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ABSTRACT

Scatter in laboratory data with duplicates on Charpy impact
tests is analyzed by identifying several sources of variability
such as temperature, manganese sulfide, initial strain, mis-
orientation, and notch radius in order to estimate the predictive
95 % confidence intervals of the mean energy of absorption for
each specific test temperature. Using a combination of real and
virtual data on a high-strength pressure vessel grade steel
(ASTM A517) over a range of temperatures from -40 °C (-40
F) to 182 °C (360 °F), and the concept of a statistical design of
experiments, we present an uncertainty estimation methodology
using a public-domain statistical analysis software named
DATAPLOT. A numerical example for estimating the mean,
standard deviation, and predictive intervals of the Charpy
energy at 48.9 °C (120 °F) is included. To illustrate the
application potential of this methodology, we enhance it with
formulas of error propagation to estimate the mean, standard

(*) Contribution of the U.S. National Institute of Standards and
Technology (NIST). Not subject to copyright in the U.S.

deviation, and predictive intervals of the associated static crack
initiation toughness, K. . A discussion of the significance and
limitations of the proposed methodology, and a concluding
remark are given at the end of this paper.

Keywords: Applied mechanics; Charpy energy; Charpy V-notch
impact test; design of experiments; engineering safety;error
propagation; fracture mechanics; fracture toughness; impact
resistance; mathematical modeling; materials science;
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sensitivity analysis; statistical data analysis; structural integrity;
uncertainty analysis; virtual experiments.
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1. INTRODUCTION

In 1983, the late Dr. Spencer Bush of Pacific
Northwest National Laboratory, Richland, WA, closed a
keynote address at a technical session on "Flaw detection and
sizing" of the International Symposium on Reliability of
Reactor Pressure Components, IAEA, Stuttgart, Germany,
March 21-25, with the following observation and warning [1]:

"There is a major problem when the NDE (nondestructive
evaluation) operator does not interface with the ultimate
user of his data. For example, the practitioner of
fracture mechanics should have a close rapport
and a synergism with the NDE expert so that the needs of
the one are met by the test results of the other. It has been
my personal experience that such rapport rarely occurs.”

In this paper, we would like to echo his sentiment by adding
that the practitioner of fracture mechanics should also have a
close rapport and a synergism with a statistician so that the data
needs of the one are met by the modeling, analysis,
computational, and predictive capability of the other.

To illustrate the need for such rapport with the
statistician, we note from four examples below, that the
experimentalists plots their data without reference to scatter or
replicates. In Fig. 1, we show two sets of Charpy V-notch

TEMPERATURE (°F)

impact energy data for one of three test cylinders by Cheverton,
et al [2], where an obvious scatter of data exists. In Fig. 2, we
show a plot due to Loss, Gray, and Hawthorne [3] on fracture
toughness, K., which is related to the Charpy energy. It shows
upper and lower bounds on the K. data, but no error bar on the
data was included. In Fig, 3, Cheverton, et al [2] presents a
summary plot of data for two fracture toughnesses, K;. and K,
as well as ASME Section XI [4] lower bounds, but the data
have no error bars. Another example existed in the literature, as
shown in Figs. 4 and 5 due to deWit, Fields, and Irwin [5, 6],
where the phenomenon of data scatter was obvious, but no
expression of uncertainty was ever reported. The purpose of
this paper is two-fold:

(1) To introduce an uncertainty estimation methodology using
a small set of data and the concept of design of
experiments. This serves the purposes of suggesting
additional experiments to decrease the scatter and to
provide error bars for data already acquired.

To illustrate the methodology with an application in
estimating fracture toughness using data of Charpy energy
and yield strength at comparable temperatures. The data
consists of two types: (a) Real - results of physical
experiments. (b) Virtual -- values conceived from
experience and judgment of the experimentalist.
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Fig. 1. Charpy V-Notch data for a thermal shock experiment (TSE) test cylinder TSE-5A for two batches of specimens: (1) Hollow
circle were test data of materials taken from TSE-5A after it sustained thermal shock. (2) Solid circles were pretest data of materials
from a prolongation of the same SA 508 Class 2 chemistry steel forging from which TSE-5A was made by tempering at 677 °C for 4
hours. The room temperature yield strength of TSE-5A cylinder was somewhere between 500 MPa (72.5 ksi) and 700 MPa (101.5
ksi) as estimated for steel forgings tempered at a temperature of under 594 °C and at 704 °C, respectively. Note the significant
scatter of data in both batches over a broad range of temperatures from -50 °C to 300 °C. (after Cheverton et al [2]).
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1. Introduction (Continued)
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Fig. 2. Static crack initiation toughness ( K}. ) data for a material characterization test program in an investigation to validate the benefits of
warm prestress in limiting crack extension in a nuclear reactor vessel wall during a simulated loss-of-coolant accident followed by operation
of the emergency core-cooling system [3]. Note the significant scatters within and between specimens when cut across plate thickness.
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Fig. 3. Comparison of static crack initiation toughness ( K. ) and static crack arrest toughness ( K}, ) data deduced from three thermal shock

experiment (TSE) test cylinders, TSE-5, 5A, and 6, and normalized with nil-ductility temperature shift, 7 - RTNDT , with ASME Section
XI K. and K, curves (after Cheverton, et al. [2]). Note the significant scatters within and between specimens of all three test cylinders.
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1. Introduction (Continued)
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Fig. 4. A summary comparison of static crack arrest toughness ( K;,) data (curves) estimated from thickness reduction (TR) measurements
and a smooth K-from-TR technique [5, 6] for six specimens (WP-2.1 through 2.6) fabricated from a low upper-shelf base material, with Oak
Ridge National Laboratory (ORNL) two-dimensional finite element analyses using ADINA/VPF dynamic crack analysis code (points).
Note the significant between-specimen scatters in both experiments (curves) and analyses (points) over a broad range of temperature shifts.
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Fig. 5. Comparison of static crack arrest toughness ( K, ) data vs. nil-ductility temperature shift, 7- RTNDT , for A533 Grade B Class 1
steel from five different sources, with ASME Section XI Kj, curves (after deWit, Fields, and Irwin [6] and ASME [4]). Note the significant
scatter between specimens of different sources over a broad range of temperature shifts from 0 °C to 100 °C.
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2. STATEMENT OF THE PROBLEM

Long before the arrival of fracture mechanics in the
1970s as the appropriate tool to characterize the toughness of a
material to resist sudden fracture due to crack initiation and
propagation, engineers have relied on several simple and
inexpensive tests, one of which is the well-known Charpy V-
notch impact test.

Following ASTM [7] and books on fracture mechanics
such as Kanninen and Popelar [8], Dowling [9], etc., we show
in Fig. 6 the specimen geometry and loading configuration for
such a test, where a notched three-point bend specimen is
impacted with a pendulum. The fracture energy is equated to
the energy lost by the pendulum during the impact, and is
known as the energy absorption, or Charpy V-notch energy
(CVN).

In Figs. 7 and 8, we show typical family of plots [10]
of CVN vs. test temperature for several heats of the steels of
ASTM A514/517 [11], having a minimum room temperature
tensile yield strength of 620 MPa (90 ksi). Note the S-shaped
curve of each plot with a lower-shelf for low temperatures and
an upper shelf for high temperatures.

The concept of the so-called nil-ductility temperature
(NDT) is defined as the upper limit of temperatures in the lower
shelf or plateau where the fracture is brittle, i.e., the fracture
surface is flat (cleavage) with little or no shear lips, and the so-
called plane-strain fracture under impact exists. The upper
shelf corresponds to the so-called ductile fracture regime, and
the sharp rise between the two plateaus is the brittle-ductile
transition. It was the common practice before 1970s to specify
the minimum toughness of a material by prescribing a minimum
Charpy energy at a given service temperature. As an added
measure of safety, the NDT was required to be below the lowest
anticipated service temperature so that load-bearing material is
operating above the NDT.

