
TESTING

Cuttingthehighcostoftesting
A new modeling approach
to the overly long testing
of analog and mixed-signal
devicessaves substantially
on time and cost

The responsibility for
production-testing a new
line of low-cost 13-bit
ana1og-to-digiI converters
is youIS.Youmust devise a
test plan that can correctly
sort the devices into per-
fonnance bins. What do

youdo?Youtest the first few to come offthe
assembly line extensively, PDlminit1ghow
accurately the digitaloutputs correspond to
the analog inputs and storing the results,
which often deviate from ideal behavior.

Even though you are using the latest au-
tomatictest equipment. younotice that test-
ing a 13-bit anaIog-to-digitai converter
(ADC) at all its possible output codes re-
quires measuring 8192 (213)different values
of input voltage-a very time-consuming
task. And that is just for the room-
tempel3ture tests at nominal supp1y voltage.
More thorough testing could take seveI3l
times longer.

To keep production flowing, you realize
that you may have to buy more test stations.
But that capital investment would forre up
the price of the converters, supposedly Iow-
cost devices. You long for a simpler test plan,
one that would let you sort those convert-
ers accurately into the perfonnance bins
without increasing your costs.

Test engineers are constantly faced with
that challenge: how to develop test routines
that will correctly sort devices at minimum
cost. There are inevitable tradeoffs between

the expensiveness and thoroughness of the
testing; for a given cost, the more complete
the testing, the lower the throughput.

Over the last seveI3l years, a comprehen-
sive approach that optimizes the tradeoffs
associated with production testing of analog
and mixed-signal electronic devices has been
developed at the National Institute of Stan-
dards and Technology (NISl), Gaithersbwg,
Md. It is based on the fact that the behavior
of many devices is governed by a relatively
small set of underlying variables, which con-
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sequently determine the results of a laIge
number of measurements. In essence, a
simple linearcoefficientmatrix model of the
device is set up to re1atethe (relativelylarge
mnnber of)measured responses to the (rela-
tively small set 00 underlying variables.

This approach, an extension of the wen-
studied technique known as optimal design
of experiments. is then coupled with the
concept of empirical modeling. Although
much more computationally efficient than
the optimal design technique, the new ap-
proach yields nearly as good results. Early
evaluationsofits use in small-scalecommer-
cial experiments indicate its probable utili-
ty in situations where the candidate test
space is largeor otherwise expensive to test
exhaustively,and where a rather few under-
lyingparameters affectmanyaspects of de-
vice behavior-as is true with analog ICs.

In addition to testing converters, the ap-
proach is being applied successfully to a va-
riety of devices and instruments, including
amplifier-attenuator networks, filters, and
multirange instruments.

Despite suchachievements,however, this
approachmaynot be as effectivein other in-
stances. Unless a model is already available,
the method is best suited to large produc-
tion runs where the cost of developing the
modelandselecting test pointscan be amor-
tized over a large number of devices. Also,
certain types of nonlinearbehaviorcan seri-
ously reduce the efficiency of any linear
modeling approach.
IfSS ISBET1ER.Let us assume that the ini-
tial tests done by the test engineer on the
first eight devices in our aid converter ex-
ample yield the results shown in Fig. 1. For
simplicity, a fictitious 7-bit converter is il-
lustrated with 128 (27)code states.

Although it is probably not known to the
test engineer, and not obviousfrom the per-
formanceplots, the nonidealbehavior of the
converters is largely determined by rather
few semiconductor-processing variables,
here assumed to be seven [Fig. 2].

Tofinda solution for a system with seven
variables. seven independent equations, or
pieces of information, are required. In fig-
ure 2. the seven curves on the top repre-
sent the error signatures of the seven
variables.

Each variable is associated with a param-
eter that affects the behavior of the device
in a particular way.For example, parameter
al causes the entire response to be offset,
whereas a2 causes a positive offset in the
lower halfofthe response and a negativeoff-
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set in the upper half.
On the bottom of rig. 2, the producO<

run performance of device No. 8 is sho\\
to be a linearcombinationofthese seven sit
natures; the weight of each is the value (
the correspondingvariable. (The process i
conceptuallysimilarto the idea behind Foc
rier analysis, in that a function is decom
posed intoa set of differentlyweighted stan
dard functions.)

