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Grain size distribution in two dimensions in the long time limit
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Abstract

It is shown that the inclusion of a ‘‘noise” term in the growth rate of individual grains leads to a stochastic model that provides a more
realistic description of grain growth phenomenon. The resulting Fokker–Planck equation for the grain size distribution is solved numer-
ically due to the difficulties in obtaining an analytical solution. The analysis is limited to two dimensions and assumes quasi-stationary
distributions in the long time limit. The resulting grain size distribution is shown to be in agreement with that obtained from computer
simulations, indicating the validity of the stochastic approach.
Published by Elsevier Ltd on behalf of Acta Materialia Inc.
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1. Introduction

Grains grow during the evolution of grain microstruc-
ture after recrystallization results in an increase in average
grain size by the motion of grain boundaries and the grad-
ual disappearance of smallest grains. Due to the complexity
of the structure of individual grains and the participation
of a large number of grain boundaries in the process, devel-
oping a realistic model of grain growth is a formidable
challenge; many conceptual and mathematical simplifica-
tions have to be made. Simplification is possible by consid-
ering grain growth in two dimensions (thin films) only. This
is due to the von Neumann law [1] whose applicability to
grain growth was proved in two dimensions by Mullins
[2]. For this reason, the present discussion will be confined
to two dimensions. (It should however be noted that an
extension of the present work to three-dimensional grain
growth is now possible due to the pioneering work of
Glicksman [3,4] and MacPherson and Srolovitz [5]. In fact,
the resulting equations for grain size distribution are clo-
sely related. In the three-dimensional case it is specimen
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volume that is conserved instead of area, and the resulting
equations for grain size distributions are similar though not
identical. A modified version of the technique presented
below could be used for the three-dimensional case also.
However, we find that the equations connecting various
constants are much more complicated in the three-dimen-
sional case and require more detailed analysis. We will
therefore confine our analysis to the two-dimensional case
only.)

Using the concept put forth by von Neumann [1],
Mullins [2] showed that the rate of change of the area of
an individual grain, dA/dt, growing under the influence of
its curvature-driven motion is given by the expression:

dA
dt
¼ Mðn� 6Þ; ð1Þ

where n is the number of sides of the grain and M is a con-
stant. This equation appears to be completely deterministic
because it specifies the exact areal growth rate of a grain in
terms of n. In principle, the areal growth rate can be used
to determine the grain size distribution F(R, t) as function
of the grain size R at time t. However, Eq. (1) contains two
variables, A (or R, with A / R2) and n, which are both gen-
erally functions of time. If n is uniquely determined by R, a
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deterministic expression for dR/dt can be obtained. Exper-
imentally, and in simulations, this is found to be not true,
which has important implications that will be discussed
below.

The first attempt to relate R and n was made by Hillert
[6] who gave a comprehensive and consistent theoretical
treatment of grain growth in both two and three dimen-
sions. Using heuristic arguments he showed that:

n ¼ k1 þ k2

R
�R
; ð2Þ

where �R is the mean grain size, defined in terms of the dis-
tribution function as

�RðtÞ ¼
R1

0
RF ðR; tÞdRR1

0
F ðR; tÞdR

ð3Þ

and k1 and k2 are constants. This linear correlation be-
tween n and R is discussed further by Rivier and Lissowski
[7] and was also first observed in simulations of two-dimen-
sional grain growth by Fradkov et al. [8] using an approach
that allowed variation of the unknown rates of topological
switching events. It is also supported from some experi-
mental evidence [9].

