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Cutting the high cost of testing

A new modeling approach
lo the overly long lesting
of analog and mixed-signal
devices saves substantially
on time and cost

pmduct:on—testmganew

'. line of low—cost 13-bit

test plan that can correctly
sort the devices into per-
lifi formance bins. What do
youdo" Youtesttheﬁ:st few to come off the
assembly line extensively, examining how
accurately the digital outputs correspond to
the analog inputs and storing the results,
which often deviate from ideal behavior.

Even though you are using the latest au-
tomatic test equipment, you notice that test-
ing a 13-bit analog-to-digital converter
(ADC) at all its possible output codes re-
quires measuring 8192 (213) different values
of input voltage—a very time-consuming
task. And that is just for the room-
temperature tests at nominal supply voltage.
More thorough testing could take several
times longer.

To keep production flowing, you realize
that you may have to buy more test stations.
But that capital investment would force up
the price of the converters, supposedly low-
cost devices. You long for a simpler test plan,
one that would let you sort those convert-
ers accurately into the performance bins
without increasing your costs.

Test engineers are constantly faced with
that challenge: how to develop test routines
that will correctly sort devices at minimum
the expensiveness and thoroughness of the
testing; for a given cost, the more complete
the testing, the lower the throughput.

Over the last several years, a comprehen-
sive approach that optimizes the tradeoffs
associated with production testing of analog
and mixed-signal electronic devices has been
developed at the National Institute of Stan-
dards and Technology (NIST), Gaithersburg,
Md. It is based on the fact that the behavior
of many devices is governed by a relatively
small set of underlying variables, which con-
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sequently determine the results of a large
number of measurements. In essence, a
simple linear coefficient matrix model of the
device is set up to relate the (relatively large
number of) measured responses to the (rela-
tively small set of) underlying variables.

This approach, an extension of the well-
studied technique known as optimal design
of experiments, is then coupled with the
concept of empirical modeling. Although
much more computationally efficient than
the optimal design technique, the new ap-
proach yields nearly as good results. Early
evaluations of its use in small-scale commer-
cial experiments indicate its probable utili-
ty in situations where the candidate test
space is large or otherwise expensive to test
exhaustively, and where a rather few under-
lying parameters affect many aspects of de-
vice behavior—as is true with analog ICs.

In addition to testing converters, the ap-
proach is being applied successfully to a va-
riety of devices and instruments, including
amplifier-attenuator networks, filters, and

Despite such achievements, however, this

approach may not be as effective in other in-
stances. Unless a model is already available,
the method is best suited to large produc-
tion runs where the cost of developing the
model and selecting test points can be amor-
tized over a large number of devices. Also,
certain types of nonlinear behavior can seri-
ously reduce the efficiency of any linear
modeling approach.
LESS IS BETTER. Let us assume that the ini-
tial tests done by the test engineer on the
first eight devices in our a/d converter ex-
ample yield the results shown in Fig. 1. For
simplicity, a fictitious 7-bit converter is il-
lustrated with 128 (27) code states.

Although it is probably not known to the
test engineer, and not obvious from the per-
formance plots, the nonideal behavior of the
converters is largely determined by rather
few semiconductor-processing variables,
here assumed to be seven [Fig. 2].

To find a solution for a system with seven
variables, seven independent equations, or
pieces of information, are required. In Fig-
ure 2, the seven curves on the top repre-
sent the error signatures of the seven
variables.

Each variable is associated with a param-
eter that affects the behavior of the device
in a particular way. For example, parameter
a, causes the entire response to be offset,
whereas a, causes a positive offset in the
lower half of the response and a negative off-
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set in the upper half.

On the bottom of Fig. 2, the productic
run performance of device No. 8 is show
to be a linear combination of these seven sij
natures; the weight of each is the value
the corresponding variable. (The process i
conceptually similar to the idea behind Fou
rier analysis, in that a function is decom
posed into a set of differently weighted stan
dard functions.)

In this system, each candidate input tes
condition, or test point, defines a linea
equation; the total error at each point is ¢
linear combination of the seven signatures
evaluated at the same test point.

The standard way to test ADCs is to do
all-codes testing—run the input over its
range so that all possible output codes are
generated. A 7-bit converter requires per-
forming at least 128 tests, with 128 separate
equations—one for each required value of
input voltage. But, since only seven in-
dependent equations are needed to solve the
system, only seven test points need to be
measured to calculate the values of the
seven variables. Once those variables are
known, the entire behavior of the ADC can
be calculated—rather than measured—at
every required test point by weighting and
summing the seven error signatures.

Therefore, the test engineer really needs
to test the converters under only seven con-
ditions to fully characterize them.

