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Time-Base Nonlinearity Determination

Using Iterated Sine-Fit Analysis
Gerard N. Stenbakken, Member, IEEE, and John P. Deyst, Member, IEEE

Abstract- A new method is presented to determine the time-
base errors of sampling instruments. The method does not require
a time-base error model and thus provides accurate estimates
where model-based methods fail. Measurements of sinewaves
at multiple phases and frequencies are used as test signals. A
harmonic distortion model is used to account for amplitude
nonlinearity of the sampling channel. Use of an independent
method for estimating the channel noise and jitter allows an
accurate estimate of the harmonic order. Methods are presented
for separating the harmonics generated by the sampling channel
from those generated by the time-base distortion. The use of an
iterative sine-fit procedure gives accurate results in a short time.
A new weighting procedure is described, which minimizes the
error in the estimates. Guidelines are given for selecting good
sets of test frequencies. Results are shown for both simulated and
real data.

Index Terms- Calibration, curve fitting, distortion, sampled
data systems, timing, timing jitter.

I. INTRODUCfION

DEVIATIONS in the sample intervals of sampling instru-
ments cause nonlinear distortion of the sampled wave-

fonns. If these deviations can be measured, corrections can
be made to the sampled data, or the sampling intervals can
be modified to correct them. The sample interval deviations
have two components; a deterministic part called time-base
distortion, and a random component called jitter.

A number of methods have been developed to measure time-
base distortion. The "zero-crossing" methods [1]-[3] make
use of waveforms of constant frequency, or carefully selected
frequencies [4]. The resolution of these techniques is equal
to the sine period, so they are limited by the bandwidth of
the sampling channel. Early "sine-fit" methods assumed a
pure sinewave input signal [5]; these methods do not easily
handle harmonic distortion caused by the sampling channel
of the instrument. An improved sine-fit method [6] is able to
account for the harmonic distortion of the sampling channel. A
time-base distortion determination method using the improved
sine-fit method has been developed [7]. A phase demodulation
technique called the "analytic signal" method [8] has also
been described. Both the improved sine-fit and analytic signal
methods use models for the time-base distortion, which prevent
them from accurately estimating discontinuities in the time-
base distortion, as shown in [9].
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This paper describes a new method for determining time-
base distortion, based on iterating the sine-fitting process.
Because a time-base error model is not used, this method
can accurately estimate discontinuities in the time-base. A
harmonic model is used to account for the amplitude non-
linearity of the sampling channel, which allows determination
of the distortion of the input signal or distortion caused by
the channel. Use of the proper harmonic order is important for
accurate time-base distortion estimation. If the model order
is too low, some channel distortion will be attributed to the
time-base error, and, if the model order is too high, some noise
will be fit as channel distortion also increasing the time-base
error. A method for determining the proper harmonic order is
described that compares the sine-fit residuals to an independent
assessment of the noise and jitter of the measurement process.

Time-base distortion estimates depend on the time deriva-
tive of the input signal. Where this derivative is small, the
additive noise can either make the process unstable or make
the estimates inaccurate. To overcome this problem, various
weighting methods have been tried. Three are described here
and one, a new weighting method, is shown by simulation to
give the most accurate time-base distortion estimates. Since
both nonlinear channel electronics and time-base distortions

can generate harmonic distortions, the time-base estimation
method must be able to distinguish the causes. Two methods
are described for resolving this ambiguity; use of either
two or more frequencies or a constant-waveshape constraint.
Guidelines are given for good frequency pairs to use for good
harmonic ambiguity resolution.

Since the iterative sine-fit procedure is a directed iterative
process, it converges rapidly to an accurate result. Results for

. both simulated and real data are presented. This method is
being used in an oscilloscope calibration software package
under development at NIST [10].

II. ITERATIVE SINE-FIT METHOD

A. Sampling Model

Fig. 1 shows the model used to describe the sampling
channel [7]. The nonlinearity of the channel distorts the input
signal x(t) giving s(t), which can be described by an h order
harmonic distortion model [6] as

h

s(t) = Ao + L Al sin(lwt + ~z)
1=1

(1)
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where d(k ) includes all the additive noise of the channel
including the converter quantization noise and the input noise.
The d(k) are also assumed to be i.i.d. [and independent of
T(k)] with a zero mean and standard deviation of ad. The where
sampled records of the measured signal will have N samples
with k from 0 to N - 1.