As documented by ASM [12] and reproduced below
for some well-known formulas, many correlations between the

/ Spedmen

(@)

static Ky, or the dynamic Kj,;, with CVN have been reported
[13-17], where either the Young's modulus, E, or the yield
strength, &; , is included as an additional parameter:

Rolfe-Novak — o, ~100 ksi (Ref [13].1970)

K. \2 Kie = ksiVin.
— ] = 5(CVN/a, - 0.05) CVN =fi-Ib
g, o, = ksi
Sailors-Corten  (Ref [14], 1972)
K, Ky, Kig = psiVin
= —8(CVN) P ::: "
E CVN =n-
Wallaert-Server (Ref [16]. 1978)
Klr,l =21 ‘or CVN)NZ KI.—,‘ = ksn\/l_n-
CVN = ft-ib
o, = ksi corresponding to
approximate loading
fate
Barsom-Rolfe (Ref [17]. 1979)
K2 K. Kie = psiVin
’I._ = 2 (CVN)? i :: "
E CVN =fi-}p

An example of the data scatter problem is given in Fig.
7, where one observes that for a specific temperature, say, 120
°F (48.9 °C), the heat-to-heat variation of CVN between 10 and
80 ft-1b (13.6 and 108 N-m) was too large. Yet the statistical fit
for one such heat in Figure 8 failed to take that into account.

The problem to solve in this paper is to estimate the
uncertainty of CVN for ASTM A517 steel at 120 °F (48.9 °C),
and to use that result to estimate the uncertainty of fracture
toughness. K... based on one of the above correlation formulas.

F—{10mm

Gl

—b

Fig. 6. Specimen and loading configuration for Charpy V-notch test (after Dowling [9, p. 186] and ASTM test standard E23-98 [7]).
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2. Problem (Continued)

CHARPY IMPACT TEST RESULTS F@R ASTM RS14/517 STEELS.
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Fig. 7. Charpy V-notch impact test results for longitudinal specimens of one heat of ASTM A514 Grade F, one heat of A514 Grade
H, two heats of A517 Grade F, and four heats of A517 Grade H steels (after Interrante and Hicho [10] and ASTM [11]). Curves are
best fits of those eight sets of data using the least square method. Note the scatters within and between heats from -100 to 240 °C.
The ASTM specification for A 517/A 517M - 93 steel [11] calls for a minimum tensile yield strength of 620 MPa (90 ksi) for plates
of 65 to 150 mm (2.50 to 6.00 in) thick and higher yield strengths for thinner plates (690 MPa (100 ksi) for 65 mm (2.50 in) or less).
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2. Problem (Continued)

RESULTS OF TESTS OF CVN ©
SPECINENS OF PLATES CK AND Q. HERT C4913-4 BF AS17-H STEEL.
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Fig. 8. Charpy V-notch impact test results for longitudinal (LT) and transverse (TL) specimens of a single heat of ASTM A517
Grade H steel (after Interrante and Hicho [10] and ASTM [11]). Curves are best fits of those eight sets of data using the least square
method. Note the scatters within specimens and between specimens of different orientation from 0 to 360 °C.
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3. THEORY OF PROPAGATION OF ERRORS

In 1939, Birge [18] wrote an expository paper on the
theory of error propagation with a remark which is worth
quoting below because it sounded as relevant almost 70 years
ago as it is today:

"The question of what constitutes the most reliable value
to be assigned as the uncertainty of any given measured
quantity is one that has been discussed for many decades
and, presumably, will continued to be discussed.

"It is a question that involves many considerations and by
its very nature has no unique answer.

"The subject of the propagation of errors, on the
contrary, is a purely mathematical matter, with very
definite and easily ascertained conclusions.

"Although the general subject of the present article is by
no means new, many scientists (and engineers) still
fail to avail themselves of the enlightening conclusions
that may often thus be reached, while others frequently
use the theory incorrectly and thus arrive at quite
misleading conclusions.” [Note: Words in bold are
added by this author to emphasize the applicability of
Birge's remark to a broader audience.]

Inspired by the above, Ku [19] wrote a follow-up paper with a
clear and easy-to-understand exposition of the same subject and
included several tables with frequently-used formulas, some of
which are reproduced in Table 1 of this paper.

In particular, two of the 11 formulas listed in Table 1,
namely, the product of two variables and the square root of a
single variable, are used in this paper to derive a variance
formula for fracture toughness, K. For a fuller introduction of
the subject of error propagation and the mathematical derivation
of a large number of useful formulas, the reader is referred to
either Ku's paper [19], or a more recent one by Nelson [20].

Of the four formulas for K, listed in Section 2, the
Waullaert-Server equation [16] is the simplest in having the yield
strength as the second variable. Since our paper is to present a
methodology and not to arrive at an answer to a specific
problem, it does not matter which formula to use. So our
starting point is the Wullaert-Server K. -CVN relationship:

K = 2.1 (o *CVN)" M
where K is the static crack initiation toughness (ksi-in"?), gy,
the tensile yield strength (ksi) corresponding to the approximate
loading rate, and CVN , the Charpy V-notch energy (fi-1b).

Let us introduce an intermediate variable named Q,

where @ is defined as the product of o;, and CVN.
Furthermore, let us abbreviate the variable, CVN, as simply,
C. By using the 7th formula in Table 1, we derive the following
variance formula for O :

1

VarQ) = Var(a; * C )

(03 * CY *(Var(a5) / 73* + Var(C)/C?)

C?*Var(;) + % Var(C) @

It

By using the 9th formula in Table 1, we derive the following
variance formula for the square root of Q:

Var(Q'?) = (1/4) Var(Q)/ QO
Substituting the result of eq. (2) in the above, we get
Var(Q"?) = (1/4) (C? Var(a;) + a3, Var(C)) / (a3 * C)
= (1/4) { (C /) Var(a5) + (a/C) Var(C) } €)

Substituting eq. (3) into eq. (1), we obtain the following
variance formula for K. :

Var(K;) = 1.103 { (C/c3) Var(a;) + (03/C) Var(©)} ()

For different combinations of values of o5, and C (=CVN),
eq. (4) delivers a variety of correlations between the variance of
K;. and the variances of o;, and CVN. For example, the
following lists some useful formulas for a numerical
representation of eq. (4):

o, CVN Variance formulas for K;,_in ksi-in" units (*)

ksi ft-lb  (Note: Not valid for Ky in MPa-m'™”? units)

60 30 Var(XK,) = 0.551 Var(a;) +2.205 Var(CVN)  (5)
90 45 Var(K,) = 0.551 Var(a;) +2.205 Var(CVN)  (5)
120 60 Var(K;) = 0.551 Var(ay) +2.205 Var(CVN)  (5)
45 15 Var(K,) = 0.368 Var(a;) + 3.308 Var(CVN)  (6)
90 30 Var(K,) = 0.368 Var(o;) + 3.308 Var(CVN)  (6)
80 20 Var(X,) = 0.276 Var(o;) +4.410 Var(CVYN)  (7)
100 20 Var(K)) = 0.221 Var(gy) + 5.513 Var(CVN)  (8)

Note the relative importance of Var(CVN) vs. Var(a;).
(*) These formulas are approximate, as noted in Table 1, and

are valid if o5, and CVN are statistically independent.
Additional terms are needed if they are correlated (see Ku [19]).
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3. Error Propagation Theory (Continued)

10.

11. .

Table 1. Propagation of error formulas for 11 commonly encountered functions as listed by Ku [19].

. ) . .Y
Function form of w *

Approx. formula for var ()
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. statistically. independent)

Term to be added if x and y
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reliable estimate of oo
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where, the numerator in Ku's notation, sxba,z ,equals Var(xbar) .