In this system, each candidate input tes'
condition, or test point, defines a lineal
equation; the total error at each point is <
linear combination of the seven signa~
evaluated at the same test point.

The standard way to test ADCs is to do
aII-codes testing-run the input over its
range so that all possible output codes are
generated. A 7-bit converter requires per-
formingat least 128tests, with 128separate
equations-one for each required value of
input voltage. But, since only seven in-
dependent equationsare needed to solve the
system, only seven test points need to be
measured to calculate the values of the
seven variables. Once those variables are
known, the entire behavior of the ADC can
be calculated-rather than measured-at
every required test point by weighting and
summing the seven error signatures.

Therefore, the test engineer reallyneeds
to test the converters under onlyseven con-
ditions to fully characterize them.

DefIaIDg lenDS

En81111d1bn: thecharacteristicYRfinwhichan
underiyingvariablecontributestothetotalerrorreo
sponseof a device.
1IIIeIrII , (Ill):a figureof meritlor an
analog.to-digilalconverter,equalto themaximum
deviationfromtheidealinput-outputcurve,not
countingthegainandoffseterrors.
NIImIIzied 18tIace:theratiod thevar.
iance01apredictiontothevariance01themeas.
urementnoiseonwhich~isbased.
OR~ astandardmethodforfactoring
amatrixintoaright(R)triangularmatrixandanor.
thonormal(Q)matrix-usuallydoneto makema.
chinesolutionslesssubjecttocomputerroundoff
errors.
ResIdaaIImIIS (ftlSlllaalsJ: thepart01a device's
responsethatis notdescribedbythemodel.
Test IICIIat an inputsignalor otherconditionap.
pliedtoadeviceundertest,towhichanidealreo
sponsecanbepredicted;~isalsocalledatestcon.
d~ionor inputcondition.
TestSIIIC8:thetolalrange01inputvariablesover
whichadeviceis tested.
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[I} The performance of a device as a/unction
of one input condition can be illustrated by
plotting the response error as a /unction of the
input condition. In this case, the IwrizonJIll
axis~ thedigitaloutputcodesofafic-
tilious 7.1Jilanalog-to-digital converler and the
vertical axis is the input error t:01'mjKmding
to thai code-the differma between the adu-
al input thai produad the digital code and the
input that should ideally produa it. The
scales are in aTbitraryunits.

To make this method work, two things are
needed: the error signatures (or a matrix
model from which they can be detennined)
and the specific set of test points at which
the measurements are to be made.

WIIBIE10 tESt Many different sets of seven
test points will produce seven independent
equatons, but many more will not. To compl-
icate matters further, there are degrees of
independence as wen. What needs to be
done is to find the set of test points that is
maximally independent. Discovering that set
also makes the process most resistant to the
corrupting effects of measurement noise.
QUICK.BUfGOOD.rroding a set of maxima8y
independent test points is handled by the op-
timal design of experiments process. For
large problems, this can be expensive to
frod; however, nearly optimal solutions can
be rather cheap using a mathematical oper-
ation caRed QR factorization (QRF). Com-
putationaRy efficient implementations of the
QRF operation exist in the public domain
software caRed Unpack by the Society of In-
dustrial and Applied Mathematics, Philadel-
phia. and in its friendlier conunercial descen-
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SuccessIve decomposition

[2} The error response of a device can be
tkcomposed into a weighted sum of error sig-
natures of underlying variables. The emJt sig-
natures for the analog-io-digiJal converter a-
amPle are shown at the top, and the
tkcomposition of the response emJTS of Devit:e
No.8 of Fig. I, in terms of those errorsigna-
tures, is shown on the bottom. The topmost
plot on the bottom is the response of Device 8;
the other plots show the error thai remains
after the tksignated amount of each error sig-
nature is successively subtracted.
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[3/ In addition to caku/ating error signatures
/rom a known model, one can developa model
empirically-that is, /rom measurement dIlIa.
In the case shown, based on the measumJ
responses of Fig. I, the empiriazl uedor der-
ived/rom seven of the devicesprovides a means
for describing the behavior of the eighlh.

dants, such as CLAMfrom ScientificCom-
puting Associates Inc., New Haven, Conn.,
and Matlabfrom MathworksInc., North Na-
tick, Mass.