STENBAKKEN AND DEYST: ITERATED SINE-FIT ANALYSIS

d(k)

x(t) IP> s(I) <k sm(k)
tk = kTs + g(k)Ts + -r(k)

Fig. I. Diagram of model used for sampling channel error sources.

where, in general, the 2h + 1 parameters in (1) are a function
of the amplitude and frequency of the input signal. The kth
sample time tk is given by

tk = k1:s+g(k)1:s +T(k)

where the three respective terms are the ideal sample time
k1:s, the deterministic time-base distortion g( k) times the
sample period 1:s, and the random jitter T(k). The T(k) are
assumed to be independent and identically distributed (i.i.d.),
with a zero mean and standard deviation of aT' The sampled
measurements are given by

sm(k) = S(tk) + d(k)

B. Motivation

Following [5] the sampled data values Sm can be fit with
the harmonic distortion model (1) and the residuals of the fit
attributed to the time-base distortion as

g(k) ~ sm(k).- Se(t)
I1:sSe(t) t=kT.

where se(t) is the 2h + 1 parameter fit (w is the given input
frequency and is not varied in the fitting process), and seCt)
is the time derivative of se(t).

This estimation for g( k) suffers from several error sources.
The most significant is that, if there is any time-base distortion,
the samples are not taken at the ideal sample times of k1:s,and
thus the parameters that give the estimate se(t) are generally
not correct. Also, the estimates for g(k) are poor wherever
seCt) is very small because of the noise in sm(k). The first
problem is eliminated here with an iterative approach, where
(4) gives the first order estimate of the time-base errors
and then these new time values are used in (1) to fit the
harmonic distortion model to unequally spaced samples. Then
this new fit model is used in (4) and the process repeated until
the changes in the fit residuals are minimized. This process
estimates N + 2h + 1 parameters with only N data samples,
so it is ill conditioned. However, if P records of the input
signal (p ~ 2) are sampled with different phases of the same
input frequency w, then we have pN data samples and, since
normally N ~ h, we have sufficient data samples to estimate
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(2)

the parameters. The phases can be chosen such that all sample
points have at least one phase with a large value of seCt).
As recommended in [5], the data from samples and phases
with very small values of SeCt) should not be included in the
analysis. This elimination of some of the data samples is a form
of weighting that will be described more fully in Section III.

However, the presence of time-base distortion can generate
harmonics in the sampled data. The estimation process de-
scribed so far cannot easily distinguish whether the time-base
or the nonlinear input channel generated the harmonics. Two
methods for removing this ambiguity are presented next. The
multiple frequency method uses multiphase records at two or
more frequencies. The constant-waveshape constraint method
assumes that the distorted waveform shape does not change
when the phase of the sampled signal is changed.

(3)

C. Multiple Frequency Method

If PI phases at each of F frequencies of the input signal
are sampled, then M records will be available, where M =
~~=1 PI' In general, the phases measured at each frequency
need not be the same, nor must the number of phases measured
at each frequency be the same. For j = 1 to M the M sampled
waveforms are given by

stn ( k) = sj (t k) + dj (k ) (5)

h

sj(tk) = Ai + L A{ sin(lwjtk + <t>{).
1=1

(6)

For the iterative sine-fit approach the initial time-base estimate
is equally spaced samples tko = k1:s. The initial sine-fit
estimates s~(tk) are given by

(4)
h

S~o(tkO) = Aio + L A{o sin(lwjtko + <t>{o)
1=1

(7)

where the 2h + 1 parameters are the least squares solution
from fitting (6) to stn(k). Equation (7) is iteration i = O.
Successive iterations are given by fitting

h

S~i(tkd = Aii + L A{i sin(lwjtki + <t>{i) (8)
1=1

to stn(k), where

M
1:s ~. .

tk(i+1) = tki + w (k ) L..J w1 (k)gf(k) (9)
T j=l

M

wT(k) = L wj(k) (10)
j=l

and

g{ ( k) = stn ( k) ~ S~i (t)
I1:sS~i(t) .t=tki

(11)
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The weighting factors wi (k) are discussed in Section III. At
each iterationthe fit error K E: is calculatedas

(

M N-l

)

1/2

KE:i= ~ L L (s!n(k) - S~i(tki))2
F i=1 k=O

where D F = M N - N - 2h -1 is the degrees of freedom. The
iterations are stopped when the change in the fit error is below
some tolerance 61, i.e., when K E:(i-I) - K E:i~ 61, or when the
number of iterations has reached a limit nI. The value of the
fit error at convergence is called K F, the final values for the
sample time estimates from (9) are called ik, and the time-base
distortion estimates are given by g(k) = (h - kTs)/Ts.

