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A recent article �Van de Wiele et al., IEEE Trans. Magn. 43, 2917 �2007�� presents a semianalytical
method to solve the Landau–Lifshitz �LL� equation. Spin motion is computed analytically as
precession about the effective field H, where H is assumed fixed over the time step. However, the
exchange field dominates at short range and varies at the time scale of neighbor spin precessions,
undermining the fixed field assumption. We present an axis corrected version of this algorithm. We
add a scalar multiple of m to H �preserving torque and hence the LL solution� to produce a more
stable precession axis parallel to the cross product of the torques m�H at two closely spaced time
steps. We build a predictor-corrector solver on this foundation. The second order convergence of the
solver enables calculation of adjustable time steps to meet a desired error magnitude.
�DOI: 10.1063/1.2838461�

I. INTRODUCTION

At the heart of many micromagnetic simulation tasks is
the computation of magnetization dynamics via numerical
integration of the Landau–Lifshitz equation,

dm

dt
=

�

1 + �2m � H −
��

1 + �2m � H � m , �1�

where �=−221 kHz / �A /m� is the gyromagnetic constant, �
is a dimensionless phenomenological damping parameter, m
is a unit vector in the magnetization direction, and H is the
effective field representing the effect of all energies included
in the simulation. Solution schemes of increased efficiency
are sought to permit simulations of larger objects over longer
time intervals.

Some properties of Eq. �1� are noteworthy. Magnetiza-
tion trajectories that solve the equation are norm preserving.
The equation computes varying magnetization direction with
time, while the magnetization magnitude remains fixed.
Also, the change in magnetization direction m in response to
the effective field H is entirely a function of m�H. That is,
the trajectory is determined by the torque, not by the field
itself. Consequently, so long as we preserve torque, we are
free to modify the value of H as needed to pursue other
goals. Finally, we note that each of the two terms of Eq. �1�
can be described by its effect on the trajectory. When the
damping parameter � is near zero, the influence of the damp-
ing term fades and the precession term dominates.

Many general numerical integration algorithms are not
tailored to computing norm-preserving trajectories. When
these algorithms are applied to Eq. �1� in micromagnetic
simulation work, it is common practice to augment them
with renormalization from time to time during the computa-

tion. Different renormalization schemes combined with vari-
ous numerical integration algorithms give rise to different
systematic computational errors.

Motivated by these factors, alternative numerical inte-
gration schemes have been proposed1–4 that directly account
for the norm-preserving nature of Eq. �1�. Some of these
schemes take simulation steps made up of rotations rather
than straight-line increments. Such schemes are expected to
better track trajectories when precession dominates, offering
the hope of acceptably accurate results even when employing
larger time steps. The result is increased simulation effi-
ciency. In this paper, we examine the scheme of Ref. 1 and
offer improvements to it.

II. ANALYSIS

The fast semianalytical scheme presented in Ref. 1 be-
gins with the observation that so long as H remains fixed, the
trajectory of m can be computed analytically. Because H is a
function of m, we cannot expect it to truly remain fixed, but
so long as time steps are kept small enough, the error created
by this approximation can be kept acceptably low. For a
typical simulation, it was reported that compared to solver
schemes such as the Euler and Heun methods, full trajectory
simulations to equilibrium could be completed using longer
time steps, and consequently fewer total calculations.

In simulations where exchange energy plays a leading
role, we expect the assumptions of the semianalytical scheme
to be undermined. With a significant portion of H arising
from the other spins in the simulation, and each of those
spins also in motion, we expect an assumption of fixed H
over a time step to become invalid for shorter time steps. To
illustrate this effect, we simulated a two-spin system with
exchange energy as the only contributor to H. Permalloy
parameters �exchange energy constant A=13 nJ /m, magne-
tization magnitude M =800 kA /m, and �=0.01� and spins a
distance �=5 nm apart were assumed. The initial spin direc-a�Electronic mail: donald.porter@nist.gov.

JOURNAL OF APPLIED PHYSICS 103, 07D920 �2008�

0021-8979/2008/103�7�/07D920/3/$23.00 103, 07D920-1

Downloaded 15 Apr 2008 to 129.6.88.51. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.2838461
http://dx.doi.org/10.1063/1.2838461
http://dx.doi.org/10.1063/1.2838461


tions were oriented 20° apart. We find that the simple single
step semianalytic scheme1 fails to converge with time steps
of 0.2 ps or longer.

For this simple two-spin, exchange-only system, we can
analytically demonstrate an alternative scheme that performs
better. The exchange field at spin 1 H1 due to the magneti-
zation of spin 2 m2 is conventionally expressed as

H1 =
2A

�0M�2m2. �2�

Recall that the dynamics of spin 1 are determined only by the
torque m1�H1, however. This means we may add any scalar
multiple of m1 to H1 without changing the dynamics. With
this in mind, let

H̃ = H1 = H2 =
2A

�0M�2 �m1 + m2� , �3�

and we see that both spins in the system may have their
dynamics computed as in response to a common field value.
We may further examine how a common field value defined
in this manner evolves in time.

dH̃

dt
=

2A

�0M�2�dm1

dt
+

dm2

dt
� �4�

=
4A2����

��0M�2�2 sin���tan��

2
�m1 + m2

2
, �5�

where � is the angle between m1 and m2. The derivation
comes from substituting Eq. �1� for the dm /dt terms. Note

that both H̃ and dH̃ /dt are in the direction of m1+m2, so we

conclude the value H̃ increases in magnitude, but has fixed
direction. Its maximum value is reached as � reaches 0, cor-
responding to a maximum precession frequency of

fmax =
2A���

��0M�2 . �6�

Computing dynamics according to the common field

value H̃ more closely fulfills the fixed field assumption and
permits larger time steps without divergence, or loss of ac-
curacy beyond specified bounds. In effect, we have replaced
the effective field with a different one directed along a cor-
rected axis, for which the efficiency gains are greater. We
find that when we apply our axis-corrected semianalytic
scheme to our example problem, solutions continue to con-
verge to the proper equilibrium state for time steps up to
6 ps, a significant increase over the 0.2 ps achieved by the
uncorrected scheme.

