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INTRODUCTION
I
.: Sulfur hexafluoride (SF6), either pure or mixed with other gases, is commonly used as an

insulator in high voltage-equipment. Consequcntly, many studics havc becn pcrformcd to
investigate the decomposition of SF6 in various electrical dischargcs including corona, t sparks,2
and arcs.3 These studies have shown that large quantities of toxic and corrosivc by-products
such as S02, SOF2, S02F2, SOF.., SF.., and S2FtOare produced when SF6 is dissociated in the
discharge. Additionally, recent studies of SF6 as an etching gas for semiconductor processing
have indicated that stable sulfur oxyfluoride by-products can account for more than 10% of
the neutral molecules in the plasma."

A full understanding of the physical processes occurring in SF6 discharges and of the electron
attaching processes in decomposed SF6 requires a detailed knowledge of the interaction of free
electrons with SF6 and its by-products. In this paper we present absolute cross sections for
electron scattering and for negative-ion formation through electron attachment to SF6 and
to several by-products produced by electrical discharges in SF6 (S02, SOF2, and S02F2)'
These results are compared with previous data where available, and calculations of electron
attachment energies are presented to aid in the interpretation of the cross section data.

EXPERIMENT

An electron transmission spectrometer employing a trochoidal monochromator5 forms the ba-
sis of these experiments. This instrument consists of a thermionic electron source followed
by the trochoidal monochromator, an accelerating lens, a gas cell, and a retarding lens which
permits only unscattered electrons to be transmitted to an electron collector. The instrument
is immersed in a uniform magnetic field of about 70 gauss. The electron energy resolution
was about 100 meV and the temperature was maintained at 328 K. Total electron scattering
cross sections are obtained by measuring the attenuation of the transmitted current due to
the introduction of a sample into the gas cell. Cross sections for electron attachment (life-
times > 10 ps) and dissociative attachment processes are determined from a measurement of
the product negative ion flux to the walls of the gas cell.

The presence of the magnetic field introduces uncertainty in the length of the electron tra-
jectories through the gas cell,6 as well as uncertainty in the acceptance angle defined by the
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retarding lens which precedes the collector.7 Additional uncertainty is associated with the mea-
surement of the target gas pressure in the 0.2 to 1.0 mtorr (0.03 to 0.13 Pa) range at which
the cross sections were determined. Overall, the cross sections reported are believed to be
accurate to within 15% for electron energies above leV. Below this energy, the uncertainty
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Fig. 1. Cross sections for electron attachment or dissociative attachment to SF6 from 0.2 to 2 eV.
Previous data from references 10 (IICC) and 13 (KDCC) are presented for comparison.

IlIcrcasps to as IIl1Ich as .':;0% at th(' lo\l.'pst. I'npr/?:ips (::; 0.2 p\'). Thl' limit of spnsit.i\'ity in thl'
dissoci.ltiH~ attachnH'nt. cross section measurcmcnts is about 2 x 10-111 cm1. The precision of
the measurements deteriorates as t.his limit is approached.

EXPERIMENTAL RESULTS AND DISCUSSION

5F6

The total cross sections for electron scat tering by SF 6 determined in the present experiment
arc not shown here hut agree with previously reported values8.9 to within the uncertainties
discussed ahove.

Negative-ion formation from SF6 by electron attachment and dissociative attachment has
received considerahle study. Christophorou and co-workers have performed several swarm
studies10 of electron attachment to SF6, and Fenzloff et ai.II have published a detailed study
of the relative ion yields for dissociative attachment to SF6. At very low energies (0-2 meV),
Chutjian and co-workersl2 have measured absolute attachment cross sections using threshold
photoelectron spectroscopy, while Kline and co-workers13 have measured absolute cross sections
for attachment and dissociative attachment from 0.01 eV to 15 eV in a beam experiment.

