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Einstein–de Haas effect in a NiFe film deposited on a microcantilever
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A method is presented for determining the magnetomechanical ratio g� in a thin ferromagnetic film
deposited on a microcantilever via measurement of the Einstein–de Haas effect. An alternating
magnetic field applied in the plane of the cantilever and perpendicular to its length induces bending
oscillations of the cantilever that are measured with a fiber optic interferometer. Measurement of g�
provides complementary information about the g factor in ferromagnetic films that is not directly
available from other characterization techniques. For a 50 nm Ni80Fe20 film deposited on a silicon
nitride cantilever, g� is measured to be 1.83±0.10.
�DOI: 10.1063/1.2355445�
An understanding of magnetization dynamics is neces-
sary for the development and optimization of materials for
spin electronics and magnetic data storage. Several tools that
operate in the microwave regime, such as pulsed inductive
microwave magnetometry1 �PIMM�, have been developed
for quantitative characterization of magnetization dynamics
in thin films. Frequency data from PIMM �Refs. 2 and 3� and
other resonant techniques4,5 are fit to the Kittel equation6

with the g factor and components of the effective field as
fitting parameters. It is highly desirable to find an indepen-
dent method for determining the g factor. Ideally, such an
independent method will not involve microwave radiation, as
nonresonant interactions of microwaves with the system may
distort results, particularly in multilayers. This letter de-
scribes a method for indirectly measuring the g factor by first
obtaining the magnetomechanical ratio g� from gyromag-
netic experiments.

Gyromagnetic effects in macroscopic bodies were ob-
served in the early decades of the previous century7 and fall
into two categories: the Barnett effect8 �magnetization in-
duced by rotation� and the Einstein–de Haas effect9 �rotation
induced by change in magnetization�. More recently, phe-
nomena reminiscent of the Einstein–de Haas effect have
been observed in Bose-Einstein condensates10 and the
Einstein–de Haas effect has been suggested as the mecha-
nism for induced rotation of soft magnetic amorphous
wires.11 In the original experiment by Einstein and de Haas,
the rotation of a macroscopic iron cylinder suspended by a
glass wire was induced by applying an alternating magnetic
field along the central axis of the cylinder.9 Here, we present
a method for measuring the Einstein–de Haas effect in a
microscale system: a 50 nm NiFe film deposited on a micro-
cantilever. In describing gyromagnetic effects, the magneto-
mechanical ratio g� is defined as

g� =
2me

e

�

Jtot
, �1�

where me is the electron rest mass, e is the electron charge, �
is the magnetic moment, and Jtot is the total angular momen-
tum. Note that Eq. �1� differs from the definition of the g
factor associated with ferromagnetic resonance in that the
term Jtot in Eq. �1� includes contributions from both the spin
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and orbital angular momenta while the analogous angular
momentum term in the definition of the g factor includes
only the spin angular momentum.12 It can be shown that

2 − g� = g − 2, �2�

if only the first order effect of the spin-orbit interaction is
considered.12,13 Even when Eq. �2� does not strictly hold,
determination of g� provides complementary information
about magnetization dynamics in the film.

The definition of the magnetomechanical ratio reflects
the fact that changes in magnetic moment � are accompanied
by changes in angular momentum Jtot. In order to conserve
angular momentum, changes in Jtot are compensated by
changes in the angular momentum of the macroscopic mag-
netized body. Here, the in-plane magnetic moment of a NiFe
film deposited on a microcantilever is driven by an alternat-
ing magnetic field that is in the plane of the film and perpen-
dicular to the length of the microcantilever. The resulting
torque bends the cantilever and has a maximum magnitude
of

T0 =
2me�

eg�
�� , �3�

where � is the driving frequency of the alternating magnetic
field and �� is the change in the magnetic moment of the
film.

Following Ref. 14, the torque in Eq. �3� acting along the
entire length of the cantilever beam is modeled as a forced,
damped harmonic oscillator, with an equivalent force acting
on an effective point mass at the free end of the rectangular
cantilever beam. The amplitude z0 of the resulting cantilever
deflection is

z0 =
F0/mmod�

���0
2 − �2�2/�2 + �0

2/Q2
, �4�

where

F0 =
4me

lceg�
��� , �5�

mmod is the modal mass of the beam, �0=2�f0 is the reso-
nant frequency of the beam, Q is the quality factor, and lc
is the length of the cantilever. For a rectangular beam can-

tilever, the modal mass is 0.24 times the mass of the canti-
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lever, which we calculate from the nominal dimensions and
density of the cantilever.14,15

Figure 1 shows a schematic of the measurement of the
Einstein–de Haas effect in a NiFe film deposited on a micro-
cantilever. Helmholtz coils were driven by a signal generator
to produce the alternating magnetic field. A variable capaci-
tor ��0.01 �F� was placed in series with the coils in order to
produce a tank circuit with a tunable resonant frequency near
the mechanical resonance of the cantilever �10–20 kHz�. In
order to maintain constant magnetic field amplitude during
swept-frequency measurements, the magnetic field amplitude
as a function of the frequency and amplitude of the current in
the driving coil were calibrated with a pickup coil at the
cantilever position. A 50 nm film of Ni80Fe20 was deposited
onto a 200 �m�20 �m�600 nm commercial silicon ni-
tride cantilever. The cantilever was positioned such that the
tip was at the center axis of the coils. The deflection of the
cantilever was measured by the use of a fiber optic interfer-
ometer with the end of the fiber positioned tens of microme-
ters above the tip of the cantilever. The output of the signal
photodetector in the interferometer served as the input to a
lock-in amplifier while the signal from the generator that
drove the alternating field served as the reference for the
lock-in detection. To reduce mechanical noise, the apparatus
was mounted on an active vibration isolation stage. The tem-
perature of the fiber chuck was regulated with a feedback
loop in order to prevent drift of the fiber position due to
thermal expansion of the chuck. To maximize sensitivity,
the setpoint of the thermal feedback loop was chosen to co-
incide with the steepest portion of an interference fringe. All
measurements were carried out under ambient pressure and
temperature.

