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Abstract
Techniquesare presented for developinglinear
error models for analog and mixed-signal
devices. Methods for choosingparameters and
assuring the models are complete and well-
conditioned, are included. Once established,
the models can be used in a comprehensive
approach for optimizing the testing of the
subject devices.

1. Introduction

In a previous paper given at the 1990
International Test Conference, the authors
presented a comprehensive approach for
optimizing the testing of analog and mixed-
signaldevices[1]. The entire process described
in that paper is carried out by performing
algebraicoperations on appropriate models of
the devices to be tested. It was assumed in
that paper that accurate modelswere available.
In this paper, we address the development of
the required models, and discuss their
properties.

Tne approach described in [1] is based on an
m x n linearcoefficientmatrixmodel,~ that
relates the device's error response, y, (at all m
candidate test conditions), to a set of n
underlyingvariables,x:

y-Ax (1)

The error response vector, y, represents the

actual device's deviation from the ideal
response at each test condition. (If, for
example, the device is a D/A converter, y
might be the vector of output voltage deviations
from the ideal, for each of the m = 2fVcode
states, where N is the number of bits.)

As shown in [1], once an accurate model has
been developed, algebraic operations on the
model can be used to:

1. select an optimum set of test points which
will minimize the test effort and maximize
the test confidence,

2. estimate the parameters of the model (Le.,
,the error variables) from measurements
made at the selected test points,

3. predict the response of the device at all
candidate test points from measurements
made at the selected test points, and

4. calculate the accuracy of the parameter
estimates and response predictions, based
on the random error in the measurement.

2. Model Development

A model serves two general purposes: It
parameterizes the device response in terms of
a set of n error parameters represented by X,
and it provides the capability of accurately
predicting the response for any test condition,
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once estimates are available for the
parameters. These two principles,
parameterization and completeness, are the
primary considerations when developing a
model. Parameterization refers to the choice
of basis functions that are taken to underlie the
device's response, and completeness refers to
the accuracy with which the basis can explain
the response of any device for which the model
is intended, Le., the degree to which the
selected basis spans the space of possible
responses, y. The choice of parameters
depends on the goals of the testing. If, for
example, the goal is to identify and trim out-
of-tolerance components based on functional
tests of the devices, then the error signatures
of the components to be trimmed should be
chosen as model vectors. On the other hand,
if there are no trimmable components and the
primary goal is to correctly sort good and bad
devices with the fewest required measurements,
then it is desirable to parameterize the
response with the most efficient basis, Le., the
smallest set of vectors which is still complete
in the sense that it gives accurate predictions.

In a model, each columnvector represents the
error signature of a particular component or
parameter of interest. Visualization often
affords a better intuitive understanding of the
underlying error processes and their
contributions to the overall errors of the
devicesunder test. Therefore, whendeveloping
a model, it is often quite useful to visualize
candidate column vectors by plotting them vs.
test condition index. For this reason, we will
sometimesuse pictorial matrix representations
as in fig. 1, and will illustrate certain column
vectors graphically.

2.1. Parameterization
(choosing a candidate basis)

There are three basic approaches to
parameterization: physical, a priori, and
empirical.
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Fig. 1. Pictorial representation of Eq. 1 for a
fictitious device. The dots represent locatio11.5of
selected test points. Each vector is plotted
vertically as magnitude vs. test condition index.

Physical Models
Physical models are developed when the
parameters are known from design and
correspond to conventional modeling
parameters. For example, if an accurate
equivalent circuit is known (including the
connection matrix and nominal component
values as in a SPICE model), a physical model
can be computed as the normalized partial
derivatives or sensitivities of the output
response of the device with respect to the
component parameters, evaluated at their
nominal values:

8Yl 8Y1 8Y1
Pl P2... pn

8Pl 8P2 8Pn

8Y2 8Y2 8Y2
A - I Pl P2... PnI (2)

8Pl 8P2 8Pn.. ... ... .
8Ym 8Y2 8Ym

Pl P2... Pn
8Pl 8P2 8Pn

Such models correspond to first order Taylor
expansions of the circuit's response. For linear
systems, the adjoint network approach provides
a computationally efficient method of
computing the required sensitivities [2]. Time-
domain sensitivities can be computed efficiently
for specific input waveforms using a modified
nodal formulation and numerical integration
techniques [3]. Versions of public domain as
well as commercial software are currently
available for computing these sensitivity
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matrices. SPICE 3C for example, has this
capability. Another technique for determining
the sensitivity matrix is to experimentally
perturb each component in turn by a small
amount, and record the resulting change in
output response for each test condition. While
this is usually not feasible to perform for all of
the components, it might be a reasonable
choice for components that are trimmable and
forwhich physical model vectors are important.

