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Abstract - A new method is presented to determine the time-
base errors of sampling instruments. The method does not
require a time-base error model and thus provides accurate
estimates where model-based methods fail Measurements
of sinewaves at multiple phases and frequencies are used as
test signals. A harmonic distortion model is used to account
for amplitude nonlinearity of the sampling channeL Use of
an independent method for estimating the channel noise
and jitter aUows an accurate estimate of the harmonic
order. Methods are presented for separating the harmonics
generated by the sampUng channel from those generated by
the time-base distortion. The use of an iterative sine-fit
procedure gives accurate results in a short time. A new
weighting procedure is described, which minimizes the error
in the estimates. Guidelines are given for selecting good sets
of test frequencies. Results are shown for both simulated
and real data.

I. INTRODUCTION

Deviations in the sample intervals of sampling instruments
cause nonlinear distortion of the sampled waveforms. If these
deviations can be measured, corrections can be made to the
sampled data, or the sampling intervals can be modified to
correct them. The sample interval deviations have two
components; a deterministic part called time-base distortion,
and a random component called jitter.

A number of methods have been developed to measure time-
base distortion. The "zero-crossing" methods [1-3] make use
of waveforms of constant frequency, or carefully selected
frequencies [4]. The resolution of these techniques is equal to
the sine period, so they are limited by the bandwidth of the
sampling channel. Early "sinefit" methods assumed a pure
sinewave input signal [5]; these methods do not easily handle
harmonic distortion caused by the sampling channel of the
instrument. An improved sinefit method [6] is able to account
for the harmonic distortion of the sampling channel. A time-
base distortion determination method using the improved
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sinefit method has been developed [7]. A phase demodulation
technique called the "analytic signal" method [8] has also
been described. Both the improved sinefit and analytic signal
methods use models for the time-base distortion, which
prevent them from accurately estimating discontinuities in the
time-base distortion, as shown in [9].

This paper describes a new method for determining time-base
distortion, based on iterating the sine-fitting process. Because
a time-base error model is not used, this method can
accurately estimate discontinuities in the time-base. A
harmonic model is used to account for the amplitude
nonlinearity of the sampling channel, which allows
determination of the distortion of the input signal or
distortion caused by the channel. Use of the proper harmonic
order is important for accurate time-base distortion
estimation. If the model order is too low, some channel
distortion will be attributed to the time-base error, and, if the
model order is too high, some noise will be fit as channel
distortion also increasing the time-base error. A method for
determining the proper harmonic order is described that
compares the sine-fit residuals to an independent assessment
of the noise andjitter of the measurement process.

Time-base distortion estimates depend on the time derivative
of the input signal. Where this derivative is small, the
additive noise can either make the process unstable or make
the estimates inaccurate. To overcome this problem, various
weighting methods have been tried. Three are described here
and one, a new weighting method, is shown by simulation to
give the most accurate time-base distortion estimates. Since
both nonlinear channel electronics and time-base distortions
can generate harmonic distortions, the time-base estimation
method must be able to distinguish the causes. Two methods
are described for resolving this ambiguity; use of either two
or more frequencies or a constant-waveshape constraint.
Guidelines are given for good frequency pairs to use for good
harmonic ambiguity resolution.
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where the 2h + 1 parameters are the least squares solution
from fitting (6) to s~(k). Eqn.(7) is iteration i =O. Successive
iterations are given by fitting

h

S!i(tkj) =Aji + LA/; sin(l(Ojtkj +</>/;) (8)
1=1

to s~(k), where

T M. .

tk(i+l) =tki + w (k) ~wJ (k)gf (k),T J=I
M

wT(k) =Lwj (k),
j=l

and

! (k ) = s~(k)~sti(t)
g, T .J ( )

sSei t It=tkj

The weighting factors w j(k) are discussed in Section III. At
each iteration the fit error K£is calculated as

1

(

1M N-I 2

J

2

KEi = - LL(s~(k)-sti(tkj») ,
DF j=1 k=O

where DF = MN -N - 2h - 1, is the degrees of freedom. The
iterations are stopped when the change in the fit error is
below some tolerance SI' Le., whenK£(i_l)- KEj::s;;SI' or
when the number of iterations has reached a limit nl . The
value of the fit error at convergence is called KF' the final
values for the sample time estimates from (9) are called ik,
and the time-base distortion estimates are given by
g(k) =(ik -k~)/~.

(12)

D. Constant-Waveshape Constraint Method
Constant-waveshape constraint, the second method for
removing the harmonic ambiguity, assumes that for different
phases the waveform harmonic amplitudes and relative
phases remain constant. This method of removing the
harmonic ambiguity can be used together with the multiple
frequency method. Thus, the description below assumes that
the records are ordered into constant frequency groups and
that this constraint is applied to the sampled waveforms in
each frequency group. Since harmonic distortion is normally
amplitude and frequency dependent, we assume that the PI
waveforms in each group have constant amplitude and
frequency. Exactly how closely the amplitudes and
frequencies must be maintained is dependent on how
sensitive the harmonics are to these parameters. This will not
be discussed here other than to point out that the signal
frequencies are not a fitted parameter in this analysis and the
error in the relative signal frequencies is assumed small
compared to the jitter standard deviation relative to the record
length.

