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Abstract

In today's semiconductor fabrication facilities
('fabs"), coordination of time-based information
throughout the factory and enterprise has become
necessary to support fab-wide diagnostics, control,
and information management. This has driven the
need to have time synchronization at all levels of the
enterprise. Time synchronization protocols such as
Network Time Protocol (NTP) and Precision Time
Protocol (PTP) have been defined for performing
synchronization over distributed systems. Lack of
time synchronization among the various subsystems
is seen as a factor ofpoor data quality in Equipment
Data Acquisition (EDA) and Advanced Process
Control (APC) analysis. The focus of our study is to
investigate the extent and precision of time
synchronization that can be practically applied with
the available protocols at various levels of the
semiconductor factory environment to meet next
generation manufacturing requirements. To this
end, we describe the objectives, details, and
implementation of the simulator that aims to model
a semiconductor factory network. This will provide
a practical perspective to study the accuracy
achievable and potential network factors
contributing to accuracy degradation of factory-
wide time synchronization.

1. Introduction

The backbone of all manufacturing processes is
automation. It has resulted in a significant productivity
increase and also enhanced the product quality to a great
extent. However, as the product becomes more complex
it has driven the need for more refinement in the
automation processes. In semiconductor manufacturing,
growing complexity and shrinking device sizes will
require more precise manufacturing processes where

data quality will play a critical role for process control
and diagnostics.

The manufacturing industry has moved to distributed
architectures allowing greater reconfiguration
capabilities. The network plays an important role in
distributed architectures. Considering the ubiquity and
cost benefit obtained from Ethernet, it has become the
network of choice for the manufacturing floor [1]. To
facilitate a uniform data exchange mechanism on the
network, eXtensible Markup Language (XML), the
language used in many web services communications, is
being used as the standardized data format. XML is the
language specified in many semiconductor
manufacturing standards including the Equipment Data
Acquisition (EDA) communication standard [6,7,8,9].
By adopting Ethernet and the web services paradigm, the
semiconductor industry can leverage mainstream
information technology to rapidly ramp-up new data
acquisition interfaces and other distributed software
automation tools. However, XML also has the potential
to contribute to quality of service degradation due to the
amount of processing involved. One key issue in data
acquisition quality of service is the ability to reconstruct
the sequence of events to determine cause-effect. As
data are being exchanged, collected and analyzed at
higher speeds for better control of the processes, it has
become important to have a precise time synchronization
mechanism for merging the data obtained from different
sources.

In the semiconductor manufacturing industry, EDA is
seen as an important data source for fault detection and
classification (FDC) which would be able to detect faults
and determine the causes in real-time to improve product
yield. The lack of accurate time synchronization and
time-stamping from the various data sources hampers
data quality obtained through this interface. The end-to-
end performance studies identify the node as the primary
cause for delay and delay variability in Ethernet-based
network communication systems [2,3]. Application of
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time synchronization protocols such as Precision Time
Protocol (PTP - based on IEEE 1588) in generic
network communication to address the delay issues has
also been studied [4].
EDA data are obtained from different semiconductor

manufacturing equipment systems and sub-systems. To
accurately correlate the data obtained with the
occurrence of events from varied sources it is essential to
have time synchronization among data sources [5].

Performance and benefits of EDA implemented using
SOAP/XML messages over a HTTP connection have
been studied [10]. The criteria for using the SOAP/XML
platform are based on its interoperability in applications
due to mainstream adoption and broad commercial
support and availability. Further investigation into the
design and implementation of XML-based messaging is
needed with particular focus on semiconductor
manufacturing equipment due to the rapid growth of
technology taking place in the field. With the
development of the simulator, data acquisition
performance and time synchronization aspects could be
studied more closely before deployment of specific
technologies. A study of the EDA factory data
throughput utilizing the Microsoft.NET platform [11]
indicates current technology is sufficient for supporting
industry requirements. With data throughput capability
comes the need for data quality. It is imperative to
characterize the performance of XML-based data
acquisition in a factory network and to assess its impact
on time synchronization and time-stamping accuracy.

This paper presents the results to-date of a project
focused on exploring the impact, capabilities, and
limitations of utilizing time synchronization in aspects of
semiconductor manufacturing. Specifically, a simulation
approach is being utilized to study the impact of time
synchronization on EDA networked systems throughout
the semiconductor "fab." The developed EDA simulator
helps determine the extent and precision of time
synchronization required for meeting relevant
performance criteria. The simulator is capable of
generating data traffic similar to the patterns seen in the
semiconductor manufacturing environment. In addition,
there is a capability for introducing random traffic and
noise patterns. EDA data obtained from different sources
will eventually be time-stamped at different levels of
precision (hardware and software time-stamping) and
time synchronization protocols among the different
sources will be applied. Under different conditions of
network and equipment loading, correlation between
data obtained from varied sources and their respective
occurrence of events is carried out. This will help to
determine the extent of time synchronization accuracy
that is required to ensure proper data quality under
different conditions. Based on simulation results,
effective recommendations will be provided for
implementing fab-wide network time synchronization,
data acquisition, and data time-stamping. A cost-benefit

analysis will be performed for the application of NTP
(Network Time Protocol) and PTP (Precision Time
Protocol - based on IEEE 1588) at various levels of the
semiconductor factory floor.