(6))2(2ab %’E)
2ab—

—

. *'It is assumed that the value of & is finite and real, e.g.. ¥ % O for ratios with ¥ as denominator. x > 0 for V7 and Inx.
. ** Weightéd mean as a special case of Ax+ By, with o+ and o, constdered known.
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4. ESTIMATE OF VARIANCE OF YIELD STRENGTH
The general formula, eq. (4), derived in the last section for the
variance of K, in terms of the variances of o5, and CVN,
requires us to determine the last two variances from
experimental data of the same grade of steel.

Since our investigation in this paper to find the
variance of CVN relies heavily on some Charpy energy data of
the ASTM A514/517 steel [10], we shall present in this section
some literature data (see, e.g., ASM [21], NRIM [22], etc.) on
the tensile yield strength of a high-strength steel comparable to
ASTM A514/517 as a source for estimating Var(o;).

In particular, we find the set of data in a 1994 report of
the National Research Institute of Metals, Tokyo [22] so
interesting and relevant as an example for statistical analysis
that we simply reproduce that entire set in Table 2 for readers to
pursue additional analyses of the same nature when a need
arises.

In Fig. 9, we reproduce a plot from the NRIM report
[22] showing the tensile yield strength data of 21 specimens per
temperature for 10 temperatures from 20 °C to 600 °C. Note
that the mean yield strength of the Class 590 MPa steel plate at
20°Cis 518.7 MPa (75.2 ksi), which is ~17% less than the

~

minimum yield strength of ASTM AS517 [11]. Since the effect
of the variance of yield strength, as shown earlier in egs. (5)
through (8), is relatively less important than that of the Charpy
energy, we believe we are justified in analyzing the data in
Table 2 to get an estimate of Var(o;) for ASTM A517.

In Fig. 10, we plotted the 21 yield strength data of the
Class 590 MPa steel at 20 °C in a histogram and used a
normality test subroutine of the well-known Wilks-Shapiro test
[23, 24] as implemented in a public-domain software package
named DATAPLOT [25] to verify that the normality assumption
for the data set was valid at the 95 % and 99 % confidence.

In Fig. 11, we did the same for the 21 yield strength
data of the Class 590 MPa steel at 100 °C, and verified that the
data set was normal.

The results of the analyses displayed in Figs. 10 and 11
are summarized below: (sd = standard deviation)

For 20 °C: Sample ave. = 518.67 MPa. sd(o;) =47.15 MPa.
For 100 °C: Sample ave. = 500.24 MPa. sd(o;) = 52.22 MPa.

By a linear interpolation on the two sd's, we obtain:
For 48.9 °C (120 °F), sd(o;) = 48.98 MPa (7.10 ksi), which
will be used in our subsequent analysis in determining the
variance of the yield strength of ASTM A517 steel.

Mean Yield Strength at 20 C of 21 samples
= 518.7 Mpa (75.2 ksi)

700l
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Fig. 9. Test data of 21 specimens per temperature from 20 °C to 600 °C for 0.2% proof stress or tensile yield strength of a Japanese
high strength steel (Class 590 MPa) plate (see list of data in Table 2 from NRIM[22]). The solid curve represents the average; the
broken curves the upper and lower 95 % prediction confidence intervals. Note the scatter of the 21 data points per temperature.
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Table 2. Test data of 21 specimens per temperature for 10 temperatures from 20 °C (RT) to 600 °C for tensile yield
strength (0.2% proof stress), listed on the left, and ultimate strength, listed on the right of each data column as
shown, for a Japanese high strength steel (Class 590 MPa) plate as reported by NRIM in a 1994 report [22]

Short-time tensile propertiés of high strength steel (Class 550 MPa) plates

L 0.2 % proof strwsland tensile strength

NRIM ATest temperature (C) |
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4. Yield Strength Variance (Continued)

Distribution Normal for 590MPa Steel Y at 20C (1994)

ppcc (goodness of fit) = 0.98168
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Fig. 10. A histogram plot of 21 yield strength data of a Japanese high strength steel (Class 590 MPa) plate at 20 °C (after NRIM
[22]). Using the Wilks-Shapiro normality test [23, 24] as implemented in a public domain statistical data analysis softiware package
named DATAPLOT [25], we verified that the normality assumption for the data set is valid at the 95 % and 99 % levels.

Distribution Normal for 590MPa Steel Y at 100C (1994)

ppcc (goodness of fit) = 0.86346

15

Sample size
= 21.

Wilks Shapiro
test statistic
=0.93372
Crit. P = 0.16344

Normality
assumption
is vaid at
95% & 99%
levels.

i ST

T " T i T ‘ ! " T
3 4 5 [} T

Yield Strength Y (100 MPa)
sample ave. = 500.24, sd = 52.22

Fig. 11. A histogram plot of 21 yield strength data of a Japanese high strength steel (Class 590 MPa) plate at 100 °C (after NRIM
[22]). Using the Wilks-Shapiro normality test [23, 24] as implemented in a public domain statistical data analysis software package
named DATAPLOT [25], we verified that the normality assumption for the data set is valid at the 95 % and 99 % levels.
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5. A DILEMMA IN ESTIMATING HEAT-TO-HEAT
VARIABILITY OF CHARPY V-NOTCH IMPACT ENERGY

Having determined the standard deviation of the yield
strength at 48.9 °C (120 °F) for a high-strength steel comparable
to ASTM AS17, we shall return to the task of sorting out the
Charpy energy data reported by Interrante and Hicho [10] as
shown in Fig. 7, where we found a huge heat-to-heat variation
(from 10 to 80 ft-1b, or, 13.6 to 108 N-m) at 48.9 °C (120 °F).

Before we begin, it may be of interest to some readers
to have a review of the terminology in statistics on two types of
confidence intervals we shall use in this paper. [Note: For a
reader familiar with those concepts, one can skip Notes 5.1
through 5.6 and go directly to the analysis of Charpy data
following the review notes.]

Following Nelson, Coffin, and Copeland [27, pp. 165-
181]), we introduce the concepts in a sequence of review notes:

Note 5.1. For a given sample data of a large population, we
define the sample average, ybar, as a number that estimates the
unknown mean, yu , of that population. Here, ybar is called a
point estimate.

Note 5.2. For that same population, we then derive some
formulas to add and subtract an amount, say, d, from ybar to
get an interval, (ybar-d ybar+d) , and call it an interval
estimate, or a confidence interval for y. The amount d
depends on what level of confidence we are interested in, say,
90 %, 95 %, or 99 %. For our purposes here, let us just define
two types of 95 % confidence intervals as follows:

Type 1. 95 % confidence interval for y, i.e., (ybar-d,, ybar+d))

This makes a statement about where the unknown
mean of the population, p , is likely to be within that interval
19 times out of 20. A formula for calculating d| is given below:

Box Plot of Charpy V-Notch Test Data for Heat-to-Heat Variability
Retfs.: Interrante-Hicho, NBSIR 73-293 (1973), Intetrrante-Fong, PVP2008-61565 (2008)

Sample Avorage ' = 1931

Sjmpb Size =9 | a
® " No. of Heats =3 Sample Standard Dev = 809 2
Repl.No. =(3,2,4) Replicate Std Dev s 252 g
5 ® Orientation = Longitudinal LT  Heat-to-Heat StdDev = 796 | "é,
£ Std Dev after Anova = 835 2
I
; S B :
o ® [ — ;
g’ T TR 5
[ R | See Table 4 for Heat #5 i
w2 - I I :
> I See | :
g | Table 3 ! | A
g : for : S N ! %
e | Heat#3 I I \_ ! 8
| | | See Tables 3
! { I s&6for g
- >
° : Temperature : = 120 deg F : Heat #7,, v
Ty T T 1+ 7 T T + T
2 3 4 5 6 7 8

ASTM A517-F and A517-H, Heat Number (3=Plate A,5=AL,7=Q)

