
53 
 

 

1

  
Abstract— Environmental regulations impacting the 

electronics industry are driving the need for new data 
management systems to track environmental data including 
material data. This paper describes efforts to take a holistic 
approach in managing this information by working with industry 
standards organizations and applying system design philosophies 
to the standards development process. 
 

Index Terms— Material content, information management,  
data exchange, supply chain   
 

I. INTRODUCTION 
In the 21st century, managing the environmental impact of 
manufacturing has become an important aspect of electronics 
production.  To protect both human health and the 
environment, governments worldwide have enacted legislation 
that places restrictions on the manufacture, use, and 
reclamation of products. Due to the complex material 
composition of electronics, as well as their high resource 
usage and short product lifecycle, many of these restrictions 
directly impact the electronics industry.  
 
The EU Restriction of Hazardous Substances (RoHS) 
(2002/95/EC) [1] was the first major substance regulation 
affecting the electronics industry.  The RoHS directive first 
went into effect July 1, 2006.  It restricts the use of six 
substances used within electronics products: lead, mercury, 
cadmium, hexavalent chromium, polybrominated biphenyls, 
and polybrominated diphenyls.  While most companies have 
avoided immediate repercussions from RoHS, there are more 
environmental regulations on the way, each with new data 
requirements [2]. 
 

 
Certain commercial software is identified in this paper to foster 

understanding. Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does 
it imply that the materials or equipment identified are necessarily the best 
available for the purpose. 

E. Simmon. Author is with the National Institute of Standards and 
Technology, Gaithersburg, MD 20899 USA (phone: 301-975-3956; fax: 301-
975- 6021; e-mail: eric.simmon@nist.gov).  

J. Messina. Author is with the National Institute of Standards and 
Technology, Gaithersburg, MD 20899 USA (phone: 301-975-4284; fax 301-
975- 6021; e-mail: john.messina@nist.gov).  

Complying with these new laws and regulations is no simple 
process and requires changes in product design, manufacturing 
processes, and in the management of environmental data.  A 
major obstacle towards achieving these goals is the sheer 
number of environmental regulations.  Many of these 
regulations cover the same territory but have subtly different 
requirements.  This has created a situation in which companies 
are left struggling to determine what changes need to be made 
to their manufacturing supply chains in order to ensure 
compliance for their product in a particular market or country.  
 
Another challenge is the lack of low cost solutions for small 
and medium sized businesses that are affected by these 
regulations.  While the major enterprises at the end of the 
supply chain have extensive information management 
systems, the smaller companies that provide materials and 
parts often have little or no information management 
infrastructure and a correspondingly small budget to 
implement changes.  To assist all stakeholders, data exchange 
standards should be designed to facilitate the creation of 
supporting software solutions.    
 
Material composition information, one of the more important 
environmental product aspects, must be able to flow through 
the electronics supply chain in order for companies to be 
compliant.  The diversity of the data exchange requirements 
for each new piece of environmental legislation, as well as the 
diverse business approaches used by companies in the supply 
chain, makes this a difficult task.  Companies range from 
wanting to exchange only minimal material composition 
information (i.e., yes/no compliance) to wanting to exchange 
full material composition information.  Facilitating this flow 
of information requires both the development of business-to-
business data exchange standards and the development of 
underlying data management systems. 
 
While some work has been done developing the material 
composition infrastructure, there has been no holistic approach 
to the problem.  The result is a mismatch between the database 
management systems holding the product and environmental 
data and the data exchange specifications. This paper 
demonstrates a standards development process that naturally 
lends itself to the development of a corresponding data 
management system.  

 

Improving Environmental Information 
Handling and Data Exchange within the 

Electronics Industry  
Eric Simmon and John Messina, Semiconductor Division, National Institute of Standards and 

Technology 



53 
 

 

2

II. STANDARDS DESIGN 
One of the major problems encountered in ad-hoc standards 
development is that there is no method to ensure that all the 
required information is captured.  Since the purpose of most 
information standards is to gather and exchange electronic 
data, the failure to identify key information can potentially 
render the standard useless.  Failure to keep the project’s 
domain information (data to be exchanged) and the software 
transportation layer (transfer mechanism) separate can also 
result in distorted or missing data.  These situations come 
about because the developers are looking at the standard with 
slightly different perspectives and expectations.  
 
Ideally, new data exchange standards can be developed in 
such a way that they can be easily implemented in a database 
management system. The Infrastructure for Integrated 
Electronic Design and Manufacturing (IIEDM) [3] project at 
the National Institute of Standards and Technology (NIST) [4] 
has been working with standards organizations to implement a 
more rigorous approach to the data exchange standards 
development.   This approach, similar to ones used in software 
development, focuses on clearly defining the scope and 
requirements of the standard and then using that definition to 
generate both the data exchange standard and a compatible 
database structure. These specifications can then be used to 
generate well-integrated data management systems. 
 
The task of designing data standards is complicated by the 
numerous players; all working together, each one with their 
own set of needs and priorities. Traditional standards 
committees often follow an ad-hoc approach, where the 
standard is developed piecemeal without following a 
development process specific to data exchange standards.  
This often leads to standards that are incomplete, 
cumbersome, or unworkable for their intended purpose.  
Structured methods are useful, both in building solid 
information standards that capture all necessary data and in 
integrating the standards into information management 
systems.   
 