The strength of physical models lies in the
direct correspondence between the model
variables and measurable physical parameters,
be it resistance, capacitance, transistor
transconductance, open loop gain, etc. For this
reason, physical models are useful in fault
diagnosis and in alignment and trimming
operations. Since the actual values of the
parameters subsequently can be estimated from
the test data, the results can be used to
compute the amount of trimming that will be
required to globally optimize the devices'
performance.

Physicalmodels, nevertheless, are not without
problems. For complex devices, it becomes
more and more difficult to obtain accurate
circuit models, and the computational burdens
they entail may be excessive. In some cases,
detailed design knowledge of the device may
simplybe unavailable to the test engineer. It
is often inadequate to model only the
components which are intentionally designed
into a circuit; the parasitic reactances, inter-
connection resistances, etc., must also be
included, as well as dielectric absorption, self-
heating or other nonideal effects which
contribute to the overall response of the device.
In other cases, a first order Taylor's
approximation may be insufficient. This can
occur when the devices' behavior has a
nonlinear dependence on its components and
the model parameters deviate substantially
from their nominal values. It is possible to
represent a higher order Taylor expansionwith
nonlinear terms as a linear model in higher

dimensional space, but this quickly can become
computationaliy intractable. Finally, the
sensitivity vectors of different components in
the same circuit are often identical, so that the
column vectors of a physical model will rarely
all be linearly independent. The existence of
these "ambiguity groups" obscures the
components and causes the sensitivity matrix
to be rank deficient [4]. In such cases, the
matrix must be reduced to full column rank by
column pruning, as will be explained in a later
section.

A PrioriModels
A priori models are those that use vectors
chosen to represent the devicebased on formal
mathematical systems and engineering
judgement. Often, they are comprised of a
relatively small subset of basis functions that is
capable of approximating the device
performance to the required accuracy. For
example, subsets of the Walsh functions have
been used for modeling some AID and DIA
converter architectures [5]. As illustrated in fig.
2, the Rademacher subset of Walsh functions,
square wave functions having powers of 2
periods over the defined interval, are an ideal
representation of the "bit errors" of
conventional DIA converter archi tectures using
binary-weighted current or voltage sources, as
well as of successive approximation AID
converters. These functions are not only
linearly independent but are orthogonal, and
they can represent any integral linearity errors
that are due to weighting errors of the
individual bits. However, for many converters
the Rademacher functions are not complete in
the sense that they cannot represent
superposition errors; therefore, they must be
augmented with other vectors to form a
complete basis when superposition errors are
present.

In other cases, a priori models afford a simple
way to incorporate the benefits of engineering
judgement into a model, minimizing
the amount of empirical modeling that mustbe
done. In fig. 3, five such examples are given.
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Fig.2. Thefirst eightWalshfunctions (top) and
the first four Rademacher functions (bottom)
which are a subsetof the Walshfunctions. The
co"espondence of the Rademacherfunctions to
the bit e"or signatures of data converters is
illustrated.

The vectors of fig. 3 (a) and (b) are useful in
describing the gain errors of bipolar devices
when there are different gain errors for each
polarity. In (c), a vector with a singlenon-zero
element (a Haar function) can be used to force
a measurement at a specific point, e.g., where
glitches are likely to occur. To efficiently
incorporate the possibilityof a repeating error
pattern, comb functionsas illustrated in (d) are
useful. This example can represent any four-
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(a)

(b)

(C)

(d)

(e)

Fig. 3. Examples of a priori model vectors
representing bipolar gain e"ors (a,b), glitches
(c), repeating e"or patterns (d), and the e"or
signature of device self-heating (e). The vertical
scales are in arbitrary units and the horizontal
scale is the candidate test condition index.

element pattern that repeats eight times across
the range of candidate test points.
Measurements at only four test points are
necessary to determine the complete pattern.
Finally, fig. 3 (e) illustrates a vector that has
been generated analytically from physical
reasoning, in this case representing the effects
of device self-heating.
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representativeunits coming off the production
line. They are based on the premise that a
"elected lot of devices will manifest all of the
deC/rees of freedom or variability of the
m:nufacturing process. The response of each
of the devices will vary somewhat from the
others since the values of the underlying
variables differ from unit to unit. (If this were
not the case, then testing would be
unnecessary.) The candidate set of basis
vectors for the model is formed from k
complete m-point response vectors that have
been measured during exhaustive tests of k
devices, where k is a statistically significant
sample. Each column vector of the candidate
basis, A', is one of the k response vectors, as
follows, where the superscripts designate the
specific device, and the subscripts designate the
test point index:

Y; Y~ . . . ~

If enough device responses have been included
in A', they will form a basis that spans the
entire space of possible y vectors. On the
other hand, such a candidate basis will almost
certainly be rank deficient and will require
column pruning to reduce the model to full
column rank, as described in a later section.