Those routines operate on the matrix
model of a device from simple calls to the
software package.They return a vector (list)
of the selected test points and also provide
informationon the degree of independence
represented by them. From the vector of
test points, the system of corresponding
simultaneousequations islmown.That sman
system of test points and equations is valid
forevery device that isadequatelydescribed
by the original model.

A measure of the prediction errors as-
sociated with the selected test points is the
normalized predictionvariance. This can be
computed ahead of time from the original
matrix model and the selected test points
and then evaluated at every candidate test
point given a set of selected test points.

A good selection of test points, therefore,
is one that minimizes the prediction vari-
ance. If that variance is deemed too high
even with a maximallyindependent set of
test points, the error canbe further reduced
by adding more test points so that more
measurements exist than the number of
parameters to be estimated.

Ofcourse, addingthose test pointswillre-
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suIt in an ovetdetermined system of equa-
tions (more equations than variables), but
that can be solved using standanI least
squams tecbniques. If the additional test
points againconstitute a "good" selection.
the prediction variance will be reduced by
the ratio of the number of test points to the
number of variables.

Beatingdown the noise is not the onlyad-
vantageof selectingmore than the minimllm
number of test points; the redundancy per-
mits model enors to be detected as well.
Selecting additional test points enables a
least squares solution to be found, allowing
the generation of the residual enors of the
solution at the measured points. Examina-
tionof those residualscan givea good
indication of the accuracy of the
model: a good model will produce
residuals that are randomlydistribut-
ed andhave a standaIddeviationcom-
parable to that of the measurement
noise.

On the other hand, an inadequate
model willcause the standanI devia-
tion of the residuals to increase, and
structure to appear in the distribution. .

Once measurements have been
made at the selected test points. the
system of seven equations is solved,
againusing standard matrix software
routines. The solution gives the ac-
tual values of the seven variables for the
specific device that was tested.

Referring back to the fictitious ADC ex-
ample, the entire behavior of the converter
at allof the 128candidate test points is then
easy to predict: the seven error signatures
are simply weighted by the corresponding
values from the solution, and then summed
together. The result is the behavior for all
test conditions, includingthe few that were
actually measured, and the many that were
not. For a 13-bitconverter, the savingscould
be even greater, as will be seen later.
MGOWN&.Of course, the success of the
method depends critically on the quality of

the model. So ~ it has been asswned that
the error signaturesfor the converterSwere
known.Howthey are to be determined, and
howaccuratethey must be, are the next
questions to be addressed.

In mathetPaticai form, the model really
represents the s.::u..itivityof the converter's
behavior, at each test condition, to an ap-
propriate set of underlying variables. The
variablesdetermine the degrees of freedom
availableto the devices-the specific ways
in which individualunits can deviate from
their nominal, or ideal. behavior. In some
cases. the variablesare knownfrom the de-
signand correspond to conventionalmodel-
ing parameters.

Bea\varethat
with device

, complexity,
modelaccuracy

degrades

For example, if an accurate equivalent cir-
cuit is known, the enor model can be com-
puted as the partial derivatives, or sensitiv-
ities, of the output response of the circuit
with respect to the component parameters,
evaluated at their nominal values. (fhat cor-

responds to a first-order Taylor expansion
of the cin:uit's response.) Versions of pub-
lic domain as well as commercial software
are currently available for computing such
sensitivity matrices. The well-known cin:uit
analysis program Spice 3C, for example, has
that capability.

Models derived in that manner are called

physical, sensitivity-based models. Their
I~primary virtue is the direct cor-

I

trespondeoce between the model
.ivariables and measurable phys-

ical parameters, such as resis-
tance, capacitance. transistor
transconductance, and open-
loop gain.