Defining terms

Error signature: the characteristic way in which an
underiying variable contributes to the total error re-
sponse of a device.

Integral nonlinearity (INL): a figure of merit for an
analog-to-digital converter, equal to the maximum
deviation from the ideal input-output curve, not
counting the gain and offset errors.

Normalized prediction vartance: the ratio of the var-
iance of a prediction to the variance of the meas-
urement noise on which it is based.

QR factorization: a standard method for factoring
a matrix into a right (R) triangutar matrix and an or-
thonormal (Q) matrix—usually done to make ma-
chine solutions less subject to computer roundoff
Errors.

Residual erors (residuals): the part of a device's
response that is not described by the model.
Test polat: an input signal or other condition ap-
plied to a device under test, to which an ideal re-
sponse can be predicted; it is also called a test con-
dition or input condition.

Test space: the total range of input variables over
which a device is tested.
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[1] The performance of a device as a function
of one input condition can be illustrated by
Dlotting the response ervor as a function of the
inpul condition. In this case, the horizontal
axis represents the digital output codes of a fic-
titious 7-bit analog-to-digital converter and the
vertical axis is the input ervor corresponding
to that code—the difference between the actu-
al input that produced the digital code and the
input that should ideally produce it. The
scales are in arbitrary unils.

To make this method work, two things are
needed: the error signatures (or a matrix
model from which they can be determined)
and the specific set of test points at which
the measurements are to be made.
WHERE T0 TEST. Many different sets of seven
test points will produce seven independent
equatons, but many more will not. To compl-
icate matters further, there are degrees of
independence as well. What needs to be
done is to find the set of test points that is
maximally independent. Discovering that set
also makes the process most resistant to the
corrupting effects of measurement noise.
QUICK, BUT G00D. Finding a set of maximally
independent test points is handled by the op-
timal design of experiments process. For
large problems, this can be expensive to
find; however, nearly optimal solutions can
be rather cheap using a mathematical oper-
ation called QR factorization (QRF). Com-
putationally efficient implementations of the
QRF operation exist in the public domain
software called Linpack by the Society of In-
dustrial and Applied Mathematics, Philadel-
phia, and in its friendlier commercial descen-
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Successive decomposition

[2] The ervor response of a device can be
decomposed into a weighted sum of error sig-
natures of underlying vanables. The error sig-
natures for the analog-to-digital converter ex-
ample are shown at the top, and the
decomposition of the response ervors of Device
No. 8of Fig. 1, in terms of those ervor signa-
tures, is shown on the bottom. The topmost
plot on the bottom is the response of Device 8;
the other plots show the error that remains
after the designated amount of each error sig-
nature is successively subtracted.
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Successive decomposition

[3] In addition to calculating error signatures
from a known model, one can develop a model
empirically—that is, from measurement data.
In the case shown, based on the measured
responses of Fig. 1, the empirical vector der-
tved from seven of the devices provides a means
for describing the behavior of the eighth.

dants, such as CLAM from Scientific Com-
puting Associates Inc., New Haven, Conn.,
and Matlab from Mathworks Inc., North Na-
tick, Mass.

Those routines operate on the matrix
model of a device from simple calls to the
software package. They return a vector (list)
of the selected test points and also provide
information on the degree of independence
represented by them. From the vector of
test points, the system of corresponding
simultaneous equations is known. That small
system of test points and equations is valid
for every device that is adequately described
by the original model.

A measure of the prediction errors as-
sociated with the selected test points is the
normalized prediction variance. This can be
computed ahead of time from the original
matrix model and the selected test points
and then evaluated at every candidate test
point given a set of selected test points.

A good selection of test points, therefore.
is one that minimizes the prediction vari-
ance. If that variance is deemed too high
even with a maximally independent set of
test points, the error can be further reduced
by adding more test points so that more
measurements exist than the number of
parameters to be estimated.

Of course, adding those test points will re-
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sult in an overdetermined system of equa-
tions (more equations than variables), but
that can be solved using standard least
squares techmques If the additional test
points again constitute a “‘good’’ selection,
the prediction variance will be reduced by
the ratio of the number of test points to the
number of variables.

Beating down the noise is not the only ad-
vantage of selecting more than the minimum
number of test points; the redundancy per-
mits model errors to be detected as well.
Selecting additional test points enables a
least squares solution to be found, allowing
the generation of the residual errors of the
solution at the measured points. Examina-
tion of those residuals can give a good
indication of the accuracy of the
model: a good model will produce
residuals that are randomly distribut-
ed and have a standard deviation com-
parable to that of the measurement
noise.