D. Constant-Waveshape Constraint Method

Constant-waveshape constraint, the second method for re-
moving the harmonic ambiguity, assumes that for different
phases the waveform harmonic amplitudes and relative phases
remain constant. This method of removing the harmonic ambi-
guity can be used together with the multiple frequency method.
Thus, the description below assumes that the records are
ordered into constant frequency groups and that this constraint
is applied to the sampled waveforms in each frequency group.
Since harmonic distortion is normally amplitude and frequency
dependent, we assume that the PI waveforms in each group
have constant amplitude and frequency. Exactly how closely
the amplitudes and frequencies must be maintained is depen-
dent on how sensitive the harmonics are to these parameters.
This will not be discussed here other than to point out that the
signal frequencies are not a fitted parameter in this analysis
and the error in the relative signal frequencies is assumed
small compared to the jitter standard deviation relative to the
record length.

The estimated harmonic amplitudes and phases for each
group are averaged and the average amplitude and phase
are used in the estimate for the time-base distortion. This is
done by first decomposing each harmonic into a sinewave that
crosses zero in phase with the fundamental plus a sinewave in
quadrature. Thus, the fit estimates are given as

S~O(tkO)= A~o + A{o sin(witko + </>{o)
h

+ L (Blo sin(lwitko + l</>{o)
1=2

+ cto COS(lwitkO + [<P{o)) (13)

where

Blo = Afo cos( </>fo- l</>{o)

and

clo = Afo sin(</>lo -l</>{o)'

The Blo and clo for each group are averaged. The constrained
constant-wave~hape fit~s~o are obtained by using these aver-
age values Bfo and Cfo in place of the individual harmonic
amplitudes in (13) for all waveform estimates in each group.

The constrained time-base distortion estimates at each iteration

are given by

(12) 91 ( k) = stn (k ). ~ S~i ( t)
I

.

Tss~i(t) .t=tki

(16)

Note that in this implementation, the amplitudes of the funda-
mental in each group are not averaged. These values should
be checked after convergence to verify that they are constant
for all waveforms within each group.

III. SIMULATION RESULTS

To apply these methods, some of the questions that need to
be addressed are what harmonic order h and frequencies wj
to use in (8) or (13), and what weighting factors wj(k) to use
in (9). The appropriate harmonic order can be determined by
looking at K F as a function.of h, K F(h). As h is increased
K F(h) will decrease then level off at the proper h value.
The expected value at which KF(h) should level off can be
estimated from the standard deviation of repeat measurements
of sm(k). Take MR records of one phase of the input signal
stn(k), j = 1 to MR; then calculate the RMS of the standard
deviations at each sample (jMR as

_
(

IN -1

)

1/2

aMR = N L a~R(k)k=O
(17)

where

1 MR

a~R(k) = ILL 1 L (s!n(k) ~ sm(k))2 (18)
i=1

and

1 MR .

sm(k) = M L s::n(k).
R i=1

(19)

The valueat whichKF(h) levelsoff shouldbe closeto (j MR'

As shown in [6], the estimated sample standard deviations
aMR (k) can be used to estimate the noise ad and jitter aT
standard deviations of the measurement process by fitting
a~1R(k) to the model a~ + se(t?a;.

A. Weighting

Three weighting methods were examined. In [5] unstable
estimates from (11) are avoided by eliminating from analysis
those values of k for which s~(ik) are within 15° of the peak,
i.e., where s~(t) approaches zero. That is

(14)
j

{

I, if Is~(ik)1~ sin(75°)A{
wu(k) = . A .

0, if IS~(tk)1> sin(75°)A{.
(20)

(15) This eliminates about one-sixth of the samples, and gives a
uniform weight of one to the other samples. Weighting wi (k )
is called uniform weighting.

The weighting method recommended in [6] is to weight
each data sample proportionally to the inverse of its amplitude
prediction uncertainty. This method, which uses estimates for
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the noise ud(k) and jitter u.,.(k) standard deviations, and the
signal derivative, weights each sample by

w!,(k) = (1+ (S~~~UTrr(1/2), .
It=ik

This weighting gives most weight to those samples where s~(t)
is near zero and least weight to those where s~(t) is large. This
will make some estimates from (II) unstable; to avoid that
instability, the weighting given in [6] is multiplied by wi (k )
and called noise weighting w~u(k).