But physical modeling is not
without problems. As devices
get more complex, model ac-
curacy tends to degrade and the
computationalburden increases.
All too often, adequate model-
ing and computer-aided design
(CAD)tools seem to lag behind
the technology that requires
them. In some cases, detailed
design knowledge of the device
may simply not be available to

Thepowerof high-throughputtestsysremssuch as Tenzd~ the test engineer. In o~ers, a
Inc. 's ASOOcan be im:reasedmanyfold by the application tirs~-order!ayIor expansionmay
of modeling t«hniques for designing testprocedures. be msufficlen~.That can.occurwhen the deVIce'sbehaVIorhas
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a stronglynonlineardependence on its c0m-
ponents, as in testing the frequency re-
sponse of a multi-pole filter, for example.
E8PIB1CIS&For such situations. other
modeling techniques are available. Empiri-
calleaming-based modeling, in particular,
is especially attractive for pedor-
mance-testing applicationslikethe ADCex-
ample. It requires no detaileddesign knowl-
edge of the device, nor is it strictly limited
to linear dependence upon the variables.

In empirical modeling, the models come
from the devices themselves. For that rea-
son, they are immune to the sorts of errors
that can arise froman imperfectunderstand-
ing of the workings of a device. After all,

what could better express the proc-
ess variabilityof a series of widgets
coming offa productionline than the
behavior of the widgets themselves.

H empirical modeling is applied to
the converter example and a sample
of the devices is fullytested-and all
test pointsexamined-the responses
of the variousdeviceswillvary some-
what. This is because the values of
the underlying variables differ from
unit to unit. (If that were not true,
testing would be unnecessary.)

Assuming a stable manufacturing
process, a reasonable statistical sam-
pling of devices will embody all the

degrees of freedom that the process allows.
Using the same QRF routine employed in
selecting test points, a subset is chosen of
response vectors that are Iinearly indepen-
dent. The new matrixcomposed of this sub-
set willitselfbe a completemodel useful for
accurate predictions.

Mathematicallyspeaking. the new matrix
spans the space of possible responses, but
these in turn are constrainedby the variables
of the manufacturingprocess. Figure3 illus-
trates how the flIStseven of the response
vectors of Fig. 1 also make up a model that
fully describes the response of the other
devices (in this case, the eighth) from the
production run.

The empirical approach not only
eliminates the need for detailed design
knowledgeofthe deviceunder test, but also
minimizesthe number ofvariables required.
For example, the error signatures of many
components of a device will be negligibly
smalIand therefore need not be considered.
Other components mayhave signatures that
are identicalto each other, such as the com-
ponents of cascaded gain stages. And still
others can have error signatures that are
different but always track each other.

That last cin:umstance is common in ICs.
A single processing variable, such as dop-
ant level or exposure time during metaliza-
tion, affects manyof the components equal-
ly, causing them all to vary in fixed
proportion.
Mil ANDMATCH.Interestingly, it is not only
possible, but often desirable, to combine the
physicaland empiricalmodelingapproaches
and benefit from the best features of each.
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, PerlJaps t&atis best accomplished by start-
ing with the physical par.uneters that are
knownto be importantand are perhaps trim-
mable. It is often rather simple to compute
the sensitivity to those parameters, even
when the overall cin::uitis unknown.

Next, the sensitivity matrix of the physi-
cal model is al1gJ11ent~with empirical vec-
tors. The result willbe a model that can be
useful, not only for makingacauate predic-
tions, but also for estimating the actual
valuesofaitical paI3IIIeters.whichcan then
be trimmed to achieve compliance.