The estimated harmonic amplitudes and phases for each
group are averaged and the average amplitude and phase are

(9)

used in the estimat~ for the time-base distortion. This is done
by first decomposing each harmonic into a sinewave that
crosses zero in phase with the fundamental plus a sinewave in
quadrature. Thus, the fit estimates -aregiven as

s!o (t kO) = AJo + A/o sin( (OJ t kO + </>{o)+

~. . . . . . (13)
.£..i 8/0 sin(l(OJ tkO + l</>{o)+ C/o cos(l(OJ tkO + l</>{o) ,
1=2

where

R/o = A/o cos(</>{o -l</>{o), (14)

(10) and

(11)

C/o=A/o sin(</>{o-l</>{o). (15)

The R/o and C/o for each group are averaged. The

constrained constant-waveshape fits s;o are obtained by using

these average values B,~ and c,~ in place of the individual
harmonic amplitudes in (13) for all waveform estimates in
each group. The constrained time-base distortion estimates at
each iteration are given by

C/(k) S~(k~~sf,(t)I' (16)~sei(t) t=tkj
Note that in this implementation, the amplitudes of the
fundamental in each group are not averaged. These values
should be checked after convergence to verify that they are
constant for all waveforms within each group.

ffi. SIMULATION RESULTS

To apply these methods, some of the questions that need to be
addressed are what harmonic order h and frequencies (OJ to
use in (8) or (13), and what weighting factors wj(k) to use in
(9). The appropriate harmonic order can be determined by
looking at KF as a function of h, K~h). As h is increased
K~h) will decrease then level off at the proper h value. The
expected value at which K~h) should level off can be
estimated from the standard deviation of repeat
measurements of sm(k).Take MR records of one phase of the
input signal s~(k),j =1to MR;then calculate the RMS of the

standard deviations at each sample aMR as
1

(

N-I

)

2- 1 "2

GMR = N LGMR(k) ,k=O
(17)

where
MR

"2 1 ~ (
.

)
2

GMR(k)=-.£..i s~(k)-sm(k) ,
MR -1 j=1

(18)

and

1 MR .
sm(k)=- Ls~(k). (19)

M R j=1

The value at which K~h) levels off should be close to aMR'

As shown in [6] the estimated sample standard deviations
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errors was made from 100 repeat records of a signal with
23 Hz, 0 degrees phase. Following [6], analysis of these
records gives a repeat RMS standard deviation (j MR of

10.1 mV and noise and jitter standard deviations Gd = 10m V

and GT =16 J.lS.All three values are close to the expected
values. The value at which KF leveled off, 9.8 mY, is
approximately the repeat RMS standard deviation, 10.1 mY.

TABLE II.
COMPARISON OF THE TIME-BASE ESTIMATE AND FIT ERRORS

FOR DIFFERENT HARMONIC MODELS

Harmonics KF 1 TRMS

{1} 70.5 mV
{1,2} 12.0 mV

{1,2,3} 9.8 mV
{1,2,3,4} 9.7 mV

C. Frequency Selection
The choice of appropriate input signal frequencies to give
good discrimination between harmonics caused by the
sampling channel and time-base distortion can be decided by
looking at pairs of frequencies. For the three-harmonic signal
model used in the above simulation, the RMS error in the
time-base estimates TRMSwas simulated for many frequency
pairs. The fit model used was the correct three-harmonic
model. As above, four records were used with two phases, 0
and 90 degrees, for each of the two frequencies. Fig. 2 shows
by an intensity plot of loglo(TRMS)'with a very small amount
of noise and jitter added This plot shows the matrix of
frequency pairs obtained by varying each frequency from
1 Hz to the Nyquist frequency, IN= 32 Hz. The intensities of

32

Fig. 2. Intensity plot of 10g1Oof the RMS time-base estimate errors,
without constraint, axes show two frequencies in Hz.

the pixels are darker for frequency pairs that are good (lower
Tmas)and lighter for pairs not so good. The lighter diagonal
lines delineate frequency pairs not to use. As the order of the
fit model increases, more such lines appear on this kind of
plot. The main diagonal shows the obvious poor choice of
using pairs with the same frequency. Another line starting
from the upper left below the main diagonal shows that one
frequency II should not be half the other frequency f2 when
the fit model contains second harmonics. Lines from the
upper right shows that It should not be the alias of f2 ,IN -12,
nor twice the alias of 12. A second but less bright set of lines
show that the frequencies and aliases should not be related by
a factor of 3 or a factor of 3 plus the sampling frequency is .,
Fig. 3 is a similar plot with the constant-waveshape constraint
applied. Even though there are only two phases in each
group, this constraint has significantly reduced the error in
the time-base estimates. While the diagonal lines have been
reduced in intensity, several horizontal and vertical lines have
appeared. These show that when the constant-waveshape
constraint is applied, neither frequency should be one-third,
one-fifth or two-fifths the sampling frequency.

Some quality control parameters that are provided by this
method will be briefly mentioned. For both these simulations
the fit errors track the RMS time-base errors and thus can be
used as a quality check on the proper selection of frequencies
and phases. Also the lack of convergence within the iteration
limit n[, as happened for most of the pairs shown in light
intensity on Figs. 2 and 3, indicate a poor data set.

Fig. 3. Intensity plot of loglo of the RMS time-base estimate errors, with
constant-waveshape constraint, axes show two frequencies in Hz.
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