Fig. 12. Box plot and results of an analysis of variance (ANOVA) of three heats of Charpy V-notch data at 120 °F (48.9 °C) for a high
strength ASTM A517 steel (one heat of Grade F and two heats of Grade H, as listed in Tables 3-6 from Interrante & Hicho [10]). All 9
specimens, of which 3 were for A517-F Heat 89863-2C, 2 for A517-H Heat A4071-6, and 4 for A517-H Heat C4913-4, were
orientated in the longitudinal (LT) direction. Note the presence of both within-heat (2.52) and between-heat (7.96) effects in the
composite data set with the between-heat or heat-to-heat standard deviation (sd) about 3 times larger than the within-heat sd.
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Table 3. 21 test data of 3 surface longitudinal specimens per
temperature for 7 temperatures from -40 °F (-40 °C) to 210 °F
(98.9 °C) for Charpy V-notch impact test of ASTM A517 Grade
F Heat #3 (89863-2C) steel plate named Plate A (after
Interrante & Hicho [10])

IMPACT TEST RESULTS FAR PLATS AL
" CALCULATIOMS FOR ENERGY ABSORPTION DATA OF

CHARPY V-NOTCH TESTS OF SURFACE.
LONGITUDINAL SPECIYENS: LT ORIENTATION.
A: AS17-Fr 2-1/4 IN.» HEAT B9863-2C.

SPFCIMEN  TEMPERATURE(F) OBSERVED ENEPGY
ABSORPTION(FT=LR)

Al -49,0 13.70
2A2 -40.0 14.55
6A3 -40.0 : 13.28
AL o . .0 . - 15.20
6AS . .0 15,73
oAb .0 16.42
6A7 40.0 17.29
6A3 . 40,0 . 20.19
6AQ 50.0 15.73
6A10 - - -~ T80 - 19,40
6A11 74.0 18.58

" 6A12 . 74,0 : 16.68
6A13 120,0 21.%0
6A14 120,0 i 25'36
6A15 120.0 26435
6A16 - - 160.0 s SUeS
6A17 160.0 30.43
6A18 160.0 27.19
6A19 210.0 37.93
6A20 - 210.0 39.06
6A21 ‘ 210.0 42.53 .

Table 4. 10 test data of one or more surface longitudinal
specimens per temperature for 6 temperatures from -40 °F
(- 40 °C) to 210 °F (98.9 °C) for Charpy V-notch impact test of
ASTM A517 Grade H Heat #5 (A4071-6) steel plate named
Plate AL (after Interrante & Hicho [10])

I#PACT TEST RESULTS FOR PLATST AL.

CALCULATIONS FOR EMFRGY ABSORPTION DATA OF
CHARPY V=NOTCH TESTS 0F SURFACE,
LONGITUDINAL SPECIMENS: LT ORIENTATION.
AL: A517=H» 2=1/4 INe.r HEAT A4071-6.

TEMPERATURE (F)  OBSERVED ENERGY

SPECIMEN
ABSORPTION(FT~LR)

4ALL -40,0 6.95
YAL2 0 10.50
GAL3 20.0 11.90
4ALY . -~ 20,0 - . 10.40
4ALS 20.0 13.10
4AL6 4.0 20.R5
4AL10 4.0 - 22.50
GAL7 - 129,0 . 24.70
4AL9 12n0.,0 31.10
-4ALS8 210.0 - B - B1.80 -

Table 5. 21 test data of two or more surface longitudinal
specimens per temperature for 7 temperatures from -40
°F (-40 °C) to 360 °F (182.2 °C) for Chaipy V-notch impact test
of ASTM A517 Grade H Heat #7 (C4913-4) steel plate named
Plate Q (after Interrante & Hicho [10])

TMPACT TFEST RFSULTS FOR SWRFACE OF PiaTf Q,

CALCULLATIONS FOR EMERGY ABSNRPTION NATA OF
CHARPY V=HQOTCH TESTS OF SURFACE,
LONGITUDIMNAL SPECIMENS: LT NRIENTATTON.
SURF=A: A517-Hs 2-1/4 IN.r HEAT C4C13~4,

SPECIMEN TEMPERATIRE(F) 0ORSERVED ENEPGY
ABSORPTION(FT=-L)
2A16 -40.0 3.90
2818 ~40.0 3.50
1A15 -4n.0 4.A0
18317 ~4n.n 3.50
1B2 .0 5.60
282 Y 4.20
3B2 .0 5.40
181 ‘ 76.0 : 10.20
281 76.0 9.00
381 2620 11,80
1BS 120.0 12,20
285 120.0 11.90
1856 210.0 T8. 70
286 210.0 20.20
3Ba 21n.0 20.50
186 300.0 23.00
243 300.0 24.90
1811 300.0 22.40
289 300.0 21.40
1A1L 360.0 26.20
1A18 360.0 27.20
Table 6. 14 test data of two midthickness longitudinal

specimens per temperature for 7 temperatures from -40 °F
(-40 °C) to 360 °F (182.2 °C) for Charpy V-notch impact test of
ASTM A517 Grade H Heat #7 (C4913-4) steel plate named
Plate Q (after Interrante & Hicho [10])

IMPACT TEST RESULTS FOR MIDTHICKNESS OF PLATE G

CALCULATIONS FOR ENERGY ABSORPTION DATA OF
CHARPY V=NOTCH TESTS OF MINTHICKNESS.
LONGITUDINAL SPECIMENS: LT ORIENTATION.

- MID=Q@: AS517=Hr 2=1/4 IN.r HEAT C4913-4,

TEMPERATURE (F) OBSERVED ENERGY

SPFCIMEN

ABSORPTION{(FT~LR)
1C13 ~40.0 2.60
2C19 ~40.0 - 3.10
1C2 0 4,40
- 2C2 Y B “ie- 3450
1C1 . 76.0 . T.40
2c1 6.0 Z.80
1C6 120,0 11.20
-2C5 120,.0 9,60
1cr 2I0.0 7. 20
- 2Ch S -210.0 coseme—m-=-16610 -
1C12 300.0 21.60
2co . 300.0 23.00
1C14 360.0 244,40
2C17 360.0 27.80
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5. A Dilemma in Estimating Heat-to-Heat Variability (Cont'd)
d; = t(0.025; n-D*s/@"” )

where #(e,») is the t-distribution for a normal population with
values tabulated in most statistics textbooks (see, e.g., Nelson, et
al. [27, p. 444]).

Type 2. 95% prediction interval for u, i.e., (ybar-d,, ybar+d,)

This makes a statement about where a single future
observation is likely to be within that interval 19 times out of
20. Because a prediction interval is for an individual
observation, i.e., a "moving target,” it is necessarily wider than
the first type (d; > d,).

The formula for calculating d, in order to construct
the 95% prediction interval of the mean, y, of a population, for
which the sample average, ybar , the sample size, »n, and the
sample standard deviation, s, are known, is given below:

dy, = t(0.025; n-1)*s* (1+1/n)", 10

where ¢ is the t-distribution for a normal population with
values tabulated in most statistics textbooks (see, e.g., Nelson,
et al [14, p. 444)).

Note 5.3. From eq. (9), we note that d, approaches zero as »
approaches infinity. In theory, we can make a confidence
interval (Type 1) as narrow as we like simply by increasing the
sample size, n . (In practice, this is often difficult to
accomplish.)

Note 5.4. From eq. (10), we note that d, approaches ¢ *s as
n approaches infinity. This means the width of a prediction
interval depends mostly on the amount of spread (e.g., standard
deviation) in the population. If the members of the population
vary widely, prediction intervals will necessarily be wide, no
matter how large a sample is taken.

Note 5.5. When constructing a confidence interval (Type 1),
we need not worry too much about whether the underlying
population is normally distributed. The same is not true for
prediction intervals (Type 2). Since we are trying to pinpoint
where individual observation might lie, the shape of the
distribution is very important. The simplest situation for
constructing prediction intervals is when the underlying
population is (at least approximately) normally distributed.

