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Absfracf 6 We develop a method to study nonlinear 
models using metrics in conjunction with repeat 
measurements. We illustrate this procedure by 
investigating the performance of three types of 
measurement-based nonlinear circuit models using two 
different metrics. 

I. INTRODUCTION 
We generally evaluate the ability of an electrical 

circuit model to predict circuit behavior with metrics, 
also called error functions or optimizing functions [l-31. 
For example, engineers will compute the difference 
between a modelis prediction and a set of reference data 
(often a measurement) and apply a metric such as a sum 
of squares to this difference. The single scalar quantity 
generated by the metric is intended to summarize model 
performance. 

In the present work, we extend the use of metrics to 
evaluate deterministic models that are used to predict 
measurements that have an inherent stochastic 
component, Rather than looking at single values of a 
metric, we look at both the mean and the distribution 
obtained by applying the metric to a set of repeated 
measurements. We will demonstrate that this additional 
information gives insight into model performance, aiding 
in the development of robust measurement-based models 
that can predict measurements under realistic operating 
conditions. 

While this technique may be applied to the evaluation 
of both linear and nonlinear circuit models, the extra 
information arising from the distribution of measured 
values and their corresponding metrics is particularly 
helpful in the evaluation of nonlinear circuit models. For 
nonlinear circuits, the state of the measurement system 
itself will affect the circuit response, as discussed in [4]. 
For example, even slight changes in a measurement 
systemis output impedance will cause a corresponding 
change in the excitation across the nonlinear device, 
changing the circuitis operating point. Thus, a 
measurement-based nonlinear circuit model must 
characterize device behavior accurately, not at just a 
single point, but over a realistic range of operating 
conditions around the nominal operating point. 

In the following, we describe the procedure we use to 
calculate the metrics and provide model evaluation 
examples for three types of deterministic, measurement- 
based models. Finally, we demonstrate the use of our 
metrics in a measurement round-robin application. In 
this example, we see that the metrics alert us to measured 
data with significant drift. 

II. PROCEDURE 
We first perform many measurements of an electrical 

circuit under a single operating condition. This set of 
measurements forms our reference data set. For each 
measurement in the data set, we generate a model 
prediction and compute the value of a metric that 
quantifies the difference between the reference data and 
the modelis prediction. We complete this procedure for 
all of the measurements in the reference data set and plot 
a histogram of the metric values. The mean value and 
shape of the histogram give us additional information to 
better quantify candidate prediction models. 

In the present work, we use a set of reference data 
acquired from repeated nonlinear vector network 
analyzer ("A) [5-71 measurements made on a wafer- 
level diode circuit. We generate predictions of the 
measured data using three types of models: SPICE-based 
compact models, and time- and frequency-domain 
behavioral models [8-lo]. From these predictions we 
calculate values of two types of metrics for each data 
point and plot them in histogram form. 

To illustrate the use of these metrics in model 
evaluation, we first design an optimized model within 
each model type and then intentionally degrade the 
model. This provides a range of agreement with 
measured results that we are able to detect with the 
metrics. We next describe the measured reference data, 
the models, and the metrics used in this study. 
A. Reference Data 

We use a set of 100 repeated measurements collected 
on an NVNA over eight hours. RF input power is +3 
dBm on wafer, the fundamental frequency is 900 MHz, 
and we collect data up to 20 GHz. 
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Fig. 1. The magnitude of the measured scattered travelling voltage 
wave at port 1, Ibll, at the fundamental frequency so. 

The wafer-level nonlinear circuit we use in these 
measurements consists of two parallel Schottky diodes 
connected to probe pads by 0.5 mm coplanar waveguide 
(CPW) lines. The two-port diode circuit is fabricated on 
an alumina substrate by bonding the beam-lead diode 
package to a gold metal layer. The diode is forward 
biased by 0.2 V. Figure 1 shows the magnitude of the 
scattered travelling voltage measured wave at port 1 (bl) 
for the reference data set at the fundamental frequency. 
For purposes of demonstration, we assume here that 
variation in b is due to variation in the incident wave 
variable a only and is not due to measurement error. In 
reality the distribution of the b data is due to both of 
these effects. 

A. Models 
Recall that we use three types of models. For each 

model type, we produce an "optimized" model and then 
degrade the model in two subsequent designs to see how 
its prediction of the measured data is affected. The 
inputs to the model consist of the measured port 1 and 
port 2 input wave variables a1 and a2 [4] at DC, the 
fundamental, and harmonics up to 20 GHz. 

1. Compact Models: Three SPICE-based models 
described below are based on the diode manufactureris 
parameters. The model Compact Opt is optimized in the 
time domain by eye to the first measurement in our 
reference data set. Model Compact RsCj is the same as 
model Compact Opt with an increase in both C,O and R,. 
Model Compact Phase is the same as model Compact 
RsCj with an increased CPW interconnect length that 
introduces an additional phase shift error. 

2. Frequency-Domain ANN Models (FD-ANN): 
Artificial Neural Network (ANN) models [9,10] map 
input to output variables using training (design) data and 

a set of weighting functions. A N N s  act well as 
interpolators, and thus require training data that covers 
the range of expected measurements. We train three- 
layer ANNs with NVNA data measured at power levels 
above and below our reference data set level of +3 dBm. 
The inputs to the trained model consist of the measured 
input wave variables a1 and a2 through the first four 
harmonics. The optimized model, FD-ANN Opt, uses 
four power levels for training: two above and two below 
the reference level (2.90,2.94,3.06, and 3.10 dBm). This 
model design has five hidden neurons (the weighting 
functions are applied at the input and output of the 
hidden neuron layers). Model FD-ANN 4-1 uses the 
same four power levels, but only one hidden neuron. 
Model FD-ANN 2-5 uses two power levels (2.9 and 3.1 
dBm) for training, and has five hidden neurons. 