In order to determine ��, the NiFe film was character-

FIG. 1. �a� Apparatus for measurement of the Einstein–de Haas effect in a
ferromagnetic film deposited on a microcantilever. �b� Side view of cantile-
ver. The alternating magnetic field �Hac� goes in and out of the page, as
drawn. The resulting bending motion is indicated by black arrows.
ized by the use of an alternating gradient magnetometer
�AGM� as shown in Fig. 2. The coercive field �about
2.5 kA/m� is not unusual for NiFe films of this size and
shape deposited on cantilevers and reflects the shape aniso-
tropy in the film. The linear fit to the region between −800
and 800 A/m shown in Fig. 2 corresponds to a susceptibility
of 4.57�10−13 m3. �� was determined by multiplying the
susceptibility times the amplitude of the alternating magnetic
field which is known from the pickup coil calibration. In this
calculation, the initial ac susceptibility �up to 20 kHz� is ap-
proximated by the susceptibility measured with the AGM.
Note that during the experiments, the magnetic moment of
the film was not driven over the full hysteresis loop shown in
Fig. 2, but rather over minor loops corresponding to alternat-
ing field amplitudes between 125 and 450 A/m.

Measurements of the root mean square �rms� cantilever
deflection amplitude as a function of field frequency are
shown in Fig. 3. The data were fit to Eq. �4�, giving
f0=13 180 Hz, Q=24, and g�=1.82. Note that when a per-
manent magnet was used to saturate the in-plane magnetiza-

FIG. 2. Alternating gradient magnetometry of the film is shown. Black
points correspond to the increasing field and gray points to the decreasing
field. The dashed line is a linear fit to the region between −800 and
800 A/m and has a slope of �4.57±0.21��10−13 m3. Here, the linear fit is
done on the curve corresponding to decreasing field; a linear fit to the
increasing field �not shown� gives a consistent value of the slope.

FIG. 3. Root mean square �rms� cantilever deflection is shown as a function
of the frequency of the applied magnetic field �gray “plus” signs are mea-
sured data; solid black line is a fit of Eq. �4��. The amplitude of the applied
magnetic field �H� is 367 A/m, resulting in a change in magnetic moment of
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tion, the effect disappeared as is expected when �� is zero.
In order to obtain a more accurate value of g� and to estimate
the uncertainty, additional measurements of the cantilever
deflection were made for several different amplitudes of the
driving field. Figure 4 shows the maximum cantilever deflec-
tion as a function of the change in magnetic moment. The
linear fit shown in Fig. 4 �dashed line� corresponds to g�
=1.83±0.10. By way of comparison, g� in bulk Permalloy is
1.91.12

The sources of this uncertainty in the measurement in-
clude: uncertainty in the measured change in the magnetic
moment, lack of a direct measurement of the cantilever di-
mensions, and mass, as well as uncertainty in the measured
cantilever deflection. The uncertainty in the measured deflec-
tion arises from changing distance between the fiber and the
cantilever due to thermal drift. Although a thermal feedback
loop is used to stabilize the position of the fiber, drift around
the setpoint is still observed. Additionally, several potential
sources of spurious signals exist, including bending of the
cantilever due to magnetostriction in the film. However, the
transverse magnetostriction constant is particularly small in
Ni80Fe20 ���10−6�,16,17 resulting in a deflection of the can-
tilever that is much less than observed here. Another poten-
tial source of spurious signal is the possibility that there will

FIG. 4. Maximum rms deflection of the cantilever �i.e., deflection at me-
chanical resonance� is shown as a function of the change in the magnetic
moment of the film. The vertical axis has been scaled so that the slope of a
linear fit is 1 /g�. With lc=200 �m, mmod=1.86�10–12 kg, f0=13 180 Hz,
and Q=24, the fit gives g�=1.83.
be a component of the magnetic moment of the film that is
not parallel to the applied magnetic field, thus producing an
additional torque. The absence of large background magnetic
fields insured that the film’s magnetization was in plane.
Thus, to avoid this problem the cantilever was mounted on a
goniometer and the orientation of the cantilever was adjusted
so that the driving field was parallel to the magnetic moment
of the film.

The experiments described here provide a proof of con-
cept for the determination of g� in thin ferromagnetic films
deposited on microcantilevers. In the future, this method
may be improved in a number of ways. For example, the
uncertainty in the magnetic moment may be reduced by in-
tegrating the film into a torsional oscillator and performing
microcantilever torque magnetometry.18 Also, uncertainty in
the deflection may be reduced by operating the system in
vacuum which will thermally isolate the fiber chuck and re-
duce thermal drift. Additionally, direct measurements of the
cantilever dimensions and mass are desirable.
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