Section 2 gives a brief overview of the EDA standard.
In Section 3, the design details, implementation and
present project status of the semiconductor factory
network simulator is discussed. The conclusions and
future work are mentioned in Section 4.

2. Components of EDA

EDA specifies a collection of SEMI standards for the
semiconductor industry to facilitate communication
between data collection applications (EDA client) and
factory equipment (EDA server).
The SEMI standards used to describe EDA are

* E120 - Common Equipment Model
* E125 - Equipment Self Description
* E132 - Client Authentication and Authorization
* E134 - Specification for Data Collection

Management
The SEMI E134 [9] standard helps to create a more

manageable and flexible high speed data collection
environment. The process and operational data are
organized into logical, named units through Data
Collection Plans (DCPs) that can be individually
activated or deactivated.

Figure 1. EDA port on the equipment.

As shown in Figure 1, EDA provides multiple client
access to data gathering capabilities. Through EDA, data
concerning process information, equipment utilization
details, sensor feedback and actuator states are gathered
which eventually facilitates process and product
improvement, equipment utilization and equipment
maintenance. All equipment control is achieved through
a different port as indicated in Figure 1. The EDA
interface uses SOAP/XML messages over a HTTP or
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HTTPS connection for communication between the
client and equipment at high frequency. E134 defines the
behavior associated with the execution of data collection
plans in the form of finite state machines.

Figure 2. Mapping of E120 and E125.

Modeling of data from equipment requires knowledge
of data from the different modules and subsystems. E120
[6] provides a general object model that represents an
external view of equipment. It represents a logical
hierarchy as represented in Figure 2, which includes the
I/O device, subsystem, module, and equipment. E125 [7]
allows clients to request descriptions of parameters (data,
units, and types), events, exceptions, state machines, and
physical configuration. All the available information is
mapped into E120 Common Equipment Model
hierarchy. With E125, the client is able to decide what
data to monitor with regard to a particular context.

The E132 [8] specification defines security related
features for EDA messaging which includes client
authentication and authorization.

Event Reports
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Figure 3. EDA reporting.

E134 is used to define and activate Data Collection
Plans (DCPs). DCPs are defined for event, trace, and
exception requests as shown in Figure 3. The DCPs are
configured by the user (EDA client) based on the
application need and downloaded to the equipment. On
activation of a DCP from the client, the equipment sends
data in the form of data collection reports (DCRs).
Context is communicated via events and exceptions.
Event reports give information on state changes in the
equipment which provide knowledge of the working
condition of the equipment. Exception reports monitor
error conditions on the equipment. Trace contains the

real-time series data for monitoring the equipment. The
trace data may have to be buffered on the equipment
before being sent to the client at periodic intervals.
Figure 4 shows the format of a DCR which includes the
event, exception and trace information. It also includes
the data collection plan ID, and the start and end time of
the report.
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Figure 4. Data collection report (DCR) format.

Figure 5 shows a data exchange scenario between the
EDA port on the equipment and a client. It is based on
the standards discussed above, and the sequence has to
be maintained for equipment servers and clients
implementing the EDA data collection mechanism.

..Client

DCP

Equip. ent

Create Session

Metadata Request ..|Metadata||

DCP Activate Request f _

t[=Exception

Trace

Figure 5. EDA communication sequence.

3. Factory Network Simulator

The Engineering Research Center at the University of
Michigan is working with NIST and has developed a

first version of a network simulator for the
semiconductor factory. This simulator will be used to
determine the best practices for networked time
synchronization in semiconductor manufacturing. The
simulator will determine the extent and precision of time
synchronization required for meeting data collection
performance criteria. The simulator includes a network
noise generator that can be used to generate traffic and
noise patterns commonly seen on the semiconductor
factory floor. Studies show that the predominant
bottleneck is encoding and decoding of XML messages

in XML based messaging systems [10,11]. Time
synchronization protocols such as Network Time
Protocol (NTP) and Precision Time Protocol (PTP -

based on IEEE 1588) will be applied at different levels
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of the factory simulator and the benefits obtained will be
studied. Additionally, the impact on data time-stamping
accuracy based on time-stamping at the hardware,
kernel, and application levels will be examined.
Furthermore, the impact of using different operating
systems will be examined. The simulator can also be
expanded simulate advanced process control capabilities
in predictive analysis. A comparison of alternative
methods for time synchronization, data acquisition and
data analysis will provide recommendations for
deployment of EDA, IEEE 1588 and NTP in a
semiconductor factory environment.