Absolute cross sections for electron attachment and dissociative attachment to SF6 as measured
hy the present eX!H'riment arc presented in Figure 1 for electron energies from 0.2 eV to
2.0 eV. At energies greater than 2 eV, the cross section was too small to measure in this
experiment. Attachment and dissociative-attachment cross sections measured by Kline et ai.13
and calculated by Hunter et ai.10 from swarm data are shown for comparison. The cross
sections in Figure 1 for Kline et ai.13 and for Hunter et ai.to are the sum of their cross sections
for SF;; and SF; production. Note that our cross section \-alues fall significantly below the
values of Kline et ai.13 from about 0.4 eV to about 1.4 eV. This is in general agreement with
analysestO,l4,lS of swarm data for which the experimentally determined electron-collision cross
sections for SF6 were adjusted downward in order to derive accurate transport, ionization,
attachment, and dissociation coefficients of SF6. At energies greater than 1.2 eV our results
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the magnitude of the cross section approaches the detection limits of the experiment (2 x
10-18 cm2). At lower energies (,,-,0.2 eV) we appear to be in agreement with the attachment
cross section (1.2 x 10-15cm2) published by Chutjian and co-workersY
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Fig. 2. Total electron-scattering cross sections and dissociative-attachment cross sections for 502.
Previously published total cross sections from references 16 (ZKII), 17 (55),18 (5\1), and 19 (015, total
elastic-scattering cross section), and previously publislwd dissociati\'l'-att.achllwnt data from refl'rencl's
21 (RCIJ), 22 (CPK), and 23 (OS) arc shown for cOlllpari"on.

S02

1

To date three conflicting experimental measurements of the total cross s('ction for electron
scattering by S02 have been published.16- t8 These three data sets are shown in Figure 2 along
with the measurements from the present experiment. A single measurement 19 of the elastic
scattering cross section at 12 eV is also shown. Our results arc in closest agreemf'nt with
the recent results of Szmytkowski and Maciag, t8 although discrepancies ('xceeding 20% are
observed, especially at lower energies. Droad maxima ohserved near 2.5 eV and 5 eV in the
cross sections measured here and in those of Szmytkowski and Maciag18 correspond to the
resonances observed by Sanche and Schulz20 in derivative electron transmission spectra.

Previous measurements21-24 of the cross sections for dissociative attachment to 502 differ in
magnitude by as much as 70%. Figure 2 shows the measured dissociative-attachment cross
sections from the present experiment and from Refs. 21-23. Qualitative agreement between
these measurements is good with each experiment showing peaks near 4.7 eV and 7.2 eV. Mass
spectrometric studies24 have shown that the peak near 4.7 eV is composed primarily of 0-
and SO- while the peak near 7.2 eV is almost solely 0-. The peak nf'ar -t.7 eV corresponds
to the broad ma.-amum in the total cross section data near 5 eV. Although the dissociative-
attachment data from our experiment are near the experimental detection limits, and therefore
have fairly large error limits (::I:2 x 1O-t8 cm2), the present data are clearly in agreement with
the values reported in Refs. 23 and 24, both of which show peak values near 18 x 10-18 cm2.

SOF2

The total electron-scattering cross sections for thionyl fluoride (SOF2) from the present exper-
iment are shown in Figure 3. A prominent resonance is observable at 0.6 eV with a weaker
resonance appearing as a shoulder near 2.0 eV_

21



-40
"'E
~u 35
'0
=-30
z
S 25
u
w
(/) 20
(/)
(/)
o 15a:
u
-' 10
~
~ 5

o
o

3
SOF

2 2.5
__TOT t-

2 z ",-w E
:::;:"'uJ:~

1.5 ~ .~
1= -« zo
~ tt- W
« (/)

0.58 ~
(/) 0
(/) a:

o a u
12

_-DA

2 4 6 8 10
ELECTRON ENERGY (eV)

Fig. 3. Total electron-scattering cross sections and dissociative-attachment cross sections for SOF2.

The dissociative-attachment cross section data from the present experiment are also shown

in Figure 3. Note that the peak near 0.7 eV and the shoulder near 2 eV correspond toothe
resonances observed in the total cross section for electron scattering. Mass'" spectrometric
studies of ne~ative-ion formation2~ show an F- ppak near O.Gp\' and a shouldpr npar 2 ('V.

in agreement with thp prcsent data. Sau('['s ct a[,2" also obserw'd the formation of SOFi at
threshold electron ell('['gies but at p('ak illtensities approxim;ltply 200 tinH's sm;uh'r than for
F-. This small current would be undetectable in the prcscnt experimcnt.

S02F2

Figure 4 shows the total cross sections for electron scattering by S02F2' It is interesting to note
that no prominent resonance peaks are observed. Additionally, the total electron-scattering
cross section for S02F2 is the lowest of any of the compounds investigated here.

