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ABSTRACT

Recent research has shown that while many complex net-
works follow a power-law distribution for their node degrees,
it is not sufficient to model these networks based only on their
degree distribution. In order to better distinguish between
these networks, the metric s was introduced to measure how
interconnected the hub nodes are in a network.

We examine the effectiveness of creating network mod-
els based on this metric. Through a series of computational
experiments, we compare how well a set of common struc-
tural network metrics are preserved between instances of
the autonomous system Internet topology and a series of
random models with identical degree sequences and similar
s values. We demonstrate that creating models based on the
s metric can produce moderate improvement in structural
characteristics over strictly using degree distribution. Our
results also indicate that some interesting relationships exist
between the s metric and the various structural metrics.

1 INTRODUCTION

A type of data of increasing importance in various areas of
research is one that is based not on floating point values but
rather on connections between objects that can be modeled
as massive graphs or networks. Creating realistic models of
these systems is necessary to understanding the interactions
involved.

Unfortunately many real world systems cannot be ap-
proximated using simple random graphs. The reason is that
the degree distribution of an Erdős-Rényi random graph
follows a Poisson distribution. The number of edges con-
nected to a node is called the degree of the node and the set
of all the degrees in a graph is called its degree distribution.
For many complex systems however, it has been shown
(Barabási and Albert 1999) that the degree distribution of
the resulting networks follows a power law distribution. In
other words, the probability that a node has k adjacent edges
is P(k)∼ k−α for some α > 1. This distribution in a graph

produces a few nodes with very high degree (often called
hub nodes) and a large number of low degree nodes. An
example of this type of distribution is seen in Figure 1.

The importance of networks having power law distri-
butions lies in the number of application areas in which
they are found. These networks have been shown to arise
naturally in systems of both biological (Watts and Strogatz
1998, Jeong et al. 2000, Williams and Martinez 2000) and
social (Amaral et al. 2000) interactions. They also appear
in many engineered systems such as the power grid (Watts
and Strogatz 1998), the Internet (Faloutsos, Faloutsos, and
Faloutsos 1999), and software components (Potanin et al.
2005). Thus, realistic models of these type of interactions
need to reflect their power law distribution.

Figure 1: This figure shows a spanning tree of a subset of
the autonomous system domain of the Internet. This is an
example of a power law like degree distribution with a few
high degree nodes and many nodes of degree 1 or 2.

However, even generating random graphs using power
law distributions is still not sufficient to model real net-
works. Informally, the reason for this discrepancy is that
for any given degree sequence there can be a large number
of non-isomorphic graphs that share that particular degree
sequence. Thus we can expect to see a large variability in the
characteristics of the graphs that share a degree sequence.
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In order to address the problem of distinguishing graphs
with the same degree sequence, Newman (2002) introduced
the concept of the assortative mixing of a graph. Assortative
mixing is a measure of the preference for high degree nodes
in network to attach to other high degrees nodes. The
importance of this measure is based on two observations:
one, that in many real networks there is a high affinity for high
degree nodes to connect to each other and two, differences
in the amount of assortative mixing can substantially affect
the characteristics of these networks.

This idea of measuring how the nodes of high degree
are connected to each other was further developed by Li
et al. (2005). In their paper, they introduce the s metric as an
alternative for measuring the connectedness of high degree
nodes. The advantages of their metric is that it is simple
to compute and it has been shown to be able to distinguish
between many graphs with identical degree sequences. We
will give a precise definition of the s metric later in the
paper.

The purpose of this paper is to examine how well
random networks generated with a given s value are able
to model the structural characteristics of real networks.
We performed a set of experiments by taking an actual
network, the topology from the autonomous system (AS)
domain of the Internet, and measuring if random graphs with
identical degree sequences and similar s values maintain
similar structural characteristics. Our conclusion is that the
models produced using the s metric are superior to those
using simple uniform sampling of graphs with the same
degree sequence. While in most cases, the improvement
was modest, the s metric seems to be an important first step
towards understanding how the structure of these networks
affects their capabilities. We first define the s metric and
explain the methodology of our experiments. We then show
how well a series of structural metrics were preserved using
these modeling constraints.