For other two-spin simulations with other energies in
addition to exchange, such a common field value does not
arise, but the same strategy of adding a scalar multiple of m
to H to get an effective field that changes direction less rap-
idly is still effective. At each time step, we are computing the
torque m�H. Given the value of m�H at time t=−� and at
time t=0, an axis is determined by

a = �m � H��− �� � �m � H��0� . �7�

At t=0, we add the appropriate scalar multiple of m to the

effective field H to produce a corrected H̃ that is parallel to
that axis. That is, we solve

H̃ = �H + 	m��0� = 
a �8�

for suitable scalar values of 	 and 
. Consider the inner
product

H̃ · �m � H � m� . �9�

Make the substitutions H̃=H+	m and H̃=
a in turn, sim-
plify, and compare to see that

H · �m � H � m� = 
a · �m � H � m� . �10�

Solving for 
,


 =
H · �m � H � m�
a · �m � H � m�

, �11�

we have all we need to determine 	 and H̃. The analytic LL

solution assuming the fixed value H̃ over the next time inter-
val then yields the value of m at time t=�. When we employ
this scheme to the exchange only case, we compute the com-

mon H̃ field detailed above. This strategy applies when other
energies are represented as well.

III. PREDICTOR-CORRECTOR SOLVERS

In Ref. 1, the semianalytic step was used as a foundation
to construct a predictor-corrector solver. The axis-corrected
semianalytic scheme also supports a predictor-corrector ex-
tension. To determine the effectiveness of our axis correc-
tion, we simulated a two-spin system with exchange, demag-
netization, and cubic anisotropy energies. First, we used
several runs of a 5�4� Runge–Kutta–Fehlberg solver5 at vari-
ous time steps to compute a converged base-line solution
over a 10 ps interval. Then, the predictor-corrector solver
from Ref. 1 and our axis corrected predictor-corrector solver
were used to compute solutions over the same interval using
a variety of time steps for both. The error at t=10 ps relative
to the base-line solution was taken as a figure of merit. Fig-
ure 1 displays the results. The axis-corrected solver yields
about an order of magnitude less error compared to the ref-

FIG. 1. �Color online� Comparison of relative error vs time step length for
the original semianalytic predictor-corrector solver and the proposed axis-
corrected alternative.
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erenced predictor-corrector scheme. Equivalently, the axis-
corrected solver achieves the same magnitude of error with
three times larger time steps.

IV. ADJUSTABLE TIME STEP SOLVERS

Figure 1 clearly demonstrates that both solution algo-
rithms exhibit second order convergence. This means they
are suitable foundations for the construction of adjustable
time step algorithms that dynamically grow and shrink the
time step duration to keep the overall calculation within a
desired error magnitude.

Figure 2 illustrates the results of the adjustable time step
solvers based on the two predictor-corrector solvers. Again, a
two-spin system is simulated, this time with exchange, de-
magnetization, cubic anisotropy, and Zeeman energies in the
simulation. The x and y components of m for one of the spins
are displayed, showing its precession and approach to con-

vergence to an equilibrium direction after 5 ns of simulated
time. The same system was simulated using the Runge–
Kutta–Fehlberg solver with a fixed time step of 1 fs to pro-
duce a base-line solution. In Fig. 2, both solvers compute
results with errors less than 2�10−6 relative to the base-line
solution. However, the required time steps to achieve that
error level are quite distinct.

Note that the time step duration as a function of time for
the original semianalytic predictor-corrector solver is dis-
played with a magnification of 100 times. In this case, the
time step adjustments never produce a time step even as long
as 2 fs. In contrast, the time step adjustments applied to the
axis-corrected version of the semianalytic predictor-corrector
solver are able to reach time steps of more than 200 fs by the
end of the 5 ns simulation interval, and the time steps appear
to still be lengthening at that point.

Because the axis corrected solver over time takes longer
and longer time steps while maintaining the same error level,
it is able to achieve the same computational results with
thirty times fewer calculations.

V. SUMMARY

In this article, three new developments have been pre-
sented. First, we have described an axis correction that im-
proves on a previously published Landau–Lifshitz solution
technique and demonstrated its benefits. Second, we have
analyzed the convergence of these solution techniques and
demonstrated that they exhibit second order convergence.
Third, we have taken advantage of the second order conver-
gence property of these solution techniques to implement
adjustable time step algorithms that permit even more strik-
ing demonstration of the advantage of axis correction.
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FIG. 2. �Color online� Comparison of effectiveness of adjustable time step
determination applied to the original semi-analytic predictor-corrector solver
and to the proposed axis-corrected alternative. Magnetization components
mx and my as a function of time are plotted against the scale on the left. Time
step lengths as a function of time are plotted against the scale on the right.
Note the scaling of the third curve for sake of visibility makes values appear
100 times greater than they are.
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