The cross section for dissociative attachment to S02F2 is also shown in Figure 4. The magni-
tude of the dissociative-attachment cross sections for S02F2 is much smaller than for SOF2,
probably because there are no corresponding resonances in the total electron-scattering cross
section. The peak in the dissociative-attachment cross section near 3.4 eV is in agreement with
previous mass spectrometric studies by \Vang and Franklin25 and by Sauers and co-workers.2~
These studies indicate that this peak is produced by the formation of S02F-, F2", and F-,
and that the increase in the cross section at low energies is evidently due to the formation
of the parent ion, S02F2", by electron attachment. The cross section for dissociative attach-
ment has been calculated from recent swarm studies26 of S02F2 at room temperature to be
1.06 x 10-16 cm2 for 0.22 eV electrons. However, this value is more than an order of magnitude
larger than the dissociative-attachment value measured by this experiment.

THEORY

In previous work we have found a high degree of correlation between the energies of shape
resonances observed in electron transmission spectroscopy and those observed near inner-shell
ionization edges in electron energy-loss or x-ray absorption spectroscopy.6,21 The former involve
temporary capture of low-energy electrons into low-lying, unfilled molecular orbits; the latter
involve transitions of inner-shell electrons to analogous orbitals. For the inner-shell electron
excitation process, the resonant state is stabilized by the positive core that is created. These
energies differ by a stabilization energy, SE, given by the sum of the attachment energy, AE,
which characterizes a resonance feature in the electron transmission spectrum (or total electron-
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Fig. 4. Total electron-scattering cross sections and dissociative-attachment cross sections for S02 F2.
The apparent increase in t.he dissociative attachment cross section at low energies is due to the formation
of long-lived parent ions (see Ref. 24).

Table 1. Calculated term values (TV), attachment energies (AE), and stabilization energies (SE) for
S02 and SF 4 in elect.ron volt.s.

scattering cross section) and the term value, TV, which is the difference between the inner-shell
ionization edge and the inner.shell excitation energy to the state analogous to the resonant
state observed in low-energy electron scattering: SE = AE + TV. The stabilization energy
has been found to be relatively constant in a series of similar molecules, thus if SE can be
estimated and TV is available for a particular unfilled orbital, it is possible to make reasonable
assignments of features observed in low-energy electron scattering and dissociative-attachment
cross section measurements.

To aid in the interpretation of our measurements we have, as in previous work, carried out
an extensive series of ab initio Hartree-Fock calculations on both neutral and core-ionized
sulfur fiuor:.idesand oxyfluorides within the approximation of the equivalent ion core virtual
orbital mode1.6.28In particular, in order to establish the relation (for the series of molecules
under investigation here) between term values from inner-shell excitation spectroscopy and
attachment energies from electron transmission measurements, we have calculated TV and AE
at the LlSCF level29 for the lowest virtual b2 orbitals of S02 and SF4. The calculated term
values agree with experiment to within 1 eV or better. For S02, such a procedure is well
defined for the calculation of the AE, since the 2n2 negative ion state is stable (that is the
AE is negative). The calculated attachment energy agrees within 0.5 eV with the measured30
electron affinity of S02' For SF4 the anion state is unbound at the neutral geometry and thus
the calculated vertical attachment energy is unstable to the addition of diffuse functions and
would indeed go to zero if a sufficient number of such functions were employed. However, using
the same type basis as for the TV calculation, an attachment energy of 1.02 eV is calculated.
As shown in Table 1, the values ofSE implied by these calculations is 9.4 eV for S02 and 9.0 eV
for SF4. An average value for SE of 9.2 eV has been used in Table 2 to predict, from measured
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Table 2. Projected values of AE's (in eV's) based on experimentally determined TV + 9.2 eV. Values
derived from calculated TV's are in parenthesis.

term values,8,31-33 the energies and assignments of resonances observed in low energy electron
scattering for other sulfur fluorides and oxyfluorides.

This approach suggests; (1) dissociative attachment to SF6 proceeds through a threshold
electron capture process, (2) dissociative attachment to S02 is associated with electron capture
into the hI and higher unfilled molecular orbitals, (3) dissociative attachment to SOF2 proceeds
through the two lowest anion states, and (4) dissociative attachment to S02F2 is primarily
associated with electron capture in the lowest unoccupied molecular orbital.
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