The third weighting method considered is to weight each
data sample proportionally to the inverse of its time prediction
uncertainty. This weighting wt (k ), called jitter weighting, is
given by

-(1/2)

wj (k) = wi(k) (1+ (S~~;UT)2) : _'
T t=tk

Again, the tenn wi (k) is included to avoid instability. Note
that if the channel errors are dominated by additive noise,
this weighting is proportional to the derivative of the signal,
whereas, if the jitter errors dominate, this weighting is close
to the unifonn weighting.

Simulations were perfonned to show the effects of the three
weighting methods. The signal amplitude was one volt with no
harmonic distortion (h = 1). 1\vo frequencies and two phases
were used, so M is 4. Sixty-four samples were made at a
sample rate of 64 samples/s for each record, Ts = 15.6 ms.
The two frequencies were 23 and 25 Hz and the two phases
o and 90°. The time-base distortion was a ramp that varied
from a distortion of -0.5 sample periods to 0.5 sample periods
over approximately 22.4 samples, then repeated, giving 2.86
cycles of this distortion during the record. (Such a time-base
distortion is not uncommon; see Fig. 4 as an example of real
time-base distortion.) The phase of the distortion pattern was
such that the first sample had zero time-base distortion. Thus,
the distortion had three sharp jumps of "':"'1sample-periods.
One thousand simulations were run using each weighting for
two error cases. In case I the channel errors are dominated
by a noise standard deviation ad of 10m V, with a jitter
standard deviation aT of 0.001 sample periods or 15.6 J.LS.In
case II the channel errors are dominated by the jitter standard
deviation aT of 0.01 sample periods or 156 J.LS,with a noise
standard deviation ad of I mV. The RMS error in the time-base
estimates TRMSis calculated as

(

1M N-l

)

1/2

TRMs = MN?:L (tk - ik)2 .
J=1 k=O

Table I shows the mean RMS time-base estimate error and
mean fit error K F for the 1000 simulations. In both error
cases the jitter weighting gives the lowest time-base estimate
errors and lowest re~idual fit errors.

..
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TABLE I
COMPARISON OF TIlE TIME-BASE EsTIMATE AND FIT

ERRORS FOR DIFFERENT, NOISE, JITTER, AND WEIGHTING

(21)

(22) TABLE II
COMPARISON OF TIlE TIME-BASE EsTIMATE AND

FIT ERRORS FOR DIFFERENT HARMONIC MODELS

(23)

B. Model Order Selection

Simulations to show harmonic order selection used an input
signal s(t) with h = 3, Ao = 0 V,Al = 1 V,<PI= 0°, A2 =
100 mY, <P2= 0°, and A3 = 10 mY, <P3= 30°. Four
records were used with the same sampling rate, record size,
time-base distortion, signal frequencies, and phases as in the
weighting simulations. The noise and jitter standard deviations
are ad = 10 mY, and aT = 15.6 J-LS.Table II shows the
mean TRMSand K F of 1000 simulations with different order
harmonic models. Note that K F decreases significantly from
the first to second harmonic models and from the second to

the third model, but does not change significantly from the
third to the fourth model. This behavior correctly suggests
that the proper model to select is h = 3. Note also that the
change in the K F tracks corresponding changes in the error in
the time-base estimates, TRMS.An independent estimate of the
measurement channel errors was made from 100 repeat records
of a signal with 23 Hz, 0° phase. Following [6], analysis of
these records gives a repeat RMS standard deviation (fMR of
10.1 mV and noise and jitter standard deviations Ud = 10
mV and uT = 16 J.LS.All three values are close to the
expected values. The value at which KF leveled off, 9.8 mY,
is approximately the repeat RMS standard deviation, 10.1mV.

C. Frequency Selection

The choice of appropriate input signal frequencies to give

ad aT Weighting TItMS KF

Unifonn Wu 62 J1S 10.9 mV

IOmV 15.6 J1S Noise wnu 62 J1S ItO mV

Jitter wT 50 J.1S 10.0 mV

Unifonn Wu 88 J1S 15.7 mV

I mV 156 J.1S Noise wnu 96 J.1S 17.5 mV

Jitter WT 88J.1S 15.7 mV

Hannonics KF TRMS

{I) 70.5 mV 450 J1S

{1,2} 12.0 mV 64J1S

{I,2,3 } 9.8mV 52 J1S

{I,2,3,4 } 9.7mV 53 J.1S
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Fig. 2. Intensity plot of the log 10 of the RMS time-base estimate errors,
without constraint, axes show two frequencies in Hz.