While a full-blown, rigorous approach to information design 
might be difficult to implement in the standards arena due to 
resource constraints, adopting even some of these tools can 
provide significant benefits to standards development. IPC (a 
global trade association) [5], working with assistance from 
NIST, used a simplified version of this approach in their IPC 
2-18 subcommittee in creating the IPC 1750 series supplier 
declaration standards [6].  The IPC 1750 series was well suited 
to this as it is a data exchange standard that is designed as a 
modular framework that will support more declarations as 
needed (the IPC 1752 material declaration standard is one 
sectional). 
 
The first step was to develop the business requirements that 
the standard must meet. These requirements were then used to 
develop use cases that show the specifics of how the standard 
would function and what information would be included.  
 

The requirements and use case information were then used to 
develop a Unified Modeling Language (UML) class diagram.  
The UML is a modeling language composed of many different 
types of diagrams used to understand and structure the 
software design process.  Of these diagrams, the class diagram 
(which describes data types and their relationships to one 
another) is one of the most widely used.  Class diagrams can 
help mitigate some of the difficulties with information 
standards development by providing a visual representation.  
Figure 1 shows a simplified view of the IPC 1750 series class 
diagram showing the basic modules that make up the model. 
For the detailed class diagram, please contact IPC or the 
authors directly.  In addition, this class diagram maps nicely 
onto both Extensible Markup Language (XML) definitions 
and database table definitions, and software tools can be used 
to automate the generation of both (see Figure 2). 
 

 
Fig 1 Simplified 1750 series class diagram 

 
After the UML class diagram was finalized, the systems 
specialists used software tools to generate an XML schema 
and database schema directly from the model.  The XML 
schema will be part of the published standard and will be 
released along with the rest of the standard, while the database 
schema will be provided as a supporting file. 
 



53 
 

 

3

 
Fig. 2 UML Class diagram generates code 

After the domain was defined and XML and database 
definitions were finished, the final step was to demonstrate 
how the new process could implemented in a data 
management system.  For this purpose a set of software tools 
were created to handle data entry and editing.  These tools 
were deliberately designed to help small and medium 
businesses implement the IPC 1750 standard and to provide a 
reference implementation for developers to build on. 

 

III. DATA MANAGEMENT SYSTEM 
A data management solution consists of several parts: the data 
format and data types, the programs that can access and 
manipulate that data, and the underlying data storage system. 
The data and relationships do not change regardless of 
whether the data resides in an XML file to be exchanged, 
loaded into memory by a program, or in a database table.  This 
means we can use automated techniques to generate 
definitions for the XML file, programming code framework, 
and the database structure.  The specifics of the relationship 
between the XML files, the data manipulation programs, and 
the database are described below. 
 
The first goal is either to get data from an XML file into a 
program or to get data from a program and into an XML file.  
Figure 3 shows the underlying concept and describes how an 
XML schema can be used to generate programming code 
classes and how this programming code is then used to create 
an application that can hold the data from the XML file (the 
instantiated data is referred to as an ‘object’).  When the data 
is in memory it can be manipulated as needed.  To get the data 
from a file into memory, parsing or marshalling/unmarshalling 
functions are used. 
 
  

 
Fig. 3 Relationship between XML schema, classes and XML 

instances 

 
 
After the tool has converted documents into in-memory 
objects, the next step is to import the data into a database. This 
will require the tool to have the ability to process in-memory 
objects and make transaction and query based calls against the 
database. (see Figure 4).   
 

 
Fig. 4 Relationship between database schema, classes and data 

objects 

 
Once the theoretical structure of the system is understood, the 
next step is to implement the data management solution. We 
chose to implement our applications using Java and Java 
toolkits [7] as Java is a freely available programming language 
with many open source toolkits. In theory, this approach could 
be implemented in any programming language (although it 
does lend itself to an object oriented programming approach). 
 
The two main toolkits used to generate the Java classes and 
the parsers for the database and XML are Java Persistence API 
(JPA) [8], for the database side, and Java Architecture for 
XML Binding (JAXB) [9], for the XML side. 



53 
 

 

4

A.  MAPPING JAVA INTO XML 
The JAXB application programming interface (API) is a set of 
interfaces and classes through which applications 
communicate with code generated from a schema.  It provides 
an Unmarshaller class that converts XML into Java and 
optionally validates the XML and a Marshaller class that 
converts an object into XML data and optionally validates it.  
Aditionally it creates classes that can contain the data in the 
XML file. 

To create a tool using JAXB, a collection of Java classes is 
created from the XML schema using the JAXB schema 
compiler. The schema compiler takes XML schemas as input 
and generates a package of Java classes and interfaces that 
reflect the rules defined in the source schema.  

B. MAPPING JAVA INTO A DATABASE 
The Java Persistence API (JPA) provides similar functionality 
to JAXB but provides the connection between the database 
and the programming code.  It provides a mapping of Java 
classes to a relational database. 

