumption 
that the noise is independent of position. The fiber-link noise, 

( )fiberS ω , is fairly easily measured for a test system where the 
fiber link begins and ends in the same place.  In a real system, 

it is the round trip noise, ( ),fiber RTS ω , which is easily 
measured.  In any case, for the discussion here, we will 
assume that ( )fiberS ω  is known. We demonstrate that from 

this quantity, one can predict the resulting instability 
and residual phase noise on the transmitted optical 
frequency with the full PLL of Figure 1  active.   

B. Phase-locked loop for Doppler cancellation: 
Theory 
Now we consider the PLL. Using Laplace 

notation, the open loop gain is  

 ( ) ( ) ( )1 2
0 1 sG s G F s s K e τ− −= + , (6) 

where G0 is an overall gain including the divider and phase-to-
voltage conversion of the phase detector, F(s) is the loop filter 
gain, K is the VCO conversion from volts to frequency, and τ 
is the one-way delay down the fiber. Letting s iω→ to 
convert to frequency, and assuming the loop filter is a simple 
proportional-integral circuit with corner frequency cω , we can 
rewrite this as  

( ) ( )0 2 cos ,ic i
G G e ωτω ω

ω ωτ
ω

−+
= −               (7) 

where G0 is a redefined frequency-independent overall gain. 
The usual algebra [8] yields the phase noise on the “local” or 
round-trip signal with the phase-locked loop active as  

 ( ) ( ) ( ),
1 ,

1local fiber RTG
ϕ ω ϕ ω

ω
=

+
  (8) 

so that the power spectral density (PSD), Slocal, on the phase-
locked round-trip (local) signal compared to the noise on the 
free-running round-trip signal is 
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 Now consider the one-way transmitted signal. The 
correction signal applied to the AOM for the one-way light is 

( )( ) ( )1
0

i
RTG F i Ke ωτω ω ϕ ω− − . Again, following the usual 

algebra,[8], the phase of the locked “remote” transmitted light 
is 
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From (3), (4), and (5), the squared magnitude of (10) gives the 
PSD of the phase-locked transmitted signal Sremote compared to 
the fiber-link noise (i.e., the noise on the free-running 
transmitted signal) as 
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In Refs. [2, 3], we take the limit of infinite gain and low 
frequency, for which this equation reduces to  

 ( ) ( ) ( )
2

0
lim ,

3remote fiberS S
ω

ωτ
ω ω
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≈  (12) 

from which follow the simplified expressions for timing jitter 
and instability of Refs. [2, 3]. 

C. Phase-locked loop: Comparison with Experiment 
Next, we compare the above expressions to measurements 

taken for an 80 km fiber link. For this 80 km link, we 
measured the phase noise on the round-trip (local) and one-
way transmitted (remote) optical frequencies without the PLL 
(equivalent to ( ),fiber RTS ω and ( )fiberS ω ), and with the PLL 
active (equivalent to ( )localS ω  and ( )remoteS ω ).   These four 
quantities are related through Eqs. (5), (9), and (11).  From 
these equations, knowledge of  ( )fiberS ω (and the gain G) 
should be sufficient to predict the final phase noise on the 
transmitted signal with PLL active. 

Figure 2 shows the free-running fiber link noise,  
( )fiberS ω  and ( ),fiber RTS ω , along with the prediction of Eq. 

(5).  The agreement is very good, and it would have been 
sufficient to measure only one or the other quantity in a real 
system.  
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Figure 2.  Measured fiber-link noise on the transmitted signal, ( )fiberS ω  

(solid black) as well as the measured (solid gray) and predicted (dashed 
black) fiber-link noise on the round-trip signal ( ),fiber RTS ω . 