good discrimination betweenharmonicscaused by the sam-
pling channel and time-base distortion can be decided by
looking at pairs of frequencies. For the three-harmonic signal
model used in the above simulation, the RMS error in the time-
base estimates, TRMS,was simulated for many frequency pairs.
The fit model used was the correct three-harmonic model. As
above, four records were used with two phases, 0 and 90°,
for each of the two frequencies. Fig. 2 shows an intensity
plot of 10glO(TRMS),with a very small amount of noise and
jitter added. This plot shows the matrix of frequency pairs
obtained by varying each frequency from 1 Hz to the Nyquist
frequency, IN = 32 Hz. The intensities of the pixels are darker
for frequency pairs that are good (lower TRMS)and lighter
for pairs not so good. The lighter diagonal lines delineate
frequency pairs not to use. As the order of the fit model
increases, more such lines appear on this kind of plot. The
main diagonal shows the obvious poor choice of using pairs
with the same frequency. Another line starting from the upper
left below the main diagonal shows that one frequency f1
should not be half the other frequency h when the fit model
contains second harmonics. Lines from the upper right shows
that f1 should not be the alias of h, IN - h, nor twice the
alias of h. A second but less bright set of lines show that the
frequencies and aliases should not be related by a factor of 3
or a factor of 3 plus the sampling frequency Is.

Fig. 3 is a similar plot with the constant-waveshape con-
straint applied. Even tnough there are only two phases in
each group, this constraint has significantly reduced the error
in the time-base estimates. While the diagonal lines have
been reduced in intensity, several horizontal and vertical lines
have appeared. These show that when the constant-waveshape
constraint is applied, neither frequency should be one-third,
one-fifth, or two-fifths the sampling frequency.

Frequency 21n Hz ~

Fig. 3. Intensity plot of log 10 of the RMS time-base estimate errors, with
constant waveshape constraint, axes show two frequencies in Hz.

TABLE III
COMPARISONOFTHE FIT ERRORSFORDIFFERENT

HARMONICMODELSFORTHE DIGITIZER

Some quality control parameters that are provided by this
method will be briefly mentioned. For both these simulations
the fit errors track the RMS time-base errors and thus can be
used as a quality check on the proper selection of frequencies
and phases. Also the lack of convergence within the iteration
limit nI, as happened for most of the pairs shown in light
intensity on Figs. 2 and 3, indicate a poor data set.

IV. EXPERIMENTAL RESULTS

The iterative sine-fit method was applied to data taken on
a commercial digitizer with a 50 GHz bandwidth. Analysis of
repeat measurements of a 16 GHz input signal sampled at a
rate of 512 samples per nanosecond, showed the random errors
to be dominated by jitter. The jitter was measured to have a
standard deviation of about 0.5 sample periods or 1 ps with
no signal averaging. Twenty-four records with 4096 samples
were analyzed to determine the time-base error. Each record is
the average of ten repeat measurements taken at 512 samples
per nanosecond. Twelve equally spaced phases were sampled
at both 15.833 and 16 GHz. Table III shows the fit error KF

Harmonics I KF

{I } 5.16 mY

{ 1,2} 5.15 mY

{l,2,3 } 4.83 mY

{ 1,2,3,4} 4.83 mY

{ 1,2,3,4,5} 4.83 mY
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Fig. 4. Estimate of the time-base error of the HP 83480A digitizer.

as a function of the harmonics used in the fit model. Only
the third harmonic appears to be significant from this analysis
and it has a magnitude 39 dB below the fundamental, which
was 220 mY.

Fig. 4 shows the time-base error measured for the digitizer.
Note the pattern that repeats every 4 ns corresponds to the 250-
MHz time-base clock. The damped sinewave pattern shows the
time-base error from the clock interpolation circuitry.

V. CONCLUSIONS

A new method for detennining the time-base distortion of
sampling instruments has been described. It does not use a
model for the time-base and provides accurate estimates even
with discontinuities in the error. A problem with ambiguity
of the source of harmonic distortion was described and two
methods for resolving this ambiguity were presented. The
use of records with two frequencies provides the greatest
flexibility, and the constant-waveshape constraint provides a
useful additional method. The problem of selecting the best
pair of frequencies was described and relations between the
two frequencies that should be avoided were presented. Three
weighting methods were compared. The new jitter weighting
method gives the lowest time-base estimate error. A method
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that uses the fit error to estimate the order of the harmonic
model was described. The method was applied to simulated
and real data.
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