Note 5.6. In this paper, all of our discussion on confidence
intervals will be for the second type (prediction intervals) based

on eq. (10).

(End of Review Notes on Confidence Intervals.)

Analysis of Ch: Data of 7 Heats given in Ref. [1

Given the set of Charpy data of 7 heats in Ref. [10],
we are interested in finding two kinds of variances, namly, the
replicate (within) and the heat-to-heat (between) variances.

The analysis tool we use is the classical statistical
technique known as the analysis of variance, or, ANOVA (see,
e.g., Draper and Smith [26], and Nelson, Coffin, and Copeland
[27]). The data we need should have at least two specimens
(replicates) from the same heat for each temperature we are
interested in.

In Tables 3 through 6, we list Charpy energy data for
Plates A, AL, and Q from 3 heats that satisfy the replication
criterion for 48.9 °C (120 °F). Those data were plotted in Fig.
12, where we showed the results of an ANOVA as implemented
in DATAPLOT ([25], with, indeed, a strong heat-to-heat
effect (sd = 7.96) vs. a small replicate effect (sd = 2.52).

For n =9, the sample average, ybar, for 9 specimens
from 3 heats was found to be 19.31 fi-Ib, and the standard
deviation, s , after ANOVA was found to be 8.35 fi-lb.

Using a table of ¢ distributions (see, e.g., Nelson, et al
[27, p. 444]), where we found the critical value of #0.025, 9) to
be 2.262, we calculate d,, the 95 % confidence half-interval,
to be 2.262 * 8.35 * (1 + 1/9)"* = 19.91 fi-Ib, and the sample
mean with predicted intervals to be (-0.60 ft-1b, 39.22 ft-1b), an
answer we are not willing to accept, because the lower bound is
negative.

Another reason why the analysis results for the 3 heats
with replicates is not acceptable is that we have ignored the
single-specimen data of the other four heats, and those four data
values are very high (see below) as compared to the sample
average (ybar =19.31) of the 9 replicated specimens:

Plate L M R Z Unit
Heat # 4 1 2 6

(See 97L168- 921.088- 07619- B9093-

Fig.7) 06W2 10W2 03W1 4B

CVN= 17880 66.70 43.50  45.60 fi-1b.

If we close our eyes, add those 4 single-specimen data to the 9
replicated ones to make a sample of 13, calculate the sample
ave (ybar = 31.42), standard deviation (s = 21.76), the critical
#0.025,13) = 2.16, and the half-interval (d, = 48.77), we end up
with a non-sensical prediction interval of (-17.35, 80.19) fi-Ib,
because its lower bound is again negative.

In the next section, we shall present a way out of the
above dilemma in solving a heat-to-heat variability problem.
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6. AMETHODOOGY FOR ESTIMATING VARIANCE OF
CHARPY V-NOTCH IMPACT ENERGY

The analysis methodology described in the previous
section depended on two classical statistical data analysis
techniques, namely, the ANOVA and the prediction confidence
intervals. The methodology is capable of delivering an answer
to a user on the question whether a specific set of data is
normally distributed and homogeneous, and if it is not
homogeneous, one can estimate the replicate (within) and
between-treatment variability to obtain an improved estimate of
variance. But the methodology does not go far enough to
prescribe an efficient and rigorous follow-up plan of how to do
more tests, if and when the analysis yields non-sensical results
as it did in Section 5.

In this section, we introduce a third statistical data
analysis technique, known as the design of experiments (DOE)
as described in Box, Hunter, and Hunter [28], and Montgomery
[29], that will rectify the shortcomings of the previous
methodology. For a detailed exposition of this DOE technique,
"the reader may consult Croarkin, et al [30], or a recent tutorial
paper with two examples by Fong, et al [31].

. To acquaint the reader with the fundamentals of DOE,
we present below a series of 8 questions and answers as a
background for applying the concept to estimating the variance
of Charpy V-notch energy, Var(CVN). (Note: For a reader
familiar with the DOE technique, one can skip the parts through
DOE 1.8 and go directly to the CVN energy example that
follows.]:

DOE 1.1 What is design of experiments (DOE)?

Ans. In an experiment, we change one or more process
variables (factors) in order to observe the effect the changes
have on one or more response variables. DOE is an efficient
procedure for planning experiments so that the data obtained
can be analyzed to yield valid and objective conclusions.

DOE begins with determining the objectives of an
experiment and selecting the process factors for the study. An
Experimental Design is the laying out of a detailed experimental
plan in advance of doing the experiment. Well chosen
experimental designs maximize the amount of "information"
that can be obtained for a given amount of experimental effort.

DOE 1.2 What is the first step in applying the DOE method?

Ans.  The statistical theory underlying DOE begins with the
concept of process models. A process model of the 'black box'
type is formulated with several discrete or continuous input
factors that can be controlled, and one or more measured output
responses. The output responses are assumed continuous. Both
real (results of physical experiments) and virtual (values
conceived from experience and judgment of the
experimentalist) data are used to derive an empirical
(approximate) model linking the outputs and inputs. These

empirical models generally contain first-order (linear) and
second-order (quadratic) terms.

DOE 1.3 What is a first order model?

Ans. A first-order model with two factors, X; and X, can
be written as ‘

Y = Bo+ BXi + Bz + Pi2XiXz + errors 11

Here, Y is the response for given levels of the main effects X;
and X, and the X.X, term is included to account for a
possible interaction effect between X; and X;. The constant
B, is the response of Y when both main effects are 0.

In the example that follows for an application in NDE,
we use a linear model with five factors and one response
variable, and the total number of terms on the right hand side of
eq. (11) is 2°, or 32, as shown in the following eq. (12):

Y= fot+B1Xi+ BXo+ BiXs + B X+ PsXs +
BiaXiXy + B13XiXs + BrXiXy + PisXiXs +
BsXoXs + BrXoXy + BosXoXs +
BsXsXy + P3sXsXs +
PasX X5 +
BisXiXo X + PradlXiXoXg + ...+ errors (12)

A second-order model (typically used in response
surface DOE's with suspected curvature as described in Ref.
[28], pp. 510-539, or Ref. [30], Chap. 5, Sect. 5.1, pp. 9-20)
does not include the three-way interaction terms such as
Pri23XiXo X3, PradlXiXoX, , etc., as shown above, but adds five
more terms to the first order model (12), namely,

BuXi’ + BoaXy’ + BssXi' + BuXi + BssXss . (13)
Note: Clearly, a full model could include many cross-product
(or interaction) terms involving squared X's. However, in
general these terms are not needed and most DOE software

defaults to leaving them out of the model.

DOE 1.4 How does one select factors and responses?

Ans.  Process variables of an experiment include both inputs
(factors) and outputs (responses). The selection criteria are:

(a) Include all important factors (based on judgment).

(b) Be bold (consider worst cases from experience) in choosing
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6. Design of Experiments Approach (Continued)
the low and high factor levels.

(c) Check the factor levels/settings for impractical or
impossible com-binations, such as very low pressure or
very high gas flows.

(d) Include all relevant responses.
(e) Avoid using only the combined responses of two or more

measurements of the process. For example, if interested in
the ratio of two factors, measure both factors, not just the

ratios.

In choosing the range of levels/settings, it is wise to give this
some thought beforehand rather than just try extreme values.

DOE 1.5 How does one select an experimental design?

Ans.  The most popular experimental designs are two-level
designs. Why only two levels? There are a number of good
reasons why two is the most common choice; one reason is that
it is ideal for screening designs, simple and economical; it also
gives most of the information required to go to a multilevel
response surface experiment if one is needed.