2 DEFINITIONS AND EXPERIMENTAL SETUP

2.1 The s metric

The s metric was proposed by Li et al. (2005) as a measure
of interconnectedness between the hub nodes of a network.
They showed that this metric is able to distinguish between
many graphs with identical power law distributions. Before
giving a definition of the s metric, we must first define
some notation. A graph G = (N,E) has a node set N and
an edge set E. To show that an edge set E (or a node set
N) belongs to a graph G, we write E(G) (or N(G)). The
degree sequence of G is defined as ω = {ω1,ω2, ...,ω|N|}
where the degree of ni ∈ N(G) is ωi. To show that a degree
sequence ω belongs to a graph G, we write ω(G). The set
of all simple connected graphs with the degree sequence ω

is represented as G (ω). The definition of the s metric for
a graph G is

s(G) = ∑
(i, j)∈E(G)

ωi ·ω j

In Figure 2, we see an example of how the structure
of the hub nodes affects the s value of a graph.

(a) s value is 70 (b) s value is 79

Figure 2: This example shows two graphs with identical
degree sequences but with differing s values. This illustrates
that the more connected the hub nodes (in this case, the
filled red nodes in the graphs) of a network are to each
other, the greater the s value will be.

The S metric was also introduced by Li et al. (2005)
as a normalization factor to the s metric. This is defined by

S(G) =
s(G)

smax (ω(G))

where smax(ω)= max{s(G)|G∈G (ω)}. This normalization
factor allows us to compare networks with differing degree
sequences. Otherwise, the s metric can only be profitably
used to compare networks with identical degree sequences.

For the purposes of this paper we will ignore the S metric
and concentrate only on the s metric. This simplification
is for two reasons: first all the graphs we are comparing
have identical degree sequences and so no normalization
is needed, and second the computation of the smax value
is nontrivial for larger degree sequences. The measured s
values for the different AS instances is given in Table 4(a).

2.2 Methodology

Our study is a set of computational experiments involving
the degree sequences of three different instances of the AS
topology. These three instances are approximately spaced
two years apart at the dates January 1, 2004, November
25, 2005, and November 15, 2007. The data for the AS
topology we used came from the UCLA Internet topology
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collection (UCLA 2008). The size of the instances is shown
in Table 3(a).

Using each instance of the AS topology, we generated
three separate sets of graphs each having identical degree
sequences as the AS topology. The size of all of the sets
generated is given in Table 3(b).

AS Topology Num. Nodes Num. Edges
01/01/2004 16573 39143
11/25/2005 24567 103655
11/15/2007 32821 169106

(a) Size of AS instances

Num. Graphs
01/01/2004 uniform 200

01/01/2004 s spectrum 127
01/01/2004 s model 51
11/25/2005 uniform 819

11/25/2005 s spectrum 167
11/25/2005 s model 50
11/15/2007 uniform 180

11/15/2007 s spectrum 163
11/15/2007 s model 34

(b) Number of graphs in sets

Figure 3: Description of the data sets

The first set (designated as the uniform set) contains
random graphs sampled with an almost uniform probability
distribution. We generated these graphs using the sequential
importance sampling method from Blitzstein and Diaconis
(2006). The program we used is a rewrite of code originally
developed by Blitzstein (2007) for generating connected
random graphs with a prescribed degree sequence. In order
to generate larger networks, we needed to increase the speed
of this program. For our version, we converted the original
code from the language R to C++ and included various
optimizations.

The second set (designated as the s spectrum set) con-
tains random graphs selected to cover a spectrum of s values
and the third set (designated as the s model set) has ran-
dom graphs generated to approximate the s value of the
AS instance. In order to generate a random model with
an approximate s value, we used a random walk over the
space of connected graphs with identical degree sequences.
A detailed discussion on the algorithms used in the con-
struction of these two sets in given in Beichl and Cloteaux
(2008). The mean s values of generated graphs is shown
in Table 4(b).