On the other hand, an inadequate
model will cause the standard devia-
tion of the residuals to increase, and
structure to appear in the distribution.

Once measurements have been
made at the selected test points, the
system of seven equations is solved,
again using standard matrix software
routines. The solution gives the ac-
tual values of the seven variables for the
specific device that was tested.

Referring back to the fictitious ADC ex-
ample, the entire behavior of the converter
at all of the 128 candidate test points is then
easy to predict: the seven error signatures
are simply weighted by the corresponding
values from the solution, and then summed
together. The result is the behavior for all
test conditions, including the few that were
actually measured, and the many that were
not. For a 13-bit converter, the savings could
be even greater, as will be seen later.
MODELING. Of course, the success of the
method depends critically on the quality of

= “LEEEN T wa. ma A s
The power of high-throughput test systems such as Teradyne
Inc.’s A500 can be increased manyfold by the application
of modeling techniques for designing test procedures.

the model. So far, it has been assumed that
the error signatures for the converters were
known. How they are to be determined, and
how accurate theymust be, are the next

represents the sensitivity of the converter’s
behavior, at each test condition, to an ap-
propriate set of underlying variables. The
variables determine the degrees of freedom
available to the devices—the specific ways
in which individual units can deviate from
their nominal, or ideal, behavior. In some
cases, the variables are known from the de-
sign and correspond to conventional model-
ing parameters.

Be aware that
with device

‘complexity,
model accuracy
degrades

For example, if an accurate equivalent cir-
cuit is known, the error model can be com-
puted as the partial derivatives, or sensitiv-
ities, of the output response of the circuit
with respect to the component parameters,
evaluated at their nominal values. (That cor-
responds to a first-order Taylor expansion
of the circuit’s response.) Versions of pub-
lic domain as well as commercial software
are currently available for computing such
sensitivity matrices. The well-known circuit
analysis program Spice 3C, for example, has
that capability.

Models derived in that manner are called
physical, sensitivity-based models. Their

; ¢ primary virtue is the direct cor-
§: respondence between the model
variables and measurable phys-
ical parameters, such as resis-
tance, capacitance, transistor
transconductance, and open-
loop gain.
But physical modeling is not
without problems. As devices
B get more complex, model ac-
curacy tends to degrade and the
computational burden increases.
All too often, adequate model-
ing and computer-aided design
4 (CAD) tools seem to lag behind
the technology that requires
them. In some cases, detailed
design knowledge of the device
may simply not be available to
the test engineer. In others, a
first-order Taylor expansion may
be insufficient. That can occur
when the device’s behavior has

a strongly nonlinear dependence on its com-
ponents, as in testing the frequency re-
sponse of a multi-pole filter, for example.
EMPIRICISM. For such situations, other
modeling techniques are available. Empiri-
cal learning-based modeling, in particular,
is especially attractive for perfor-
mance-testing applications like the ADC ex-
ample. It requires no detailed design knowl-
edge of the device, nor is it strictly limited
to linear dependence upon the variables.

In empirical modeling, the models come
from the devices themselves. For that rea-
son, they are immune to the sorts of errors
that can arise from an imperfect understand-
ing of the workings of a device. After all,
what could better express the proc-
ess variability of a series of widgets
coming off a production line than the
behavior of the widgets themselves.

If empirical modeling is applied to
the converter example and a sample
of the devices is fully tested—and all
test points examined —the responses
of the various devices will vary some-
what. This is because the values of
the underlying variables differ from
unit to unit. (If that were not true,
testing would be unnecessary.)

Assuming a stable manufacturing
process, a reasonable statistical sam-
pling of devices will embody all the
degrees of freedom that the process allows.
Using the same QRF routine employed in
selecting test points, a subset is chosen of
response vectors that are linearly indepen-
dent. The new matrix composed of this sub-
set will itself be a complete model useful for
accurate predictions.

Mathematically speaking, the new matrix
spans the space of possible responses, but
these in turn are constrained by the variables
of the manufacturing process. Figure 3 illus-
trates how the first seven of the response
vectors of Fig. 1 also make up a model that
fully describes the response of the other
devices (in this case, the eighth) from the
production run.

The empirical approach not only
eliminates the need for detailed design
knowledge of the device under test, but also
minimizes the number of variables required.
For example, the error signatures of many
components of a device will be negligibly
small and therefore need not be considered.
Other components may have signatures that
are identical to each other, such as the com-
ponents of cascaded gain stages. And still
others can have error signatures that are
different but always track each other.

That last circumstance is common in [Cs.
A single processing variable, such as dop-
ant level or exposure time during metaliza-
tion, affects many of the components equal-
ly, causing them all to vary in fixed
proportion.