Eq. (2) leads to an equation for dR/dt as

dR
dt
¼ � a

R
� b

R

� �
ð4aÞ

and for F(R, t) as:

oF ðR; tÞ
ot

¼ o

oR
a
R
� b

�R

� �
F ðR; tÞ

� �
; ð4bÞ

where a and b are constants. Eq. (4a) was first obtained by
Hillert. Starting from von Neumann’s law (Eq. (1)), he as-
sumed that A�R2 and n�R, which leads to Eq. (4a) di-
rectly. The relation between n and R was put on firm
mathematical grounds by Rios and Glicksman [10] using
topological considerations. They show that this relation is
indeed true within a few per cent. We have generalized
the Hillert equation by using the two constants a and b, in-
stead of the values used by Hillert. Eq. (4a) is thus true for
the two-dimensional case only. Hillert, however, assumed
that it applies to the three-dimensional case also with some-
what different constants. Eq. (4a) thus has a sound mathe-
matical basis. The physics of this equation is somewhat less
clear. From the equation itself one gets that dR=dt is simply
proportional to the difference in curvatures of a sphere of
radius R and radius R. We prefer the topological interpre-
tation provided by Rios and Glicksman [10].

Predictions from these types of ‘‘mean field” models are
in serious disagreement with experiments. There have been
many attempts to improve or modify such models to bring
them in agreement with experiments. Mullins [11] sug-
gested a cubic relation between n and R instead of Eq.
(2), leading to a ‘‘mean field” model, which satisfies all nec-
essary constraints, including specimen size conservation.
He thus obtained a better agreement with experiments.
This presents a dilemma because Abbruzzese et al. [12]
have shown quite convincingly that the linear relation is
correct, at least approximately, on both experimental and
theoretical grounds. Also, Eq. (4) can now be derived on
first principles, at least approximately [3,4].

There is another problem of a more fundamental nature
with the type of continuity given in Eq. (4). Pande and
Rajagopal [13] have shown mathematically that grain
growth models based on a mean-field approach provide
no mechanism to explain many properties of grain growth
that are observed experimentally, no matter what form of
the growth rate is assumed. For example, they showed that
mean field models do not predict that the long time distri-
bution is independent of the initial distribution. Computa-
tionally, Battaile and Holm [14], for example, have shown
by using Monte Carlo simulations that the asymptotic self-
similar distribution does not depend on the initial distribu-
tion. Mean field models also provide no mechanism to
explain scaling of the distribution at large times (self-simi-
larity). As far as we are aware these conclusions have not
been challenged by anyone. Also, we are not aware of
any mathematical technique that can derive, even in princi-
ple, the independence of the long time distribution from the
initial distribution or the scaling property using ‘‘mean
field” techniques. In all the derivations of scaling behavior,
using ‘‘mean field” scaling is assumed as given. We have
also assumed scaling in our analysis here, but a stochastic
formulation can be used in principle to derive the scaling
property [13].

At this point one may be justified in asking if our state-
ment implies that the mathematical technique used in the
Lifshitz–Slyozov–Wagner (LSW) derivation is suspect,
since Hillert’s ‘‘mean field” derivation of grain size distri-
bution follows very closely the LSW method. In particle
coarsening, the LSW theory and other ‘‘mean field” theo-
ries predict, in general, that particles with identical size
should have the same rate of growth, regardless of their
location and environment in the microstructure. Except
for vanishingly small volume fraction, experimentally this
is found to be not correct. Experiments [15] clearly show
the presence of fluctuations, indicating that particles of
the same size exhibit different growth rates. Rogers et al.
[16] in their experiments found that some relatively large
particles shrank, and suggested that growth rates of indi-
vidual particles depend not only on their size, but also on
the details of their local environment.

Voorhees and Glicksman [17] first demonstrated by sim-
ulations the presence of fluctuations during phase coarsen-
ing. In fact, Glicksman et al. [18] and Wang et al. [19]
developed a stochastic analytic model of coarsening that
employed a Fokker–Planck equation to estimate the theo-
retical distributions in coarsening for finite volume frac-
tions. Based on these considerations, these researchers
concluded that ‘‘mean field” theories predict average
behavior of coarsening systems [18,19]. If local details need
to be included, then departure from mean field behavior
must be considered. Fluctuations occur in the growth rates
of particles at any nonzero volume fraction. Technically,
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LSW theory is thus valid only for zero volume fraction of
particles, and is thus a limit solution. In grain growth there
is no physical analog to the zero volume fraction case.
However, we will see that our solution approaches the Hill-
ert solution as a limiting case when the fluctuation term
approaches zero. In this sense our treatment unifies the
LSW treatment with stochastic analysis. LSW results are
then obtained from a limit solution of the stochastic model
without using the LSW mathematical apparatus. A need
for finite cut-off is thus avoided. We thus recover a LSW-
type result without using LSW methodology.

