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Abstract- We develop a numerical method of
determining the magnitude of characteristic
impedance required by causal power-normalized
circuit theories from its phase using a Hilbert-
transform relationship. We also estimate the
uncertainty in the method.

INTRODUCTION

We develop a numerical algorithm for computing

the magnitude of the characteristic impedance Z (7)0

required in the causal power-normalized waveguide The complex power p  carried by the forward

circuit theory of [1] from its phase. We determined the mode is given by an integral of the Poynting vector

phase of Z  from an integral of the Poynting vector over over the cross section of the guide:0

the cross section of the guides, as required by the power

normalization of [1], using the full-wave method of [2].

We assess the error of the algorithm, which uses a

Hilbert-transform relationship to determine the

magnitude of Z  from its phase.0

The causal waveguide circuit theory of [1] marries

the power normalization of [3] and [4] with additional

constraints that enforce simultaneity of the theory’s

voltages and currents and the actual fields in the circuit.

These additional constraints not only guarantee that the

network parameters of passive devices in this theory are

causal, but they determine the characteristic impedance

Z (7) of a single-mode waveguide within a positive0

frequency-independent multiplier. References [5] and

[6] examine some of the implications of [1], determining

the characteristic impedance required by that theory in

a lossless coaxial waveguide, a lossless rectangular

waveguide, an infinitely wide metal-insulator-

semiconductor transmission line, and microstrip lines

on silicon substrates.

In this paper we discuss the numerical method

used in [5] and [6] to determine the characteristic

impedance required by the causal power-normalized

circuit theory of [1], and estimate the uncertainty in |Z |0

caused by errors in its phase. We test the estimates

with a Monte-Carlo experiment.

CAUSAL CHARACTERISTIC IMPEDANCE

+

(1)

where 7 is the angular frequency, z is the longitudinal

coordinate,  is the unit vector in the direction of

propagation, r = (x,y) is the transverse position vector,

and E  and H  are the transverse electric and magnetict  t

fields. The power normalization of the circuit theories

of [3] and [4] require that the phase angle of Z  be set0

equal to the phase of p , which from (1) is independent+

of z and is a fixed property of the guide: that is, they

require arg(Z (7)) = arg(p (7)) � arg(p (7,0)) =0   +   +

arg(p (7,z)). This condition on the phase of Z  is a+        0

direct consequence of the power-normalization of the

circuit theories, and is required to ensure that the time-

averaged power in the guide is equal to the product of

the voltage and the conjugate of the current [3].

The causal circuit theory of [1] imposes the same

power normalization, so arg(Z ) = arg(p ). In addition,0   +
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that theory requires that Z  be minimum phase. That is, which, with the aid of [7], can be shown to be the0

[1] requires

(2)

where � is the Hilbert transform. This condition

ensures that voltage (or current) excitations in the guide

do not give rise to a current (or voltage) response before

the excitation begins.

Once arg(p ) is determined by the power condition0

(1), the space of solutions for |Z | is defined by0

(3)

where � is a real positive frequency-independent

constant that determines the overall impedance

normalization [1]. Eqn. (3) results from two facts: the

Hilbert transform has a null space consisting of the

constant functions, and ,

where c is a real frequency-independent constant.

NUMERICAL CALCULATION OF |Z |0

To determine |Z |, we use the full-wave method of0

[2] to calculate arg(p ) and a discrete Hilbert transform+

to calculate |Z | from (3). For many quasi-TEM guides0

incorporating lossless dielectrics, Z  approaches0

 at low frequencies, and arg(p ) approaches+

±%/4 as 7 approaches 0. If this is the case, we choose

the parameter a so that the function

(4)

is nearly equal to %/4 at the low frequencies and is

small at the high frequencies we are interested in. Then

we add (4) to arg(p ), eliminating the discontinuity at+

7=0, perform the discrete Hilbert transform in  (3), and

subtract the function

Figure 1 illustrates the algorithm applied to the(5)

Hilbert transform of (4).
 Because the calculations of arg(p ) are time+

consuming, we determine arg(p ) at only a limited+

number of frequency points. However, the numerical

algorithm requires that the input data be uniformly

spaced in frequency, so we add data points with

arg(p ) and its derivative equal to 0 at 7=0 and 7=7+           1 

to the set of arg(p ), where 7  is much larger than the+   1

largest frequency at which we calculated arg(p ), and+

use a cubic spline to interpolate arg(p ) over the entire+

frequency range.

HIGH-FREQUENCY ERRORS

During the interpolation procedure, we assumed

that arg(p ) approached 0 smoothly outside of the+

region in which we performed full-wave calculations,

while arg(p ) may in fact display a complicated+

behavior at high frequencies. In addition, the periodic

extension implicit in the discrete Hilbert transform may

introduce additional high-frequency error in arg(p ).+

Because the Hilbert transform is not a local transform,

errors in arg(p ) at these high frequencies will create+

errors in the calculated magnitude of Z  at lower0

frequencies.