3.1. Design of simulator
The various elements of the simulator are illustrated

in Figure 6; these include the simulation controller, time
server, EDA servers and clients, traffic and noise
generators, and 1/0 devices.

Figure 6. Simulation architecture.

The simulation controller is the centralized point of
control; this single point of control allows the data
collection simulation to run without additional network
impact. The simulation controller GUI is depicted in
Figure 7.
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Figure 7. Simulation controller GUI.

From here, the user can configure the entire network.
The user can query the EDA servers for possible
parameters (based on E125 and E120) that could be
obtained from the equipment. Using these parameters,
the user can configure the EDA client by defining the
DCP. The DCP is sent to the EDA server which then
collects the data and compiles the DCRs. These DCRs

are then sent back to the EDA client with the requested
data at the specified time intervals. The simulator
controller also allows the user to configure noise and
traffic patterns. The user can further specify the noise
size and frequency.

3.2. Implementation of simulator and current status
The implementation of the simulator is nearly

complete. The noise generator and EDA client can be
configured from the simulation controller GUI. The
EDA server package is capable of receiving and
handling DCPs and sending back DCRs to the EDA
client. The EDA server consists of three main modules:
the DcpHandler class, the EventGenerator class,
and the DcrHandler class. The DcpHandler class
accesses elements and attributes of the DCP that was
downloaded to the EDA server from the EDA client. The
EventGenerator class generates random events at
specified time intervals which essentially is simulating
the equipment data sources such as a sensor. Eventually,
the simulator will be able to take data from physical
hardware as well as from this simulated
EventGenerator. The DcrHandler class forms the
DCRs in compliance with the E134 schema. The
interaction of these modules within the EDA server with
the EDA client is seen below in Figure 8. The only
remaining component that needs to be developed is the
capability of the EDA server to include equipment
models of different equipments and indicating available
parameters prior to the configuration of the DCPs.

Figure 8. EDA server/client interaction.

3.3. Noise generator validation
The noise generator has been validated. Experiments

were conducted using a simplified data exchange of a
fixed data size and time interval in between messages.
Initially, a 10 Mbps Ethernet hub was used because a
low amount of noise was required to introduce time
delays into the system. Having validated the noise

81



generator, future tests will be performed over a 100
Mbps Ethernet hub as well as a switch. The experimental
setup is shown below in Figure 9 in which the data
exchange takes place between the example server and
example client and the noise is directed from the noise
server to the noise client. The network traffic of TCP
packets is monitored using Ethereal, a network protocol
analyzer.

Figure 9. Noise generator validation setup.

The time delays resulting from the noise generator at a
low noise message size of 10 KB and a high noise
message size of 1 MB is shown below in Figure 10. The
tests were designed such that noise messages were sent
in a continuous loop, the limiting factor being the time
taken by the application to form the messages and
transmit them. There is provision for the user to
configure the time interval as well as the noise size from
the simulation controller. The tests validated that the
noise generator successfully introduces delays and delay
variability into the network. This will be used to generate
noise typically found on semiconductor factory floors.

EBffet of Noise Generaor on Exanple Se rvClient Pair
Noise Size. 10 KB (Sent in cortinuous loop)

3.4. Time-stamping performance study
Time-stamping performance is being evaluated and

improved with Java running on Windows, the most
common operating system used on the factory floor.
Currently, the default time-stamping resolution of Java
with the Windows operating system limits the data time-
stamping accuracy. The EventGenerator module, which
uses built-in Java schedulers, is accurate on an average
but cannot achieve the 1 ms precision requirement for
specified times less than or equal to 100 ms. For
example, at a specified event generation frequency of
every 5 ms, the Java scheduler generated three events
every 15 ms instead of one event every 5 ms. Hence, on
average the scheduler is very accurate; however its
resolution is poor. Initial results can be seen below in
Figure 1 1.
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Figure 10. Noise generator successfully
introduces time delays and time delay
variability into the network
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Figure 11. Java time schedulers are
accurate on average but cannot achieve 1
ms precision requirement for specified
timing under 100 ms