These ‘‘mean field” models introduce an upper cutoff
in the grain size distribution and a mathematical tech-
nique that uses ‘‘stability conditions” to obtain grain size
distribution function in the long time limit. It has been
argued that the LSW technique could lead to multiple
distributions [20]. However, some of these solutions can
be ruled out on physical grounds (see, however, Rios
et al. [21]). We would like to state that the LSW tech-
nique using cutoff and stability conditions is a perfectly
valid mathematical procedure for obtaining grain size
distribution in the mean field limit. Below we use an
alternate approach, i.e. a stochastic treatment [13,22],
which does not require an upper cutoff or ‘‘stability con-
ditions”. The following description will, we hope, shed
some light on the relation between the ‘‘mean field”

approach and our own approach, which attempts to
approximately take into account the problem of local
environment.

2. Stochastic effects in grain growth

The continuity equation, Eq. (4), yields a first-order par-
tial differential equation for the size distribution if the
growth rate function dR/dt is a single-valued function for
all grains of size R at time t. This was assumed by Hillert
in deriving Eq. (4). The rationale behind the use of this
deterministic growth rate expression is that it will describe
the statistical grain growth dynamics adequately if dR/dt is
an appropriate average growth rate for all grains of size R

in a given state of the system. However, specific grains hav-
ing the same R value at a given time will have different
shapes and possibly different values of n, so their growth
rates may vary. This fluctuation (or ‘‘noise”) in the dR/dt

function changes the mathematical character of Eq. (4)
significantly.

Pande [22] and Pande and Dantsker [23,24] have
attempted to develop a more rigorous theory of isothermal
grain growth capable of predicting all of the major attri-
butes of grain growth with minimal assumptions by treat-
ing it as a stochastic process. Mathematically, a
stochastic process in its simplest form is described by a
function of two variables, one of which is time, and
involves both a deterministic term and a random term. Spe-
cifically in this treatment the relation (2) is retained except
that it is regarded as a statistical relation and not an exact
one.
The stochastic continuity or Fokker–Planck equation in
this case is given by:

oF ðR; tÞ
ot

¼ o

oR
a
R
� b

�R

� �
F ðR; tÞ

� �
þ D

oF 2ðR; tÞ
oR2

; ð5aÞ

where a, b and D are arbitrary constants yet to be deter-
mined. On comparing with the mean field continuity Eq.
(4), it is seen that it has an additional term called the diffusion
term. The diffusion term cannot be removed by an averaging
procedure as suggested by Mullins [11] since the existence of
an averaged quantity (first moment) requires that the second
moment that corresponds to the diffusion term must also ex-
ist. The magnitude of the diffusion term could, however, be
small. This will be one of the issues discussed in this paper.
The justification for the use of Eq. (5a) is as follows.

Pande and Rajagopal [13] show that in order to describe
all the main features of grain growth, the distribution must
be described by a Fokker–Planck equation of the form:

oF
ot
¼ o

oR
½AðR; tÞF � þ o

oR2
½BðR; tÞF � ¼ 0; ð5bÞ

where, in general, both A and B are functions of R and t.
They have to be determined from the physics of grain
growth. We assume that A(R,t), which is –dR/dt, is given
by Eq. (4a). The term B(R, t) takes into account the role
of the local environment of a particular grain. Mathemat-
ically, Eq. (5b) is equivalent to a Langevin equation:

dR
dt
¼ AðR; tÞ þ ½2BðR; tÞ�1=2T ðtÞ; ð5cÞ

where A represents the deterministic or drift term and B is
the coefficient of the random or noise term T(t). The fluc-
tuation term T(t) in Eq. (5c) is assumed here to have prop-
erties similar to those in classical Langevin equation [25].