One trialNISf testingprogrnm performed
in collaboration with Teradyne Inc., a
manufacturer of automatic test equipment
for the analogand mDred-signaIIC industry,
combinedQR f3ctorizationand physicalplus
empiricalmodeling. The test was appliedto
the measurement of integral nonlinearity
(INL) for a batch of 127 commercial13-bit
ADCs, allof the same model type. As indi-
cated in our earlier example, the common
industry practice for determining the INLof
an ADC is exhaustive testing-measuring
each of the possiblecode states to determine
the largest error. Even using the fastest
availabletest equipment, that practice adds
US$1or more to the cost ofa part that typi-
cally sells for only $15. No wonder the in-
dustry is looking for a less expensive test-
ing methodology.

For the NISf-Teradyne sbldy, an 18-
parameter model of the 13-bitADC was de-
veloped using a combinationof physicaland
empiricalmodeling tecbniques. The empir-
icalmodelingwas based on exhaustive test
data obtained from the first 50 devices,
which revealed that an 18-vector model
sufficed to represent the error space with
suitable accuracy. Using that model, 18test
points were chosen, and 46 others were
added to obtain redundancy-a total of 64
test points.
ITWORKS!Measurements at only those 64
(out ofa possible8192)test pointswere used
to predict the overall response ofeach of the
remaining 71 devices. To evaluate the suc-
cess of the method, the predictions were
comparedwith the results obtained fromex-
haustive testing [Ftg. 4]. The root-mean-
square value of the differences was 0.024
least-signiflC3ntbit (0.0003 pen:ent of full
scale), where one LSB is 2-D(0.012percent
of full scale).

Converters such as these are typically
sorted according to their maximum INL.
The error in predicting that for the 71
devices was also computed [Ftg. 5]. (A posi-
tive error indicates the predicted maximum
is smaller than the measured maximum.)
For comparison, the effective noise level in
the measurement process obtained by tak-
ing the standard deviation of repeated meas-
urements of the same device, was 0.02 LSB.

Since the standanI deviation of the predic-
tions is not much greater than that of the
measurements, and both are very small, the
sorting error rate based on the limited, 64-
point test would be similar to that achieved
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using conventional aU-codes testing involv-
ing 8192 measurements. With an array pro-
cessor to speed up the computations, the
computational overhead can be kept below
1 second per device. So the test time, which
is reduced by a factor of 128, becomes
negligible.
10 PIII8E RIRIHEILVarious facets of analog
and mixed-signal testing strategy have been
discussed by the authors and their col-
leagues. Good surveys of the work are: G.N.
Stenbakken and T.M. Souders, "Test Point
Selection and Testability Measures Via QR
Factorizationof Linear Models," IEEE
Tnznsodions onInstrumenItztUmand Meas-
umnenl, Vol.IM-36, No.2, June 1987;and
T. M. Souders and G. N. Stenbakken, .~
ComprehensiveApproachfor Modelingand
TestingAnalogand Mixed-SignalDevices,"
in the 1990Procudings of the InternatWnal
Test Confemu:e, IEEE Computer Society
Press, Los Alamitos, Calif., September
1990.

A three-day workshop is being offered on
April 2-4 at the National Institute of Stan-
dards and TecImology (NISI'). Gaithersburg,
Md., to provide more in-depth training in the
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[4} Modmng fDOrlls, as
these rmdts for a single

analog-w-digital Q1JIfJQ1-
ermakedear. T71eIDPPlot
sItows the integnzl non-
linearity measuml at the
64 sekded aHks. The
middle plot gif1es the
pmlided emm at aU8192
aHks based on the 64
measumnenls,whilethe
bottom plot girJeS the emJT
in the pmlidUms-the
difference between the
measuml errorsand the
predictederrors at all
codes. Verticalscales ar!
in least-significantbits.

[5} The value of the new
apfJrrJodIis best illustnzt-
ed by this histogram,
whU:h illustrrzIi!s the dijJer-

mas betwem the meas-
uml and predided nuui-
muminlegnzl~
for the 77 dnias tested.
Forcomparison,thestan-
dard det1iation of the
measurementjmN:ess-lhe
repeatability of each
measurement-is 0.02
least-significant bit.

0.08

techniques discussed in this article. For
more information,callNISf, 301-975-2406.
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Certaincommercialproductsareidentniedinthis
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theproductsidentifiedarenecessarilythebestavail.
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