This empirical approach not only eliminates
the need for detailed design knowledge of the
device under test, but it also minimizes the
number of variables that are actuallyrequired.
For example,the sensitivityvectorsof many
components of a devicewillbe negligiblysmall
and therefore need not be considered. Some
other components may have vectors that are
identical to each other as explained above,
such as the components of cascaded gain
stages. Still other components can havevectors

- - -- --- ---'..'.- -.

that are different, but alwaystrack each other.
This is common in integrated circuitswhere a
single processingvariable such as dopant level
or exposuretime duringmetalizationwillaffect
many components equally,causing them all to
vary in fixedproportion. Similarly,small mask
misalignmentswill affect many components in
some proportional way. In these cases, the
parameters of the many affected components
are no longer uncorrelated, but are instead
correlated by a few underlying process
variables. The empirical modeling process is
only sensitive to these functional process
variables.

One disadvantage associated with empirical
models is tl:e noise that they incorporate.
Since the vectors are derived from
measurement data, they include noise as well
as true model information, and the variance
of predictions made from the model will
necessarily increase. The effects can be
minimized by minimizing the amount of
measurement noise included in the empirical
vectors. This can be accomplishedbyaveraging
repeated measurements of each candidate
vector that is to be used in the empirical
model.

Mixed Models
It is also possible, and often desirable, to
combine the modeling approaches, physical, a
priori, and empirical, to achieve the best
features of each. This is accomplished by
starting with the physical parameters that are
knOW11to be important and are perhaps
trimmable. It is often rather simple to compute
the sensitivity to these parameters, even when
the overall circuit is unknoW11. Next, the
sensitivity matrix comprising this physical model
is augmented with a priori and empirical
vectors. The result will be a model that can be
useful not only for making accurate predictions,
but also for estimating the actual values of
critical parameters that can be trimmed to
achieve compliance.
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2.2. Column Pruning

Column pruning is a process for selecting a
set of linearly independent column vectors
from a larger candidate set of vectors. In
general, there will be many such sets that are
possible; however,what is most desirable is to
find a set that is maximallyindependent so that
the effects of random measurement noise are
minimized when the model is used. The QR
decomposition with column pivoting is well
suited for this task and is available as a simple
call in many linear algebra software packages
[6,7,8]. When applied to the matrix of
candidate vectors, A', the QRD operation
searches the candidate set, selects the vector
with largest norm and pivots it to the first
position, then orthogonalizes all remaining
vectors to it. Next, the k-l remaining
orthogonalized vectors are searched, the one
having the largest norm is pivoted into the
second position, and the k-2 remaining vectors
are orthogonalized to it (note that they are
already orthogonal to the first). The process
is repeated until all of the vectors have been
ordered and orthogonalized. The process
outputs the pivot vector which designates the
ordering, and forms two factors, Q and R, of
the original matrix:

A -Q R
IDXn mxm IDXn

(4)

where Q is orthonormal and R is a right
triangular matrix. The jth diagonal element of
the triangular matrix, RD'is the norm of the jth
orthogonalized column, after pivoting.

As less and less independent information is
contained in successive columns, the norms
become smaller and smaller, until (in the case
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of empirical vectors) they are dominated by
measurement noise. Beyond a given point, the
inclusion of additional vectors reduces the
efficiency of the model, Le., requires a larger
number of vectors, while providing negligible
improvement in the model's ability to predict
the device's performance. A rule of thumb for
when to stop adding vectors can be quantified
if the standard deviation, (j, of the
measurement noise is known. The (j+ 1)th and
successive vectors can be dropped from the
model if

-\
m rj+1,j+l < 1.6 u (6)

This relationship was determined empirically
through computer simulations; an analytic
derivation on a bound for how much error
remains in the prediction is the subject of
current research. The term m-¥!in Eq. 6
converts the norm (root-sum-squares) to the
root-mean-square measure used for (j.

Once the cutoff point, j, has been determined,
the matrix A is formed by selecting the j
vectors of A' that correspond to the first j pivot
locations indicated by the pivot vector.

It should be borne in mind that determining
the correct cutoff point does not guarantee
that the remaining (unselected) vectors contain
no significant information, but only that the
information cannot be used because it is too
corrupted with measurement noise. Tests for
completeness described in a later section
should be used to determine the accuracy of
the selected model and the amount of
unmodeled information that remains.