In random walk or Brownian motion, T(t) is denoted as
a Gaussian random variable with zero mean and having a
correlation function that is proportional to a Dirac delta
function dD(t). The physical picture embodied by Eq.
(5c) is that the random term in this Langevin-type equation
creates a tendency for the grain sizes (R values) to spread
out over an ever-broadening range of values. Simulta-
neously, the first (deterministic) term on the right-hand side
is akin to a damping (or amplification) term, which here
relates the areal growth rate to the instantaneous deviation
of the radius from its mean value. The ultimate size distri-
bution F(R, t) achieved during grain growth represents the
combined effect of these two tendencies, subject to appro-
priate global constraints such as constancy of total speci-
men size (mass conservation.) The function B is, in
general, a function of R and t. As a first approximation,
we assume that B is a constant and we denote it by D.

It is difficult to solve Eq. (5a) analytically. Our aim in
this paper is to solve it numerically in the long time limit,
and to compare the results with experiments and computer
simulations. For further details regarding the basis for
steps leading to Eq. (5c), see Refs. [22–24]. The constant
a is a material parameter that can in principle be deter-
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mined exactly as shown in Ref. [4]; in our treatment we
take it as an unknown parameter. The other two constants,
b and D, can be determined exactly in terms of the constant
a from boundary conditions as shown below. Hence, there
are no adjustable parameters in Eq. (5a) except for the
ratio a/D (see Section 6).

3. Solution in the long time limit

The continuity equation, Eq. (5a), can be recast as an
ordinary differential equation by imposing the experimental
observation of self-similarity of the grain size distribution at
long times (see Section 6 for further comments about self-
similarity). We assume that all grains sizes are accessible
and that the total area (mass) of the polycrystalline system
is conserved and finite. Appropriate boundary conditions
for the size distribution F(R, t) may thus be written as [22]:

F ð0; tÞ ¼ F ð1; tÞ ¼ 0: ð6Þ
The area (mass) conservation requirement can be expressed
in integral form as:

A ¼
Z 1

0

R2F ðR; tÞdR ¼ constant: ð7Þ

Eq. (5a) admits a family of exact similarity solutions of the
general form:

F ðR; tÞ ¼ tlf
R

2kt1=2

� �
; ð8Þ

where the dependence of F on the similarity variable
x ¼ R=2kt1=2 is commonly found in equations of this type
(e.g. in the Boltzmann transformation used in the analysis
of nonlinear diffusion problems [26]). The value of the expo-
nent l of the time-dependent prefactor in Eq. (8) can be deter-
mined from the second requirement given in Eq. (7), i.e.
specimen area conservation: substituting Eq. (8) in Eq. (7),
we find that l = �3/2. Finally, substituting Eq. (8) with
l = �3/2 in Eq. (5a), we obtain a time-independent ordinary
differential equation for f(x) which is given as Eq. (11) below.

Under this transformation the mean grain size �RðtÞ is
then given by:

�RðtÞ ¼ 2kt1=2�x; ð9Þ
where

�x ¼
R1

0
xf ðxÞdxR1

0
f ðxÞdx

: ð10Þ

The procedure described above is, in fact, common in
both coarsening and grain growth. The time-dependent
prefactor is, however, different in coarsening and grain
growth. For details see Ref. [13]; see also Ref. [27]. The
shape of the renormalized grain size distribution f ðxÞ and
its first moment �x are time invariant, but the scale factor
�RðtÞ increases as the square root of aging time.