3 METRIC COMPARISON

For our investigation we examine how well four structural
metrics are preserved by graphs with the same degree se-
quence and similar s values. The choice of three of the

AS Topology s Value
01/01/2004 3.104e+08
11/25/2005 2.329e+09
11/15/2007 6.230e+09
(a) s value for AS instances

Mean Std Dev.
01/01/2004 uniform 5.856e+08 1.062e+06
01/01/2004 s model 3.108e+08 5.166e+05
11/25/2005 uniform 3.778e+09 6.609e+06
11/25/2005 s model 2.302e+09 2.433e+06
11/15/2007 uniform 9.676e+09 1.257e+07
11/15/2007 s model 6.233e+09 6.266e+06

(b) Mean s value for the generated sets

Figure 4: s values of the data sets

metrics comes from the list of common network metrics
mentioned by Tangmunarunkit et al. (2002). The fourth
metric, number of spanning trees, comes from our own
investigations into network reliability. We give a short
description of each of the metrics and the results of our
comparisons.

3.1 Diameter

The diameter of a graph G is the maximum length of all the
shortest paths between any two nodes in G. Diameter is a
rough measure of the expected size of paths in a network,
since the diameter must be at least as large as the mean
path distance. In other words, the smaller the diameter of
a network, the smaller we expect the length of the path
between any two nodes in the network to be. The diameters
for the AS instances and the set means are given in Figure
5.

AS Topology Diameter
01/01/2004 10
11/25/2005 8
11/15/2007 9

(a) Diameter of the AS instances

Mean Std Dev.
01/01/2004 uniform 14.2 1.44
01/01/2004 s model 12.1 0.88
11/25/2005 uniform 10.4 0.66
11/25/2005 s model 9.8 0.76
11/15/2007 uniform 9.8 0.68
11/15/2007 s model 9.1 0.70

(b) Mean diameter for the generated sets

Figure 5: Diameters of the data sets
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In Figures 6, 7, 8, we see a comparison of the diameters
for the set of graphs over the spectrum of s values. Examining
these graphs, it appears that mean diameter is correlated
to the s value with the diameter spiking upward after we
reach the random mean. While we are unsure of the precise
mechanism for this dependence, we can get an intuitive
feel for why this result seems reasonable by observing that
as the s value approaches smax, the hub nodes are forced
to completely connect to each other. As this happens, it
forces nodes whose degree are in the tail of the distribution
to connect with one another. This tends to produce long
‘strands’ in the network that can greatly increase its diameter.

Figure 6: Diameters of the 01/01/2004 degree sequence

3.2 Biconnected components

A biconnected component B ⊆ E(G) in a graph G is a
maximal set of edges such that any two edges in the set are
on some cycle in B. Since for any node in a biconnected
component with size greater than one to be disconnected
requires cutting at least two edges in the network, the number
of biconnected components is a measure of how much edge
redundancy a graph has. Generally, the smaller the number
of biconnected components, the greater the number of paths
between nodes in the network.

Computing the number of biconnected components can
be accomplished in time linear to the number of edges
in the graphs (Tarjan 1972). The number of biconnected
components for the AS instances and the set means is given
in Figure 9.

The results of our comparisons of the number of bi-
connected components over the s spectrum (Figures 10, 11,
and 12) show that the s metric does a better job of modeling
the biconnectivity of the AS topologies than simple random

Figure 7: Diameters of the 11/25/2005 degree sequence

graphs. With regards the shape of the graph, we can note
that diameter and the number of biconnected components
are not uncorrelated. As the diameter increases, we start
to see more bridges or edges that disconnect the graph if
removed. Obviously, no biconnected component with more
than one edge can contain a bridge, and thus we would
expect the number of biconnected components to increase
also.