The standard layout for a 2-level design uses +1 and -1
notation to denote the "high level" and the "low level"
respectively, for each factor. For example, the matrix below

Factor 1 (X1) Factor 2 (X2)
Trial 1 -1 -1
Trial 2 +1 -1
Trial 3 -1 +1
Trial 4 +1 +1

describes an experiment in which 4 trials (or runs) were
conducted with each factor set to high or low during a run
according to whether the matrix had a +1 or -1 set for the
factor during that trial. If the experiment had more than 2
factors, there would be an additional column in the matrix for
each additional factor. For example, a 3-factor full factorial
design is represented by the following matrix:

Order of Run Xl X2 X3

1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 -1 +1 +1
8 +1 +1 +1

DOE 1.6 What is a 2-level full factorial DOE?

Ans. A common experimental design is one with all input
factors set at two levels each. These levels are called 'high' and
"low', or '+1' and '-1', respectively. A design with all possible
high/low combinations of all the input factors is called a full
factorial design of experiments in two levels.

If there are & factors, each at 2 levels, a full factorial
DOE has 2* runs. Fig. 13 is a graphical representation of a 2-
level, 3-factor, 2° or 8-run full factorial DOE. This implies
eight runs (not counting replications or center point runs). The
arrows show the direction of increase of the factors. The
numbers 'l' through '8' at the corners of the design box
reference the "Standard Order" of runs (also referred to as the
"Yates Order", see Ref. [30]). When the number of factors is 5
or greater, a full factorial DOE requires a large number of runs
and is not very efficient. This is where and why there is a need
for a fractional factorial DOE.

DOE 1.7 What is a Center Point in a 2-level design?

Ans.  To introduce the concept of a center point, we again
refer to Fig. 13, a graphical representation of a two-level, full
factorial design for three factors, namely, the 2° design. As
mentioned earlier, we adopt the convention of +1 and -1 for
the factor settings of a two-level design. When we include a
center point during the experiment, we mean a point located in
the middle of the design cube, and the convention is to denote a
center point by the value "0".

DOE 1.8 What is a 2-level fractional factorial DOE?

Ans. A fractional factorial DOE is a factorial experiment in
which only an adequately chosen fraction of the treatment
combinations required for the complete factorial experiment is
selected to be run.

In general, we pick a fraction such as ¥, %, etc. of the
runs called for by the full factorial. We use various strategies
that ensure an appropriate choice of runs. Properly chosen
fractional factorial designs for 2-level experiments have the
desirable properties of being both balanced and orthogonal.
For example, the following matrix represents a 3-factor half-
factorial design:

Orderof Run X1 X2 X3 (XI*X2)
1 (new),5(0ld) -1 -1 +1
2 (new),2 (old) +1 -1 -1
3(mew),3(old) -1 +1 -1
4 (new), 8 (old) +1 +1 +1

A comparison of the half-fractional factorial design (new) with
that of the full (old, see DOE 1.5) with the help of Fig. 13
shows the balanced and orthogonal nature of the DOE concept.
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6. Design of Experiments Approach (Continued)

{ ——
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Fig. 13. A 2® 2-level, full factorial design; factors X7, X2, X3.

AC V-notch Energy (CVN) Example of DOE

Let us consider a. fictitious scenario where a Charpy
V-notch impact test team, Team A, reported the result (=19.31
fi-Ib) of a single-specimen test at 48.9 °C (120 °F).  The
question is:

What additional tests should Team A make in order to
report the result with an expression of uncertainty in the
form of a number with a 2-sided prediction 95% level of
confidence, i.e., 19.31 (2 ) fi-Ib?

To answer this question, we asked Team A to name
factors that they would consider to be highly important in
getting a good response variable (output Y/ ), which, in this
case, had already been selected, i.e., the Charpy energy, CVN.
We also asked Team A to give us numerical values of those five
factors when they did the single-specimen test. Within minutes,
Team A reported back with one real factor (X/) and four
fictitious factors (X2, ... X5) estimated from judgment:

X1 Temperature (deg. °F) 120 °F (48.9 °C)
X2 Manganese Sulfide ( %) 0.10 %

X3 Initial Strain ( %) 2.0%

X4 Mis-orientation (degree) 8.0 deg.

X5 Notch radius (mm) 0.25 mm

According to our approach, a 5-factor experimental design
requires 2% , or, 32 specimens for a two-level full factorial DOE.
If it is a 3-level one, the number goes up to 3%, or 243, which
makes the cost and time of testing prohibitively high. In both
cases, the alternative is a fractional factorial design. As shown
in Box, Hunter and Hunter [12, p. 410], the minimum number
of specimens, n , for a two-level k-factor fractional factorial
design is below: (Note: n is always equal or greater than k+1.)
k =3 4567 8 9...15 16...31
Min. no. of
specimens, n = 4

8 888 1616...16 32...32

Thus we advised Team A that with five factors, the minimum
number of additional tests we needed to get credible estimate of
the uncertainty was 8 , and Team A agreed. At that point, we
were ready to construct a S-factor, 9-run fractional factorial
DOE with the experimental data (Y7 = 19.31 ft-Ib) as the center
point and 8 additional tests yet to be performed as the corners
of a S-dimensional hypercube.

The last question we asked would be the hardest. We
asked Team A to commit to the numerical values of the high and
low settings of each factor with a request that they produce 8
specimens to the precise specifications of those ten settings.
For example, if they thought the manganese sulfide content
could vary between 0.05 % and 0.15 % around the center point
of 0.10 %, then they had to work hard to make specimens with
those contents. Let us imagine that, for this example of a
fictitious experiment, Team A were most cooperative in
responding to our "tough" request. The settings they considered
to be feasible and were willing to commit to were as follows:

Factor Title (Unit) Low Center High
X! Temperature (deg. °F) 80.0 120.0 160.0
X2 Manganese Sulfide ( %) 0.05 0.10 0.15
X3 Initial Strain ( %) 1.0 20 3.0
X4 Mis-orientation (degree) 1.0 80 150
X5 Notch radius (mm) 023 025 027

We immediately told Team A to get busy in order to
run those 8 tests and we gave Team A the design matrix as
shown in the upper left comer of Fig. 14. For example, the first
row of the matrix, (-1, -1, -1, +1, +1), corresponded to one of
the 8 tests Team A had to do with the following specifications:

Temp. Mn Sulfide Init. Strain Mis-orientation Notch Radius
80F 0.05 % 1.0% 15.0 deg. 0.27 mm

After several days, Team A reported results of their 8
additional tests as shown in the leftmost column of the matrix
table in Fig. 14. Note that we have placed the center point
values in red at the bottom of that matrix.

Using a 10-step exploratory-data-analysis routine of
DATAPLOT [25], we obtained results in the form of plots and
tables as shown in Figs. 14 through 19. In particular, Fig. 14 is
a display of the virtual data (consisting of 8 values of YI) as
an ordered set.

In Fig. 15, we display the results of fitting the
empirical first order model, eq. (12), with the coefficients,
Bos Bi, Bz, B3, Bs, Bs, Bz, Bus , etc., given in the upper left
(for B, ) and right (for the rest) cornrs of the plot. This plot
shows a ranking of the absolute values of all one-way and two-
way effects of the virtual data we envisioned for a 5-factor, 8-
run DOE. Note that the two two-term interactions, X2*X3 and
X2*X5 are extremely small in comparison with the other one-
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6. (Continued) interactions, X7*X2, XI*X3, XI1*X4, X2*X4, and X3*X5,
appear to be confounding. By observing that X7 appears in the

term effects. Moreover, we observe the following confounding confounding terms more often than X2, and the fact that the
main effects of X3 and X5 are much smaller than the three

phenomena:
dominant ones, we conclude it is reasonable for us to choose X4
Main Effect Confounding Factors and X/ as candidates for simplification.
X4 X1*x2
X1 X2*X4, X3*X5 Fig. 18 is a 2-parameter least square fit for X4 and X/,
X2 XI1*X4 and Fig. 19 is an uncertainty analysis, where the predicted mean
X5 XI1*X3 and the 95 % confidence intervals are reported. Note that the
analysis predicted an estimated mean (18.996) different from
This means we had to be careful in choosing which two factors the initial value (19.13) of the center point.
among the five as "key parameters" for constructing a simpler
model. Let us examine our results with some more plots. Fig. Conclusion: The real-plus-virtual 9-run DOE yielded an

16 is a main effects plot where X/ and X4 are clearly shown as estimate for the CVN at 48.9 °C (120 °F) to be 18.996

dominant, with X2 a close third. Fig. 17 is an interaction effects ) . o
plot where we verify that 5 of the 10 two-term (12.787), or 18.996 + 12.787 fi-Ib, with 95 % confidence.