2.3. Orthogonalizing

When mixed modeling is used, it becomes
important to force certain vectors, either
sensitivity or a priori, to be selected in the
column pruning process. With some software
packages, notably UNPACK, this is easily
accomplished since the programmer can
designate a forced pivot. However, such
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tlexibility is not available in many other
common linear algebra software packages, so
the following approach should be used with
these. Partition the candidate matrix A' into
A which contains the vectors which must be
se~ected,and Az,which contains the remaining
vectOrs. Orthogonalize the vectors of A2 with
respect to each of those of AI' An
orthogonalized vector, a,', is formed when a, is
orthogonalized with respect to vector 3.r as
follows:

aj' - aj -
ai (ai T aj )

(ai T ai )

(7)

.
I

where superscript T designates transpose, and
ala, is the scalar product of 3j and a,.

When the orthogonalization is completed, the
two subspaces, AI and A~ will be orthogonal.
The new candidate matrix, [AlA;], can then be
column pruned as above, with the assurance
that all of the vectors of AI will be selected,
provided that they are themselves all linearly
independent, and have norms large enough to
pass the selection test.

2.4. Testing Completeness

Once a model has been column pruned, it
should be tested for completeness. This can
be done onlyby applyingthe model to another
sample of devices that have been exhaustively
tested, and checking the goodness of fit. The
first step in this process (for the kth device) is
to estimate the parameter vector, i', by fitting
the model to the test data:

~ _ (ATA)-lAT yk (8)

~
Next, the residuals of the fit may be computed:

y:k-yk-A~

The vector of residuals can be examined for
randomness and rms value. A model that is
complete should produce residuals that are
randomly distributed and whose rms value is

>:~~'~~':;id'-_.~.:Z~.~r~~~~~"bi:,-dt~;.

no greater than the rms measurement noise.
If the residuals are significantly larger than
this value, then the model can undergo further
improvement by the addition of more vectors.
It may only be possible to do this efficiently,
Le.,with a relatively small number of additional
vectors, by using additional averaging to reduce
the noise components in additional candidate
vectors. Ultimately, the decision to augment
the model is an economic one: if the residuals
are greater than the random noise but still
within the uncertainty limits that are desired for
the testing process, then the addition of more
vectors may not be considered worth the
additional effort.

The completeness of a model can and should
also be checked on-line to assure that it tracks
possible changes in the manufacturing process.
As described in [1], the procedure is very
similar to that just outlined, but only
measurement data at the selected test points
is used.

1.0

0.5

0.0

(9)

o 2000 '1000 6000 8000

Fig.4. Four empiricalvectorsused in the model
for the AID converter example. The vertical
scale is LSB's and the horizontal scale is test
codes.

3. Example

In [1], an example was given of tests made on
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a set of 13-bit AID converters, using testing
strategies based on a model having the form
given in Eq. 1. The model used for these
converters consists of 18 column vectors of 213
elements each. The first 14 vectors are a priori
and include the Rademacher functions (fig. 2)
corresponding to an offset term and the 13 bit
errors. The remaining four vectors were
obtained empirically from test data taken on
a representative set of 50 devices. Fig. 4 shows
these vectors after they have been
orthogonalized with respect to the preceding 14
as described in the "Orthogonalizing" section.
It can be seen that the first three vectors
include substantial structure as well as some
measurement noise. In this case the
measurement noise had an rms value of 0.021
least significant bits (LSB's). The plot in fig. 5
is of the normalized rms values, m-Yz.cjjla, of the
15th through the 22nd candidate' empirical
vectors. (One vector beyond that designated
by the cutoff criterion of Eq. 6 was included in
this model but the effect of this single addition
is negligible.)

Fig. 6 presents the test results obtained when
the model was used to predict, from a small
number (64) of measurements, the largest
integral nonlinearity (INL) for each of 77
additional devices. The figure shows a
histogram of predicted values vs. measured
INL

4. Conclusions

It can be shown that there is always a linear
model of the form given in Eq. 1 that will be
complete for a given device and candidate test
space; however, there is no guarantee that the
model will be efficient. To be efficient, the
number of parameters, n, should be smallwith
respect to the number of candidate test points,
m. Sometimes, lack of efficiencyis simplydue
to the fact that there are a large number of
independent parameters underlying the
-~ }'~--+-O,..."nnrnrp.~~- thp. modeler usuallv
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14 15 16 17 18 19 20 21 22
CandidateVector

Fig. 5. Plot of nonnalized ''r''values, m-\ia,
for candidate vectors 14-22. The 14th vectoris
the 14th Rademacher function; the remaining
vectors are empiricaL
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Fig. 6. Test results for the A/D converter
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between the measured and predicted maximum~;,;
INL for 77 devices tested. The predictedIl'fL_
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