By using Eq. (8), Eq. (5a) can be rewritten as:

D

k2
fxx þ

a

k2x
� b

k2�x

� �
fx þ 6� a

k2x2

� �
f ¼ 0: ð11Þ
As noted above, the constants k, D, a and b in the pre-
ceding equations are not independent. Relationships
among them can be determined so that only two parame-
ters appear in the scaled ordinary differential equation. It
is convenient to normalize the grain size distribution f ðxÞ
to have zeroth and first moments of unity; we also require
a finite second moment (independent of time) for mass con-
servation. The far-field behavior of a general solution to
Eq. (11) can be determined (see Ref. [28, p. 78], and Eqs.
(23) and (24) below) to consist of the sum of an exponen-
tially decaying solution and an algebraically decaying solu-
tion with f ðxÞ � 1=x3. By multiplying Eq. (11) by x2 and
integrating, we find that:

ðDþ b� aÞ
k2

Z 1

0

f ðxÞdxþ lim
x!1

x3f ðxÞ ¼ 0; ð12Þ

so that imposing the condition ðDþ b� aÞ = 0 eliminates
the slowly decaying solution with f ðxÞ � 1=x3 and pro-
duces a grain size distribution with finite second moment.
With this choice and letting e = D/k2 and a = b/k2, Eq.
(11) has the form:

e
d2f
dx2
þ aþ e

x
� aþ 2x

h i df
dx
þ 6� aþ e

x2

h i
f ¼ 0; ð13Þ

with the added normalization:R1
0

xf ðxÞdxR1
0 f ðxÞdx

¼ 1: ð14Þ

Eq. (13) can be solved exactly for two limiting cases where
the driving force is either due only to the drift velocity
(Hillert) or diffusion (Rayleigh).

The Rayleigh grain size distribution [29] occurs when
a = 0 and e 6¼ 0. This means that all curvature effects are
ignored, and the grains perform a pure random walk in
grain size space. Eq. (13) in this case is reduced to:

e
d2fr

dx2
þ e

x
þ 2x

h i dfr

dx
þ 6� e

x2

h i
fr ¼ 0; ð15Þ

the only physically acceptable solution of which is

frðxÞ ¼ cx exp
�x2

e

� �
: ð16Þ

Since fr(x) satisfies the boundary conditions when x = 0
and x ?1, e and the constant c can be determined by
requiring the grain size distribution to be normalized,
and its first moment, �x, to be equal to unity. This leads
to the normalized Rayleigh grain size distribution:

frðxÞ ¼
p
2

x exp � px2

4

� �
: ð17Þ

The Hillert grain size distribution [6] corresponds to the
other limiting case, a = 8 and e = 0, and occurs when the
drift velocity due to curvature is the only driving force,
i.e. the equation is of the first order (mean field.) Eq. (13)
then reduces to a first-order ordinary differential equation:



Fig. 1. Numerically determined (a�e) relationship.

Fig. 2. Normalized grain size distributions. The two limiting cases (non-
solid lines) of the Hillert grain size distribution (greatest maximum) and
Rayleigh grain size distribution (least maximum) distributions are shown.
The solid lines (from top to bottom) are the numerically calculated values
for a = 7 (e = 0.017), a = 5 (e = 0.166), and a = 2 (e = 0.701).
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2ðx� 2Þ2

x

" #
dfhðxÞ

dx
þ 6� 8

x2

� �
fhðxÞ ¼ 0; ð18Þ

the normalized solution of which is the Hillert grain size
distribution:

fhðxÞ ¼
8xe

�2x
2�x

ð2� xÞ4
; ð19Þ

for 0 < x < 2. This distribution is characterized by an im-
posed finite cut-off and the assumption that all derivatives
of f vanish at x = 2.

4. Numerical solution for the grain size distribution

The Rayleigh and Hillert distributions thus represent the
extreme limits of Eq. (13). When a noise term is present (i.e.
both a and e are finite), an analytical solution is difficult,
and therefore we numerically solve Eq. (13) subject to con-
straint condition of Eq. (14). First, Eq. (13) is reduced to a
system of two first-order coupled differential equations:

df ðxÞ
dx ¼ gðxÞ

dgðxÞ
dx ¼ �gðxÞ½aþe

x � aþ 2x� þ ½6� aþe
x2 �f ðxÞ ¼ 0

ð20Þ

while the normalization condition �x ¼ 1 is rewritten as:

hðxÞ ¼
Z x

0

ð1� yÞf ðyÞdy ! 0 as x!1: ð21Þ

In differential form, this becomes:

dhðxÞ
dx
¼ ð1� xÞf ðxÞ; ð22Þ

with the boundary condition hð0Þ ¼ 0. Eqs. (19) and (22)
constitute a system of ordinary differential equations that
were solved by using an adaptive finite difference package
with error control. Due to the singular nature of the coef-
ficients in Eq. (20) at x = 0, the starting point was taken to
be xo = 0.1. A series expansion solution for Eq. (13) for
small x was developed and used to determine the shifted
initial conditions at x = xo.