5-factor 9-run DOE for Charpy Energy CVN (ft-Ib)

Step 1
P Step 1. Ordered Data Set
k=3l Y1 X1 X2 X3 X4 X6
40 2020 -1 -1 -1 +1 +1
1240 +1 -1 -1 -1 -1
- 800 -1 +1 -1 -1 + R e
I 3500 +#1 +#1 -1 +1 -1 x f
2 30— 2200 -1 -1 +1 +1 -1
3 1050 +1 -1 +1 -1 +1
z 1006 -1 +1 +1 -1 -1
% 3360 +1 +1 +#1 +#1 # .
g 20 - 1931 0 0 0 0 O x Ordered Data Set
% without center point
]
o x
> 10 - x X
3 Y — --
]
&
-4 i
0 —
X1: - - + + - - + + Ten‘l T(deg
x2: + + - - - - + + ‘n nl)
Xa: - + + - - . . - lni in (%)
e . : . : : : : : \'Jéﬁ.".’?’.'én‘?”

X1 = Temperature (80, 120, 160)deg F; X2 = Mn Sulfide (0.05, 0.10, 0.15) % ;
X3 = Initial Strain (1.0, 2.0, 3.0) % ; X4 = Mis-orientation (1.0, 8.0, 15.0) deg ;
X5 = Notch Radius (0.23, 0.25, 0.27) mm ; Values (-,0,+).

Fig. 14. First of 10 plots by DATAPLOT [25] showing a fictitious Charpy V-notch impact test data set in the upper
left corner as an ordered set for a fractional factorial orthogonal design of experiments (DOE, 5-factor, 8-run-plus-
center-point). Note the table at the bottom of the plot being the transposed DOE matrix with re-ordered columns.
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6. (Continued)

S-factor 9-run DOE for Charpy Energy CVN (ft-Ib)

w7 Step7. |Effects| Plot
,,,g * RS Factor  Effect
4412 : 17.4375
? 1424435 :7.7878 4 412
j 2414 : 5.362501
15 é 5413 :-1.8125
| 23445 : 0.1625
3415 : 0.112501
25+34 :0.0375
g 10 —
= L] 10 142435
s , 2 214
L ] 5 5413
0 L d L] =Y
4 1 2 s 2 3 25

X1 = Temperature (80, 120, 160) deg F ; X2 = Mn 8ulfide (0.05, 0.10,0.15) % ;
X3 = Initial Strain (1.0, 2.0, 3.0} % ; X4 = Mis-orientation (1.0, 8.0, 15.0) deg ;
X5 = Notch Radius {0.23, 0.25, 0.27) mm ; Values{-,0,+).

Fig. 15. Seventh of 10 plots by DATAPLOT [25] showing a ranking of the absolute values of all one-way and two-way effects
of a fictitious Charpy V-notch impact test data set for a fractional factorial orthogonal design of experiments (DOE, 5-factor, 8-
run-plus-center-point). In particular, we observe the confounding of a two-way interaction, X7-X2, in the dominant factor, X4 ,
and two two-way interactions, X2-X4 and X3-X35, in the second dominant factor, X/. A competing third dominant factor, X2
(MnS content), is a surprise as discussed in the text.

sop3 S-factor 9-run DOE for Charpy Energy CVN (ft-1b)
Step 3. Main Effects

2
= L
s ]
3
=z
5 -
f ’
B r
é = ! -
g -
:/ g
; "vv ‘l
3 T ¢
H
° - 7.7875 5300501 0112501 ‘rnm 48025
o~ K UL ... SR .. 2
'X|. -XZ. .Xl. -Xl. -B.
X1 = Temperature (80, 120, 160)deg F; X2 = Mn Suifide (0.05, 0.10, 0.15) % ;
X3 = Initial Strain (1.0, 2.0, 3.0) % ; X4 = Mis-orientation (1.0, 8.0, 15.0) deg ;
XS5 = Notch Radius {(0.23, 0.25, 0.27) mm ; Vaiues (-,0,+).

Fig. 16. Third of 10 plots by DATAPLOT [25] showing the main effects of a fictitious Charpy V-notch impact test data set for a
fractional factorial orthogonal design of experiments (DOE, 5-factor, 8-run-plus-center-point). Note the dominance of X7 and X4.
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6. (Continued)

S5-factor 9-run DOE for Charpy Energy CVN (ft-lb)
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. . AN
Interaction Effects Matrix ey [T
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X1 = Temperature (80, 120, 160)deg F; X2 = Mn Sulfide (0.05, 0.10, 0.15) % ;
X3 = Initial Strain {1.0, 2.0, 3.0) % ; X4 = Mis-orientation {1.0, 8.0, 15.0) deg ;
X5 = Notch Radius (0.23, 0.25, 0.27) mm ; Values (-,0,+).

Fig. 17. Fourth of 10 plots by DATAPLOT [25] showing the interaction matrix of a fictitious Charpy V-notch impact test data set for a
fractional factorial orthogonal design of experiments (DOE, 5-factor, 8-run-plus-center-point). The boxes on the main diagonal are re-plots of
the resuits of Fig. 16. Note the presence of several two-way interactions in this plot, namely, X7-X2, XI1-X3, XI-X4, X2-X4, and X3-X5.

LEAST SQUARES MULTILINEAR FIT

9
2

SAMPLE SIZE N
NUMBER OF VARIABLES

REPLICATION CASE

REPLICATION STANDARD DEVIATION = 1.289501
REPLICATION DEGREES OF FREEDOM = 4
NUMBER OF DISTINCT SUBSETS = 5
PARAMETER ESTIMATES (APPROX. ST. DEV.) T VALUE
1 A0 18.9956 ( 1.091 ) 17.41
2 Al X1 3.89375 { 1.157 ) 3.365
3 A2 X4 8.71875 { 1.157 } 7.534
RESIDUAL STANDARD DEVIATION = 3.273003
RESIDUAL DEGREES OF FREEDOM = 6

REPLICATION STANDARD DEVIATION 1.2895007133

REPLICATION DEGREES OF FREEDOM 4
LACK OF FIT F RATIO = 17.3273 = THE 98.9292% POINT OF THE
F DISTRIBUTION WITH 2 AND 4 DEGREES OF FREEDOM

Fig. 18. Sensitivity analysis of the 5-factor, 8-run-plus-center-point fictitious Charpy V-notch
impact test data set using a two-parameter (X1, X4) least square fit routine of DATAPLOT [25].
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6. (Continued)

Uncertainty Analysis

A0 = 18.99556
Al = 3.89375
A2 = 8.71875
Resdiual sD = 3.273003
Resdiual DF =6
Variance (Y) = 24.5799
SD(Y) = 4.957812
Upper 95% Confidence Bound for Y = 31.7831
Lower 95% Confidence Bound for Y = 6.208013

Fig. 19. Results of an uncertainty analysis generated by DATAPLOT 10-step code [25] showing that the predicted mean (40) of the
fictitious Charpy V-notch data setis 18.996 fi-lb and the estimated variance is 24.58, which will be used in computing variance of K
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Fig. 20. Comparison of the estimated mean and standard deviation of Charpy V-notch energy at 120 °F (48.9 °C) based on a 5-factor,
9-run DOE-generated fictitious test data for ASTM A517 Grade H steel plate (620 MPa min. room temperature yield strength), with
Charpy energy data of a thermal shock experiment test cylinder, TSE-5A, of comparable yield strength (see Fig. 1 based on Cheverton
et al [4]). Note that none of the TSE-5A data (black dots and circles) was plotted with an expression of uncertainty as the fictitious