We also notice that we see an ‘elbow’ in the graphs
produced at the point of the random graph set’s mean value.
The fact that we consistently see this feature in the all
graphs that we produced over all the different metrics seems
remarkable. We do not have a complete understanding of
this feature, and it remains an active area of our research.

3.3 Node cover

The minimum node cover of a graph G is a minimum set
of nodes NC(G) such that every edge in G is adjacent to at
least one node in this set. The size of the minimum node
cover is a measure of compactness of the network. We can
think of this metric as measuring the smallest number of
nodes we would need to monitor in a network to ensure the
reliability of all the connections.

While the problem of finding a minimum node cover
is NP-hard (Garey and Johnson 1990), there are efficient
strategies for solving many specific instances. In particular,
we used the kernelization techniques of Abu-Khzam et al.
(2004) in order to simplify the problem. The idea of
kernelization algorithms is to simplify the graph G to produce
a smaller G′ called the kernel of G. A constant k is also
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Figure 8: Diameters of the 11/15/2007 degree sequence

given such that

|NC(G)| = |NC(G′)|+ k

In most of the graphs we examined, the resulting kernel
graph was trivial to solve for its smallest node cover exactly.
In many instances the resulting kernel was under 20 nodes
and in some cases it was even empty. Thus, for almost
all instances, we are able to compute exact values for this
metric. The minimum node cover for the AS instances and
the mean for the sets is given in Figure 13.

In Figures 14, 15, and 16, we see the behavior of the
minimum node cover over the s spectrum. For some graphs
with very large s values, the resulting kernel was too large
for simple brute force computation. In those instances, as
shown in the figures, we instead computed error bounds on
the minimum node cover. The upper bound was created by
minimizing the node cover using threshold acceptance. We
derive a lower bound on the node cover using a well-known
approximation algorithm to the problem that is guaranteed to
produce a result that is never more than twice the minimum
node cover (Vazirani 2001). We conjecture that the true
minimum value for the graphs in those instances is actually
much closer to the top of the error bars than the bottom.

The results of our comparisons of the minimum node
cover over the s spectrum show that the s metric does improve
over the uniform sampled graphs in modeling the minimum
node cover of the AS topologies, but still does a poor job
in the overall result. These real networks have much lower
values than any network we were able to generate. Out of all
the metrics we compared, this metric had by far the largest
difference between the real networks and the generated

AS Topology Biconnected Components
01/01/2004 5441
11/25/2005 3789
11/15/2007 4363

(a) Number of biconnected components for AS instances

Mean Std Dev.
01/01/2004 uniform 6627.0 34.2
01/01/2004 s model 6169.5 30.8
11/25/2005 uniform 4059.6 20.2
11/25/2005 s model 3971.2 16.2
11/15/2007 uniform 4552.9 16.5
11/15/2007 s model 4497.7 15.4

(b) Mean number of biconnected components for generated
sets

Figure 9: Number of biconnected components for the data
sets

models. Thus, the s metric does not seem to capture very
well this particular notion of network compactness, but
precisely why this happens is still unclear to us.

3.4 Spanning trees

A spanning tree in a graph is a set of edges such that
each node is connected and there is no cycle in the edges.
The number of spanning trees in a graph can be used as a
measure of reliability. The reason is because, in general,
as the number of spanning trees increases, the number of
edges that need to be cut to disconnect the graph (or the
cut set) also increases.

In order to efficiently count the number of spanning
trees in a network, we have developed a Monte Carlo method
based on sequential importance sampling. Our algorithm
allows us to estimate the number of spanning trees of a graph
along with all sub-forests with k edges for each k. While
there does exist a polynomial time method for counting all
spanning trees of a graph (for example, see chapter 1 of
Jerrum (2003)), since it involves taking the determinant of
the Laplacian matrix of a network it becomes impractical
for the sizes of networks we are measuring. The estimated
number of spanning trees for the AS instances and the mean
for the sets is given in Figure 17.