The numerical solution to the system of equations
required a criterion to determine the appropriate pair of
(a�e) that satisfied the constraint Eq. (14). Since h(x) must
approach zero as x ?1, a simple assessment was used,
solving the equations over a finite interval xo<x < xl,
and, for a given value ofa, varying e until h(xl) = 0. The
upper limit, xl, where the numerical calculations were ter-
minated, was usually taken to be xl = 10, which was large
enough to ensure the decay of the grain size distribution
f(x) to machine precision. Based upon this scheme, values
of (a�e) were calculated and are shown in Fig. 1.

Normalized grain size distributions were calculated from
the results of Fig. 1 along with two limiting cases: Hillert
(a = 8 and e = 0) and Rayleigh (a = 0 and e = 4/p). These
results are shown in Fig. 2.

From Fig. 2, we note that the numerical solutions vary
smoothly from the Rayleigh to Hillert as e changes from
0 to 4/p with the corresponding value of a as required in
Fig. 1. The numerical solutions are only valid for e > 0.
When e = 0, the ordinary differential equation reduces to
first order, and the solution is given by Eq. (18), the Hillert
grain size distribution.

The change in the structure of the ordinary differential
equation when e ? 0 requires a singular perturbation anal-
ysis such as the Wenzel–Kramer–Brillouin (WKB) method
(see Ref. [28, p. 484]). However, asymptotic solutions will
yield forms that are commensurate with the WKB method
in the limit as x ?1. This leads to the asymptotic forms,
valid for x >> 1,

fa � e�x2=e eax=ex1�a=eð1þ b1=xþ b2=x2 þ � � �Þ; ð23Þ
and

fb �
1

x3
ð1þ c1=xþ c2=x2 þ � � �Þ; ð24Þ



Fig. 4. Comparison with results of Marthinsen et al. [30]. Their data is
shown as the open symbols. The numerically calculated results are given
for two different values of a = 4 and a = 5.
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where the coefficients bk and ck satisfy three-term recur-
rence relations. The solution fa decreases faster than x�3

and hence will conserve specimen area, while fb does not.
The coefficients bk and ck vanish when a = 0, in which case
Eq. (23) reduces to the Rayleigh grain size distribution.

5. Comparison with numerical simulations

There are several numerical simulations of grain growth
by differing techniques. Two examples are examined since
the values of a differ greatly with accompanying distinct-
ness in the form of the grain size distribution. Battaile
and Holm [14] have utilized a Monte Carlo Potts model
to simulate grain growth in two dimensions. Despite start-
ing from two differing morphologies characterized by a
Hillert type grain size distribution, the final quasi-static
or long-term distributions were the essentially the same.
As shown in Fig. 3, the data of Battaile and Holm fits
our numerical results when a = 1. In this case, the grain
size distribution is very similar to the Rayleigh form.

Marthinsen et al. [30] started with a random Voronoi
distribution that was allowed to coarsen until a quasi-static
distribution was obtained. The comparison with simulated
data and numerically calculated results are shown in Fig. 4.