MIX AND MATCH. Interestingly, it is not only
possible, but often desirable, to combine the
physical and empirical modeling approaches
and benefit from the best features of each.
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Perhaps that is best accomplished by start-
ing with the physical parameters that are
known to be important and are perhaps trim-
mable. It is often rather simple to compute
the sensitivity to those parameters, even
when the overall circuit is unknown.

Next, the sensitivity matrix of the physi-
cal model is augmented with empirical vec-
tors. The result will be a model that can be
useful, not only for making accurate predic-
tions, but also for estimating the actual
values of critical parameters, which can then
be trimmed to achieve compliance.

One trial NIST testing program performed
in collaboration with Teradyne Inc., a
manufacturer of automatic test equipment
for the analog and mixed-signal IC industry,
combined QR factorization and physical plus
empirical modeling. The test was applied to
the measurement of integral nonlinearity
(INL) for a batch of 127 commercial 13-bit
ADCs, all of the same model type. As indi-
cated in our earlier example, the common
industry practice for determining the INL of
an ADC is exhaustive testing—measuring
each of the possible code states to determine
the largest error. Even using the fastest
available test equipment, that practice adds
US $1 or more to the cost of a part that typi-
cally sells for only $15. No wonder the in-
dustry is looking for a less expensive test-
ing methodology.

For the NIST-Teradyne study, an 18-

parameter model of the 13-bit ADC was de-
veloped using a combination of physical and
empirical modeling techniques. The empir-
ical modeling was based on exhaustive test
data obtained from the first 50 devices,
which revealed that an 18-vector model
sufficed to represent the error space with
suitable accuracy. Using that model, 18 test
points were chosen, and 46 others were
added to obtain redundancy—a total of 64
test points.
IT WORKS! Measurements at only those 64
(out of a possible 8192) test points were used
to predict the overall response of each of the
remaining 77 devices. To evaluate the suc-
cess of the method, the predictions were
compared with the results obtained from ex-
haustive testing [Fig. 4]. The root-mean-
square value of the differences was 0.024
least-significant bit (0.0003 percent of full
scale), where one LSB is 27 (0.012 percent
of full scale).

Converters such as these are typically
sorted according to their maximum INL.
The error in predicting that for the 77
devices was also computed [Fig. 5]. (A posi-
tive error indicates the predicted maximum
is smaller than the measured maximum.)
For comparison, the effective noise level in
the measurement process obtained by tak-
ing the standard deviation of repeated meas-
urements of the same device, was 0.02 LSB.

Since the standard deviation of the predic-

| tions is not much greater than that of the

Q

measurements, and both are very small, the
sorting error rate based on the limited, 64-
point test would be similar to that achieved
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Actual test resuits on a single 13-bit analog-to-digital converter

10 X 64 measurements Merm!ﬁ:'_‘ﬁvrasmgk
L:{“. e 1 analog-to-digital converi-
™ A€ o g er make clear. The top plot
. shows the integral non-

linearity measured at the

Least significant bits, LSBs

1.0 Error in prediction

middle plot gives the
predicied errors at all 8192
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[5] The value of the new
approach s best illustrat-

ed by this histogram,
which illustrates the differ-

-
Lt

ences between the meas-
ured and predicted maxi-

for the 77 devices tested.

For comparison, the stan-
dard deviation of the

Number of devices

-0.04 -0.02

0.04
Error in prediction, LSBs

0.00 0.02

using conventional all-codes testing involv-
ing 8192 measurements. With an array pro-
cessor to speed up the computations, the
computational overhead can be kept below
1 second per device. So the test time, which
is reduced by a factor of 128, becomes
negligible.

TO PROBE FURTHER. Various facets of analog
and mixed-signal testing strategy have been
discussed by the authors and their col-
leagues. Good surveys of the work are: G.N.
Stenbakken and T.M. Souders, ‘“Test Point
Selection and Testability Measures Via QR
Factorization of Linear Models,” IEEE
Transactions on Instrumentation and Meas-
urement, Vol. IM-36, No. 2, June 1987; and
T. M. Souders and G. N. Stenbakken, ‘A
Comprehensive Approach for Modeling and
Testing Analog and Mixed-Signal Devices,””
in the 1990 Proceedings of the International
Test Conference, IEEE Computer Society
Press, Los Alamitos, Calif., September
1990.

A three-day workshop is being offered on
April 24 at the National Institute of Stan-
dards and Technology (NIST), Gaithersburg,
Md., to provide more in-depth training in the

measurement process—the
repeatability of each
measurement—is 0.02

least-significant bit.

0.06 0.08

techniques discussed in this article. For
more information, call NIST, 301-975-2406.
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