In order to compare the measured and calculated phase 
noise with the PLL active, we need to know the open loop 
PLL gain, Eq. (7).  For low corner frequency, the phase of the 

gain, ( ) ( )arg 2 2G i fπ π ωτ= − +⎡ ⎤⎣ ⎦ , passes through π 

at ( )2 2 4fω π π τ= = , and one would expect to observe 
oscillations. However, at exactly the same frequency, the 
cosine term in the gain, Eq. (7), vanishes, and so the 
oscillations do not grow, as would be the case for a resonant 
system.  Therefore, we can, and do, actually operate with unity 
gain far above the characteristic 
frequency ( )2 2 4fω π π τ= = .  Figure 3a plots the open loop 
gain for 4

0 4 10G = × , 100 rad/seccω = and 0.38 msecτ =  
corresponding to an 80 km link length. In principle, these 
values could have been independently measured. However, 
here using  Eq. (9) we chose them to get reasonable agreement 
between the free-running and phase-locked round trip signal, 
shown in Fig. 3.  The agreement on the shape is good.   
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Figure 3.  (a) Calculated open loop gain for PLL. (b) Measured unlocked 
round-trip  phase noise, ( ),fiber RTS ω  (dotted line) and measured locked 

round-trip (local) phase noise ( )localS ω (black line) along with the 

predicted locked round-trip phase noise from Eq. (9) (gray line). 

Finally, Figure 4 compares the predicted and calculated 
residual phase noise on the one-way transmitted (remote) 
signal by use of Eq. (11).  As discussed in Ref. [2, 3], it 
approaches white phase noise at low frequencies because in 
that limit Eq. (12) holds and we get a maximal suppression of 
the free-running phase noise of only ( )2 3ωτ . Since the free-
running fiber-link phase noise increases as 2ω− , the resulting 
residual phase noise is flat.  By using the full expression (Eq. 
(11)) , we find good agreement between the measured and 
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predicted phase noise on the transmitted optical frequency at 
all Fourier frequencies.   
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Figure 4.   Measured fiber-link noise , ( )fiberS ω  (dotted line) and 

measured residual transmitted (remote) phase noise ( )remoteS ω (black line) 

along with the predicted phase noise from Eq. (11) (gray line). 

The integral of this phase noise over frequency will give the 
total timing jitter, and this integral can be taken for Eq. (11), 
although we do not do that integration here.  
D. Frequency Instability: Theory 

For clock comparison, the relevant quantity is the 
frequency instability, as measured by the Allan deviation.  As 
discussed in much greater detail in Refs. [10, 11], we can 
directly calculate the Allan deviation from the measured phase 
noise spectrum.  Using the integral expression appropriate for 
our frequency counters (Eqs. (14) and (16) of Ref. [11]), we 
have calculated the expected Allan deviation. In Figure 5, it is 
compared to the measured Allan deviation. We find good 
agreement at short gate periods. At longer gate periods, the 
measured Allan deviation is much higher.  The reason for this 
is that there is an increase in the phase noise at low Fourier 
frequencies (below those shown in Figs. 3 and 4), whereas in 
the calculation, we assume a flat phase noise at low Fourier 
frequencies. This excess phase noise at low frequencies arises 
from the “out-of-loop” fiber path sections in the transmitter 
and receiver, as discussed in Ref. [3].   
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Figure 5.  The measured “triangle” Allan deviation over the 80 km link 
(solid line and triangles) compared to the predicted Allan deviation from the 
phase noise (solid circles and dashed line).  The system noise floor measured 
for a 0 km link are also shown (open triangles, dotted line).  The measured 

Allan deviation follows the prediction from the phase noise until a gate 
period of about 10 seconds, after which it follows the system noise floor. 

III. CONCLUSION  
Very low Allan deviations can be achieved by sending an 

optical carrier over a long fiber optic link.  For the 80 km link 
here, the Allan deviation drops close to 10-19 at a gate period 
of 104 seconds.  The fundamental limit to the Allan deviation 
is set by the residual fiber-link noise.  If the free-running fiber 
noise is measured, the residual fiber-link noise can be 
calculated directly from the open-loop gain. This residual 
noise can then be used in the known integral formulae to 
calculate the Allan deviation. Therefore, from the measured 
fiber-link noise, we can immediately infer the ultimate 
frequency stability that could be achieved for a fully 
implemented coherent frequency transfer setup using Doppler 
cancellation.  
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