Furthermore, Java time-stamping has a resolution of
approximately 10-15 ms using the Windows operating
system. This was improved by using the Java Native
Interface (JNI) to call upon C++ code to obtain time
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stamps; however, supplementing C++ compromises Java
portability. Figure 12 depicts a comparison of time
stamps from Java, C++, and integrated Java and C++
(JNI). The poor resolution of Java time stamps with
Windows is evident. The range in between consecutive
time stamps is (0,16) ms. On the contrary, C++ time
stamps had a resolution of 0.059 ± 0.047 ms with a range
of (0.050,6.979) ms. Likewise, the JNI time stamps also
had a high resolution of 0.041 ± 0.058 ms with a range
of (0.029,6.240) ms. Also, the higher time delays for JNI
and C++ indicate jitter due to the Windows operating
system. For the JNI and Java, jitter could also be due to
the automated garbage collection, which may halt
program execution at arbitrary times to attempt to
reclaim memory that will never be accessed again by the
application. The unpredictability in the pauses results in
jitter in the time stamps [12].
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Figure 12. Poor resolution of normal Java
time-stamping when compared to C++ and
integrated Java and C++ using the JNI.

3.5. Initial testing using IEEE 1588 PCI cards
Initial data exchange tests were conducted using

National Instruments 1588 PCI cards [4]. The cards did
not allow time-stamping of data packets at the hardware
level, only the PTP messages were time-stamped at the
hardware level. Though there was nanosecond-level
synchronization between the nodes, the time-stamping of
data packets was done through the LabVIEW graphical
user interface (GUI) which added additional delay and
delay variability. Results of the tests are shown in Figure
13. It can be seen that as the interval between transmitted
packets is increased, the standard deviation of the delay
decreases. The decrease of the standard deviation
indicates the impact of the application processing on the
variability of network transmission times. To eliminate
time-stamping variability there should be a capability of
time-stamping at the hardware-level.

Delay of s between packets

Delay between a i
packets

1.188 0.251 0.201 0.053

0.317 0.243 0.234 0.003

Figure 13. Initial tests with 1588 PCI cards
indicate that application processing time

hampers network times.

3.6. Effects of XML-based messaging systems
Studies indicate that the encoding and decoding of

XML messages is the predominant limitation on data
collection performance in XML-based messaging

systems [10,11]. Initial tests conducted show that for an

800 KB sample DCP XML file, the entire EDA loop
cuffently takes 185 ± 20 ms which is significant. The
entire EDA loop consists of downloading the DCP from
the EDA client to the EDA server, the generation of the
DCR, and its transmission from the EDA server to the
EDA client. Once the simulator is complete, a complete
study on the effects of XML-based messaging systems
on data collection performance will be conducted.
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4. Conclusions and Future Work

The initial phase of the EDA simulator developed has
been able to create scenarios typical of the Equipment
Data Acquisition messages seen on the factory floor.
XML message processing is hampering network
performance times as can be seen from the initial results.
Also from the noise generator analysis, it has been
shown that the network communication delay and delay
variability increases with increase in noise. The
simulator has allowed the study of scenarios with XML
message and different noise patterns that are common on

the semiconductor manufacturing floor thus giving a

deeper insight into the network delay problems.
Additionally, noise in the network would degrade the
time synchronization performance of software-based
protocols such as NTP and software-only PTP.

Accurate time-stamping of data in a Windows
environment cuffently requires C++, which can be
integrated into Java through JNI. The use of C++
significantly improved the scheduling resolution.
Additionally, initial experiments have shown the
availability of precision time synchronization, such as

PTP is not sufficient for ensuring data time-stamping
performance. Time-stamping is limited at the application
layer by the language used to develop the application
and the operating system.

While the web services paradigm provides more rapid
implementation and integration of distributed systems,
the use of XML with the amount of data being
transported can increase network jitter, which degrades
time synchronization and time-stamping accuracy. The
next phase of the simulation will research means to
mitigate the jitter through data collection algorithms
such as batching and buffering.

Future efforts will also include scaling the simulator
to run multiple instances of equipment server objects
simultaneously. Additionally, the capability of the EDA
server of interpreting E120/E125 from different
equipments and indicating available parameters prior to
the configuration of the DCPs needs to be added to the
simulator. Furthermore, SOAP transport will be
implemented to provide a more realistic rendering of the
EDA process and its impact on network performance,
and subsequently time synchronization performance.
An expanded speed and jitter study of application

programming and operating system environments will be
conducted in order to understand their applicability with
various time synchronization capabilities. Time-
stamping will be compared at the hardware, kernel, and
application levels. Likewise, time-stamping will be
compared on different operating systems. Furthermore,
real-time Java capabilities will be implemented and
evaluated [12,13]. Additionally, NTP and PTP (based on

IEEE 1588) will be applied to various levels of the
factory simulator and a cost-benefit analysis will be

and NTP in a semiconductor factory environment will be
provided.

Official contribution of the National Institute of Standards and
Technology; not subject to copyright in the United States. Certain
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paper to foster understanding. Such identification does not imply
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and Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.
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