3. Time-Domain Behavioral Models Using A " s  
(SVAR): These behavioral models [8] are developed by 
finding state variable equations of a nonlinear device. 
Large-signal measurements provide samples of the state 
variables over the expected range of operating 
conditions. State variable equations are then generated 
by fitting these sample points with A N N s .  In this study, 
these models are developed using the same two power 
levels as FD-ANN 2-5 (2.9 and 3.1 dBm). Model SVAR 
Opt uses 6 hidden neurons for the ANN, model SVAR 2- 
3 uses three hidden neurons, and model SVAR Phase 
introduces a phase shift error similar to model Compact 
Phase. 

B. Metrics 

electrical circuit evaluation [ 1 11, we select two: 
The Natural Metric: 

While there are many types of metrics used in 

i=l  

9 A Weighted Metric: 

j = O  

Here, bi refers to the ith harmonic of the measured 
scattered wave variable b ,  bpi refers to the predicted 
value, and N represents the number of harmonics. The 
units of the natural metric are voltage squared, while the 
units of the weighted metric are volts. The natural metric 
is so called because of its equivalence in both the time 
and frequency domains. The weighted metric puts more 
emphasis on harmonics with more power. 
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Fig. 2: Histograms of the square root of the natural metric for the 
nine model designs and the data with drift discussed in Section 
N. 

111. MODEL EVALUATION 
Histograms of the metric values obtained with the nine 

different model types described above are shown in Fig. 
2 (square root of natural metric) and Fig. 3 (weighted 
metric). We take the square root of the natural metric so 
that the two plots have the same units. 

A shift in the mean of a histogram to the right 
indicates worse agreement between measured and 
predicted data. We see that the optimized model for each 
model type has the lowest mean, and that the metrics 
accurately detect deteriorating model quality for all three 
model types: compact, FD-ANN, and state variable 
models. We observe that the introduction of systematic 
errors in the models results in a large shift of the mean to 
the right; the use of fewer neurons results in a small shift 
of the mean to the right; and insufficient training results 
in an increased spread. 

The metrics also give us insight into how various 
model parameters affect model performance. For 
example, we see that the phase shift error incorporated 
into the models Compact Phase (line 3 )  and SVAR Phase 
(line 9) has a more detrimental effect on the modelsi 
ability to predict measured data than other types of 
model design errors. In the case of the FD-ANNs, we see 
that using fewer neurons (FD-ANN 4-1, line 5 )  has less 
effect on overall model accuracy than using less training 
data (FD-ANN 2-5, line 6).  

Note that while one model type may appear to more 
accurately predict these particular sets of measured data, 
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Fig. 3: Histogram of the weighted metric for the nine model 
designs and the data with drift discussed in Section IV. 

another model type may be more robust in terms of 
predicting measured data at other powerhias levels. 
Thus, we draw no conclusion from the present work on 
the overall quality of one model type over another. 
However, within each model type, we can easily resolve 
and rank model performance using this method. 

m. APPLICATION TO ROUND-ROBIN SCENARIO 

We tested the two metrics in a measurement round 
robin scenario similar to one currently under 
development at NIST [4, 121. The round robin is 
intended to quantify differences in NVNA 
measurements. Here we use the optimized models 
developed for each model type to predict measurements 
that contain a significant amount of drift. 

As discussed above, our models were designed 
(trained) using data with input/output relationships 
similar to those we expect to encounter when the models 
are used in our application. An example is shown in Fig. 
4, where the black circles correspond to the incident ( a J  
and scattered (b,) waves for the reference data set 
discussed in Section 11. We expect all of the 
measurements in the round robin to follow a similar 
inpudoutput relationship. In this example, however, we 
obtain a measurement where the scattered data contains 
significant drift caused by changes in the RF path over 
time (the red triangles in Fig. 4). This particular 
inpudoutput relationship was not used in the design of 
our models. Do the metrics detect a difference for this set 
of data? 
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Fig. 4: Magnitude of the measured incident (a) and scattered 
(b) waves at the fundamental. The black circles correspond to 
the reference data set described in Section 11. The red 
triangles correspond to the data with drift used in the metric 
comparison of Section IV. 

Metric values for the data with drift, using our 
optimized models, are labeled iDriftP in Figs. 2 and 3 
(lines 10, 11, and 12). We see that both metrics detect 
that the input/output relationship is different for this set 
of data compared with their training data, shown as a 
shift to the right and an increase in the histogram spread. 

While both metrics indicate discrepancies between the 
modeled and measured data, we notice a bimodal 
distribution in the histograms corresponding to the 
weighted metric. The left-most peak in the bimodal 
distribution corresponds to the modelis relatively 
accurate prediction of the first 60 or so data points (see 
Fig. 40)). The right-most peak corresponds to the 
modelis prediction of measured data that has drifted 
outside the range over which the model was trained. 
Thus, for this particular application, the weighted metric 
may yield more detailed information regarding the 
measured data. 

V. SUMMARY 
We have shown how examination of a distribution of 

metric values can be used to evaluate models. The 
method can aid in the development of robust 
measurement-based models that can predict or discern 
measured behavior under realistic operating conditions. 
We presented an example showing possible application 
to an NVNA round robin, and demonstrated that these 
particular metrics give useful information not available 
from single values of the metric. We plan to continue 
work in this area, incorporating temperature effects into 
the models and investigating other metrics. 
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