Because of the scatter in the simulation data of Marthin-
sen et al. [30], two values of a are shown with probably a = 5
being a better description. From Fig. 2, for this value of a,
the grain size distribution is midway between the Rayleigh
and Hillert distributions. From these comparisons, it is quite
evident that a noise term is required. From both of these
cases, the Hillert grain size distribution is a poor fit of the
simulated grain size distribution s. In the latter case, the Ray-
leigh grain size distribution will also be a poor fit. The effect
of the diffusion or noise term is a development of a broader
and more left skewed form that is more consistent with cal-
culated and experimental grain size distributions [31].
Fig. 3. Comparison of the simulated and numerically calculated grain size
distributions. The filled symbols are the simulation data of Battaile and
Holm [14]. The solid line is the numerically calculated solution when a = 1
and e = 0.967.
At this point we must state that although Hillert’s distri-
bution (for both the two-dimensional or three-dimensional
case) has never been observed, either experimentally or by
computer simulations, several attempts have been made to
improve the model. For two-dimensional grain growth,
Brandt et al. [32] (cf. also Ref. [33]) and others [34–36]
attempted to modify Eq. (4a), while retaining the LSW
method, and obtained analytical distributions that were
in better agreement with experiments or simulations. An
attempt has also been made to modify the LSW procedure
while retaining the growth law equation, Eq. (4a) [21]. For
three-dimensional grain growth it has been shown that an
adequate modification of the effective growth law allows
one to obtain an analytical grain size distribution which
agrees with simulation data of three-dimensional grain
growth fairly well [37].

6. Discussion

The noise term affects the kinetics of grain growth by
varying the critical grain size (which in turn determines if
a grain will shrink or grow). The drift velocity is usually
given as [6]:

dR
dt
¼ �a

1

x
� 1

xc

� �
; ð25Þ

where xc is the critical size. However, for a more general-
ized formulation, the drift velocity that is utilized in Eqs.
(4a) and (5a) is of the form:

dR
dt
¼ � a

x
� b

x

� �
; ð26Þ

Where �x is the mean of the grain size distribution and a and
b are the constants as in Eq. (4a). Using Eqs. (25) and (26),
the critical grain size can be given in terms of �x as:

xc

�x
¼ 1þ e

a
: ð27Þ
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The critical grain size is equal to one for the Hillert grain
size distribution (when �x = 1) and is infinite for the Ray-
leigh grain size distribution when the values of Fig. 1 are
inserted into Eq. (27). For other cases (finite values of both
a and e) the critical size effectively varies between these two
limits. This variation of the critical grain size affects the
shape of the grain size distribution.

Our formulation for two-dimensional grain growth pre-
sented here (see Eq. (11)) employs four constants a, b, k
and D. Out of these constants, a and k can be determined
from first principles [3,4,6]. The constant a involves the
mobility of the grain boundary, which is assumed the same
for all the grain boundaries in the specimen. The constant k
will depend upon temperature since it controls how rapidly
average grain grows with time (see Eq. (9) and Refs.
[2,4,6]). The constant b was determined for the constraints
of constant specimen size (area) independent of time. That
leaves only one unknown constant D. It is interesting to
note that the constant D can be obtained from a knowledge
of a since a relation exists between a (= ak�2), and e
(=Dk�2) (see Fig. 1). However, in our present treatment
we take a as an undetermined independent parameter to
be determined by a further analysis of the problem.

This relationship is obtained by constraints imposed on
Eq. (13), specifically, that the solutions of this equation
must satisfy Eq. (6). In fact, the numerical data obtained
in Fig. 1, connecting a and e, fit the following relationship
almost exactly:

e ¼ 4

p
1� a

8

� 	2

: ð28Þ

There has been an attempt in the past [38] to determine
D, the strength of the noise, independently. It is interest-
ing and somewhat surprising that D is provided by the
formulation itself. It may mean that the source of fluctu-
ations in the growth rate of individual grains arises due to
constraints imposed on the system and not due to any
special independent source. However, this aspect of the
problem needs further experimental and theoretical
investigation.

The analysis presented here shows that the distribution
function depends only on one adjustable parameter a (it
may eventually be possible to obtain a from the physics
of the problem). It is true that there are other theories
where the distributions have been explained by one adjust-
able parameter. In that sense our analysis may not appear
an advance over other models. Our main object here is to
show that the distributions can be obtained by a stochastic
formulation, which, in addition, has the potential to
explain additional features of grain growth such as scaling,
which are not amenable to ‘‘mean field” treatments.