Appendix 4 of [1] develops a bound for the error

in |Z | at a given frequency 7 when the arg(p ) is0         +

known exactly up to some greater frequency 7 , but is0

unknown above 7 . The result is0

(6)

where Z  is the actual characteristic impedance and Z 10       0

is the value of characteristic impedance we determine

from incorrect assumptions about the high-frequency

behavior of arg(p ) above 7 .+   0

5-µm wide microstrip lines on a 1 µm thick oxide layer

supported by a 100 6#cm silicon substrate described in

[6]. In this case we chose � so as to match |Z 1| and the0
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Fig. 1. The magnitude of Z  determined with different0

definitions for the 5-µm wide microstrip lines on a 100 6-
cm silicon substrate described in [6]. The bounds were
determined from (6) with 7  = 150 GHz.0

magnitude of the power/total-voltage characteristic

impedance at 0.005 GHz, the lowest frequency at which

we performed full-wave calculations. The figure

compares the causal result calculated with the algorithm

described in this work (solid line) to the conventional

power/total-voltage (circles) and power/center-

conductor-current definitions (squares) discussed in [6],

and shows that the agreement with these conventional

definitions is good.

Fig. 1 also shows the characteristic impedance

calculated from the power/oxide-voltage definition

discussed in [6] in solid circles. Here the voltage path

used to define Z  extended from the bottom of the0

microstrip signal conductor through the oxide to the

surface of the silicon substrate. We argued in [6] that

the discrepancies between this definition and the causal

calculation are large enough to conclude that the

power/oxide-voltage definition cannot be causal.

Fig. 1 shows in dashed lines the error bounds from

(6) calculated with 7  = 150 GHz. These bounds limit0

the maximum error we could have made in our

calculation of the causal Z  caused by unexpected0

behavior in arg(p ) above 150 GHz. The bounds+

indicate that the differences between the causal and

power/oxide-voltage definitions cannot be attributed to

unexpected high-frequency behavior of arg(p ),+

confirming the conclusion of [6]: the power/oxide-

voltage definition does not yield a causal result.

IN-BAND ERRORS

We expect that errors in our calculated values of

arg(p ) will also create errors in |Z 1|, the value of |Z |+       0     0

we calculate from arg(p ). Since the Hilbert transform0

is unitary, the root-mean-square (RMS) error in ln |Z 1|0

is the same as the RMS error in arg(p ). Although+

small pointwise errors in arg(p ) do not always imply+

small pointwise errors in |Z 1|, we might guess that if0

the error in our calculations of arg(p (7)) had a+

Gaussian distribution with standard deviation ), then

the errors in our calculations of ln |Z 1(7)| might also0

have a Gaussian distribution with the same standard

deviation.

For comparison purposes, we first choose � so

that the average value of ln |Z 1/Z | is 0. To accomplish0 0

this we chose � with

(7)

where 7  are the N frequencies at which we calculatedi

|Z |.  Next, we hypothesize that if the errors in arg(p )0           +

are normally distributed with mean 0 and standard

deviation ), then the errors � ln|Z 1| in ln|Z 1| will also0   0

be approximately normally distributed with mean 0

and standard deviation ). Finally, if ) is small we

expect �|Z |/|Z | � � ln |Z 1|, where �|Z | �|Z 1| - |Z |.0 0     0   0  0   0

We performed a Monte-Carlo experiment that

supports this hypothesis. In the experiment we

recalculated |Z | twenty times, each time adding0

random phase errors of Gausian distribution () =

0.0175 radians) to our calculated values of arg(p ).+

Figure 2 compares 2), an estimate of the 95%

confidence interval for �|Z |/|Z | (long dashes), and the0 0

sum of (6) for 7  = 150 GHz and 2) (solid line) to the0

deviations we observed in the Monte-Carlo experiment.

The figure shows the differences between our initial

calculation of  |Z | performed with unperturbed data0
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Fig. 2. Comparison of actual deviations in our Monte-Carlo
experiment, the in-band 2) estimate, and the sum of the in-
band estimate and the high-frequency error bound.

Fig. 3. Comparison of the actual distribution of errors in
our Monte-Carlo experiment to the expected Gaussian
distribution.

and our calculations with perturbed data. The figure

shows that the standard deviation of arg(p ) does indeed+

provide a reasonable estimate of the average magnitudes

of errors in Z  due to local errors in arg(p ).0      +

Figure 3 supports the hypothesis that the

distribution of the relative errors �|Z |/|Z | is Gaussian.0 0

It compares the actual errors in |Z | in our Monte-Carlo0

experiment to a Gausian distribution with a standard

deviation ) of 0.0175. In particular, we found that 64%

of our deviations fell within the region �|Z |/|Z | < ),0 0

and 94% within the region �|Z |/|Z | < 2). These0 0

compare well with the 68 and 95 percentage points we

expect from a true Gaussian distribution.

CONCLUSION

We developed an algorithm for calculating the

magnitude of the characteristic impedance required by

the causal power-normalized waveguide circuit theory

of [1] and estimated its uncertainties.

SOFTWARE

We have posted the software we developed to

calculate the causal magnitude of Z  from arg(p ) on0  +

.
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