C. SCRIBA EDITING TOOL 
Scriba is an editing tool that was developed by NIST as the 
reference implementation of IPC 1750 that businesses can use 
as-is or modify to suit their specific needs.  In addition to the 
editing functions, it implements the marshalling functions 
discussed above to allow the importing and exporting of XML 
files.  It is written in Java and uses readily available Java APIs; 
it runs on multiple computing platforms.  Scriba has a 
graphical user interface to facilitate the generation and editing 
of XML documents that comply with the IPC 1750 Standard.  
Scriba allows the user to create IPC 1750 compliant files, 
validate XML files against the IPC 1750 XML schema, 
modify existing IPC 1750 files, and sign and verify signatures 
according to the IPC 1750 standard.  Previous versions of the 
IPC 1750 reference implementations had relied on a dynamic 
PDF [10] form.   However, the limitations of an input tool that 
mimics a paper form became readily apparent when trying to 
add support for multiple products in a single declaration.  
Scriba’s interface is designed to be similar to the IPC 1750 
version 1 form, but with enhancements designed to support 
multiple products.  

Scriba’s editing interface allows the user to view each element 
of the XML document, edit it and modify it by following the 
structure of the IPC schema (as show in figure 4).  

 

Fig. 5. General steps in editing an XML data file using Scriba 

 
Scriba consists of the following basic components:  
 
1. XML Import; Parse the XML instance and show its 

contents in the GUI. Automatically validate the 
instance according to the schema, if it’s valid upload 
it, otherwise notify the user. 

2. Import Certificate; Before signing a document, a 
valid certificate must be uploaded to the Scriba 
keystore. 

3. Sign XML; The user signs the file using certificates 
stored locally in the keystore (a keystore is database 
file that stores encryption keys). 

4. Validate Signature; To ensure the file was signed 
correctly, the signature is verified after the document 
is signed. 

5. Validate XML instance;  The user can also validate 
the XML against the schema while editing. 

6. XML Export;  The data is marshalled from the Java 
object into an XML instance and written to disk. 

IV. SECURITY 
An important feature added to IPC 1750 version 2.0 is the 
ability to electronically sign a document using an XML 
signature.  Scriba provides this functionality and interacts with 
the security module to provide the user with an option to sign 
the document.  This option uses a certificate of authenticity 
provided by a third party and the tool provides a means of 
pointing to the certificate, which is then used to sign the 
document.  In addition to being able to sign a document, the 
tool can also validate a signature, and provides an icon that 
identifies an authentic signed document. 



53 
 

 

5

V. CONCLUSION 
The new standards development process (based on system 
design and software development techniques) was 
successfully demonstrated during the process of developing 
the supplier declaration data exchange standard IPC 1750.  
Committee experts were consulted to define the scope and 
requirements needed to understand the process of exchanging 
material composition data.  From this data, a UML Class 
Diagram was created which in turn was used to generate both 
an XML schema as well as a database definition. Using freely 
available software toolkits, the project team was able to create 
a prototype data management system and demonstrate how it 
could be used with in tandem with a data entry application. 
This process successfully demonstrated that the proposed 
development process can help developers create new data 
exchange standards and underlying data management systems 
at the same time.  The next step for the project includes 
improving and streamlining the requirements development 
process.  

 

ACKNOWLEDGMENT 
The authors would like to thank Fatima El Osbi for her 

work developing Scriba and the database tools and Matt 
Aronoff for his perceptive insight in constructing the XML 
schema. 

 

REFERENCES 
[1] European Union’s Restriction of Hazardous Substances Directive. 

Available at: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0095:EN
:HTML. Accessed on: Feb. 20, 2008. 

[2] J. Messina, E. D. Simmon, M. Aronoff, “Environmental Regulations 
Impose New Product Lifecycle Information Requirements,”Complex 
Systems Concurrent Engineering; Collaboration, Technology Innovation 
and Sustainability, London: Springer-Verlag2007, pp. 373-381. 

[3] Infrastructure for Integrated Electronic Design and Manufacturing 
(IIEDM) project web page. Available at: 
http://www.eeel.nist.gov/812/IIEDM/. Accessed on: Feb. 20, 2008. 

[4] National Institute of Standards and Technology (NIST) web page. 
Available at: http://www.nist.gov. Accessed on: Feb. 20, 2008. 

[5] IPC web page. Available at: http://www.ipc.org. Accessed on: Feb. 20, 
2008. 

[6] IPC 1750 standard web page. Available at: http://www.ipc.org/. 
Accessed on: Feb. 20, 2008. 

[7] Java website. Available at: http://www.sun.com/java/. Accessed on: Feb. 
20, 2008. 

[8] Java Persistence API website. Available at: 
http://java.sun.com/javaee/overview/faq/persistence.jsp. Accessed on: 
Feb. 20, 2008. 

[9] Java Architecture for XML Binding web page. Available at: 
https://jaxb.dev.java.net/. Accessed on: Feb. 20, 2008. 

[10] Adobe Portable Document Format (PDF) web page. Available at:  
http://www.adobe.com/products/acrobat/adobepdf.html. Accessed on: 
Feb. 20, 2008. 

 
 
 
 