It should be noted that, in general, the constant D used
in our calculation could be a function of time and grain
size. In this work, we have thus taken the strength of the
noise as constant. It is remarkable that with this approxi-
mation, all the constants, a, b and D, can be exactly deter-
mined in terms of one parameter, a.
7. Summary

The inclusion of a noise or diffusive term in the mean
field theory leads to grain size distributions that are a better
description than the Hillert formulation. This noise term,
characterized by the parameter e, results in a continuous
variation of grain size distributions from the Hillert grain
size distribution (curvature driven only) to the Rayleigh
grain size distribution (diffusive or random walk only).
The stochastic model of grain growth falls between these
two extremes. We have shown that realistic grain size dis-
tributions can be numerically calculated from such a sto-
chastic model of grain growth.
Acknowledgments

This work is supported in part by the Office of Naval
Research. We are grateful to Dr. Robert A. Masumura
for his substantial contributions to this work.
References

[1] von Neumann J. Metal interfaces. Cleveland, OH: ASM; 1952. p.
108.

[2] Mullins WW. J Appl Phys 1956;27:900.
[3] Glicksman ME. Phil Mag 2005;85:3.
[4] Rios PR, Glicksman ME. Acta Mater 2006;54:1041.
[5] MacPherson RD, Srolovitz DJ. Nature 2007;446:1053.
[6] Hillert M. Acta Metall 1965;13:227.
[7] Rivier N, Lissowski A. J Phys A 1982;15:L143.
[8] Fradkov VE, Shvindlerman LS, Udler DG. Scripta Met

1985;19:1285.
[9] Palmer MA, Glicksman ME, Rajan K. Solidification. Warrendale,

PA: TMS; 1998. p. 51.
[10] Rios PR, Glicksman ME. Scripta Mater 2004;51:629.
[11] Mullins WW. Acta Mater 1998;46:6219.
[12] Abbruzzese G, Heckelmann I, Lucke K. Acta Metall 1992;40:

519.
[13] Pande CS, Rajagopal AK. Acta Mater 2001;49:1805.
[14] Battaile CC, Holm EA. Grain growth in polycrytalline materials III.

In: Weiland H, Adams BL, Rollett AD, editors. Proceedings of the
third international conference on grain growth. Warrendale, PA:
TMS; 1998. p. 119.

[15] Bartelt NC, Theis W, Tromp RM. Phys Rev B 1996;54:11741.
[16] Rogers JR et al. J Electr Mater 1994;23:999.
[17] Voorhees PW, Glicksman ME. Acta Metall 1984;32:2013.
[18] Glicksman ME, Wang KG, Crawford P. J Mater Res 2002;5:231.
[19] Wang KG, Glicksman ME. Phys Rev E 2003;68:051501.
[20] Brown LC. Acta metall 1989;37:71.
[21] Rios PR, Dalpian TG, Brandao VS, Castro JA, Oliviera ACL.

Scripta Mater 2006;54:1633.
[22] Pande CS. Acta metall 1987;11:2671.
[23] Pande CS, Dantsker E. Acta metall mater 1991;39:1259.
[24] Pande CS, Dantsker E. Acta metall mater 1994;42:2899.
[25] van Kampen NG. Stochastic processes in physics and chemistry.

Amsterdam: North Holland; 1981.
[26] Crank J. The mathematics of diffusion. London: Oxford University

Press; 1956.
[27] Pande CS, Rajagopal AK. Acta mater 2002;50:3013.
[28] Bender CM, Orszag SA. In: Advanced mathematical methods for

scientists and engineers. New York: McGraw-Hill; 1978.
[29] Louat NP. Acta metall 1974;22:721.
[30] Marthinsen K, Hunderi O, Ryum N. Acta mater 1996;44:1681.



C.S. Pande et al. / Acta Materialia 56 (2008) 5304–5311 5311
[31] Carpenter DT, Codner JR, Barmak K, Rickman JM. Mat lett
1999;41:296.
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