When examining the graphs for the number of spanning
trees in Figures 18, 19, and 20, we see a familiar pattern
of the s models for the AS topology producing slightly
better results than the simple random mean. We also see
that the number of spanning trees rapidly decreases as we
approach smax. Again, we do not give a formal argument
for this behavior, but we can try to explain it intuitively
by relating it to the increase in biconnected components.
As the number of biconnected components increase, the
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Figure 10: Number of biconnected components for the
01/01/2004 degree sequence

overall number of paths between the various nodes in the
networks decrease. Since each spanning tree must contain
a path between any two nodes, then the number of choices
of edge combinations for constructing these spanning tree
must decrease as well. We can also think about this relation
as a result of the hub nodes all starting to become completely
connected to each other. As this occurs, if we select n−1
edges at random from the graph, the probability that we
have selected a spanning tree is lower than if all the nodes
in the network are equally connected.

4 CONCLUSIONS

We started this investigation wanting to find better methods
for creating better models of networks having power law
distributions. Constraining the s metric of Li et al. (2005)
has shown some promise in this regard. Using this metric,
we were able to produce models with moderately better
structural characteristics than uniformly selected random
models. Where there are large differences between s metric
generated graphs and real networks (such as the minimum
node cover values), it has demonstrated that constraining
the s value may be necessary for realistic modeling of these
networks, but it is not sufficient. This has opened new lines of
investigation into determining why these differences occur.

We also saw some unexpected outcomes in our experi-
ments. In particular, we are continuing to try to understand
the ‘elbow’ in the various graphs where the random mean ex-
ists. This has lead to us working on theoretical justifications
for the shape of these graphs.

Figure 11: Number of biconnected components for the
11/25/2005 degree sequence

Figure 12: Number of biconnected components for the
11/15/2007 degree sequence
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AS Topology Min. Node Cover
01/01/2004 2465
11/25/2005 4898
11/15/2007 7058

(a) Minimum node cover for AS instances

Mean Std Dev.
01/01/2004 uniform 4932.0 29.7
01/01/2004 s model 4137.6 28.3
11/25/2005 uniform 8016.1 39.1
11/25/2005 s model 7018.4 38.0
11/15/2007 uniform 11045.0 41.9
11/15/2007 s model 9898.8 42.5
(b) Mean minimum node cover for generated sets

Figure 13: Minimum node covers of the data sets

Figure 14: Minimum node covers for the 01/01/2004 degree
sequence

Figure 15: Minimum node covers for the 11/25/2005 degree
sequence

Figure 16: Minimum node covers for the 11/15/2007 degree
sequence
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AS Topology Log Num Spanning Trees
01/01/2004 8511.52
11/25/2005 21192.2
11/15/2007 32205.7

(a) Natural log of the estimated number of spanning trees
for the AS instances

Log Aver.
01/01/2004 uniform 7768.5
01/01/2004 s model 7825.6
11/25/2005 uniform 20909.2
11/25/2005 s model 20943.5
11/15/2007 uniform 31292.4
11/15/2007 s model 31867.7

(b) Natural log of the means of the estimated
number of spanning trees for the generated sets

Figure 17: Natural logarithm of the estimated number of
spanning trees for the data sets

Figure 18: Log of estimated number of spanning trees for
the 01/01/2004 degree sequence

Figure 19: Log of estimated number of spanning trees for
the 11/25/2005 degree sequence

Figure 20: Log of estimated number of spanning trees for
the 11/15/2007 degree sequence
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Our conclusion on the s metric is that it is an important
step to being able to quantify the structure of networks
with power law distributions. Using this metric, there is a
modest increase in model accuracy. An example application
of this research is that we are currently looking to use these
models to produce better simulations of the Border Gateway
Protocol (BGP) routing systems of the Internet (Sriram et al.
2006). More importantly, understanding the relationship the
s metric has to other structural metrics seems necessary to
understanding how to create better methods for network
characterization.
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