DOE-generated result, 19.0 (12.8) fi-1b, or, 25.8 (17.4) J, plotted in red.
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6. (Continued)
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Comparison of the estimated mean, standard deviation, and predicted 95 % confidence intervals of Charpy V-

notch energy at 120 °F (48.9 °C) based on a 5-factor, 9-run DOE-generated fictitious test data for ASTM A517 Grade H
steel plate (620 MPa min. room temperature yield strength), with the 3-heat, 9-specimen with replicates, Charpy V-notch
energy data at 120 °F (48.9 °C) as reported by Interrante and Hicho in 1973 [10] and reproduced in Tables 3-6 and Fig. 7
of this paper. Note that if the 9 experimental data points of 1973 were treated with equal significance, the sample average
and standard deviation, 19.31 and 8.09, respectively, differ from those estimated using the fictitious DOE-generated data.
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7. AMETHODOOGY FOR ESTIMATING VARIANCE OF
FRACTURE TOUGHNESS ( Ki¢)

The estimated Charpy energy at 48.9 °C (120 °F) of the
last section, rounded to one decimal, equals 19.0 (12.8) ft-lb, or
25.8 (17.4) J, and is plotted in Fig. 20 as a data point with an
error bar to illustrate its uniqueness among a collection of
experimental data reported by Cheverton et al [4]. In addition,
the fictitious 5-factor, 9-run DOE result is plotted in Fig. 21 as
an overlay on Fig. 7 to illustrate the value of a 9-replicate
experiment involving three heats as represented by factor X2
(manganese sulfide). Instead of labelling each heat with the
Charpy energy data as reported by Interrante and Hicho [10],
Team A in this fictitious experiment went to the chemical
composition of each heat. The resulting estimate is therefore
more convincing in explaining the heat-to-heat variability with a
physical basis.

Let us return to eq. (4) of Section 3 to estimate the
variance of Kj. from the estimated variances of &;, and CVN.
Since eq. (4) is strictly valid only for the units of o3 and CVN

to be ksi and fi-1b, respectively, we shall use the following
estimates of &;, and CVN and their variances to calculate the
variance of K,c (ksi-in"?) at 120 °F (48.9 °C):

Var(o; ) = 50.41 (ksi)’,

CVN=19.0 ft-Ib, sd(CVN)= 4.96 ft-Ib, Var(CVN)= 24.60 (ft-Ib)’.

o, = 90.0ksi, sd(o;)="7.10ksi,

Substituting the above into eq. (4), we obtain Var(K},)
140.20 , which implies sd (K;) = 11.84 ksi-in'?. Using
the Wullaert-Server formula [16] to calculate K;. , we also
obtain K;. = 86.84 ksi-in'? . Since the number of specimens
of the yield strength data [22] is 21, and that of the fictitious
Charpy energy data is 9 , we choose the smaller of the two
sample sizes to find the critical value of the ¢ distributions, i.e.,
£0.025, 9) = 2.262. The half-interval for K. equals 2.262 *
11.84 = 26.78, so the estimated value of X;. at 120 °F (48.9 °C)
with an expression of uncertainty is 86.84 (26.78) ksi-in'? , or,
95.48 (29.43) MPa-m'"”. A plot of this estimate with an
error bar is given in Fig. 22, which is an overlay of Fig. 3 (after
Cheverton et al [4]).

250 T T T T T T ]
- E" | aswe sect xi From K,, (ksi) = 2.1(c,*CVN)*2, with
oo | @ K rses = 90 ksl, and CVN = 19.0 ft-Ib,
3 Ku ’ TSE-5A We obtaln, K, = 86.84 (26.78) ksl-(ln)"’
_ A Ky s = 95.48 (29:43) MPa-(m)"?
E A K, - 7
> 150 |- /
§ v v/
v o 0 S N
0o | AV o ¥ o L Predicted
& 5 ® Ve VA 2 __] 1 v__ 95%
‘—‘V/ _ confidence
-~ i n .
50 |- A ~ - - i intervals
—_——— : (Based on a fictitious
| 9-run design of
0 1 [ 1 L 1 I experiments on
-100 .75 -50 .25 0 25 : 50 75 Charpy energy data)
T-RTNDT, TEMPERATURE (°C} I 38.9 C (= 48.9 C - 10.0 C)
Fig. 22.  Plot of an estimated static crack initiation toughness ( K. ) value with an expression of uncertainty (error bar in red) based

on fictitious design-of-experiments(DOE)-generated results at 120 °F

(489 °C), in a K vs. (T - RTNDT) diagram where K;, and K|,

data from three thermal shock experiment (TSE) test cylinders, TSE-5, 5A, and 6, and ASME Section XI K;. and K, curves overa
broad range of temperature shift, (7 - RTNDT), were plotted by Cheverton et al [4] (see Fig. 3 in this paper). Note that all
experimental data or design curves are for comparable steels having an room temperature yield strength of about 90 ksi (620.6 MPa).
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8. SIGNIFICANCE AND LIMITATIONS

This paper introduces two methodologies for
estimating (a) the Charpy V-notch impact energy, C¥N, with an
expression of uncertainty, and (b) the static fracture initiation
toughness, K. , also with an expression of uncertainty if (a) is
known together with the variance of either the yield strength,
a;, or the Young's modulus E.

The first methodology uses the concept of a statistical
design of experiments (DOE) that calls for an engineer to use
experience and judgment in planning a series of tests to
overcome the problem of Charpy data scatter due to heat-to-
heat variability. The second extends the results of the first by
introducing error propagation formulas and a functional
relationship between K). and the combination of o; and
CVN.

Both methodologies are significant in accomplishing
two objectives in engineering and materials science, namely, to
resolve the data scatter problem of a material characterization
task such as the Charpy test, and to report the results of such a
task with an error bar. As shown by Fong, et al in two recent
articles on failure analysis [32, 33], the availability of an error
bar in material property measurements such as yield strength,
ultimate tensile strength, buckling strength, and fracture
toughness provides a basis for using a non-deterministic and
physically more realistic model to simulate progressive
weakening and partial or complete failure of a structure or
component in an abnormal or aging-related collapse scenario.

Clearly, the two methodologies as applied to Charpy
energy and fracture toughness estimation are not without

-limitations. For the first methodology, a primary limitation
stems from the difficulty of reducing a large list of test-related
factors to a small and manageable number. The second and
perhaps more serious limitation is the judgment-based
requirement of high and low settings of each factor, making the
experimental runs more difficult and the analysis outcome less
rigorous when the settings were not achieved.

For the second methodology, the user needs to be
aware that the validity of the approximate error propagation
formulas requires the variables to be statistically independent.
Furthermore, the functional form of the fracture toughness has a
limited range of validity and is not unique, because the formulas
given by ASM [12] came from correlations of experimental data
of specific materials, specimen geometries and loading
configurations. Nevertheless, as long as the user is aware of
those limitations and interprets the results of the analysis
accordingly, we believe the two methodologies are useful
additions to the engineer's tool box, as illustrated by several
other applications [34, 35] scheduled for presentation at this
conference.

9. CONCLUDING REMARK

By introducing a statistical concept of the design of
experiments (DOE), we develop a methodology to address the
data scatter problem of the Charpy V-notch impact test, which is
largely due to the heat-to-heat variability of the test specimens.

We illustrate the DOE-base methodology by an example using a
fictitious set of experimental data and succeded in obtaining an
estimate of the Charpy energy with an expression of uncertainty
(error bar).

By using error propagation formulas in the statistics
literature, we successfully extend the results of the DOE-based
methodology to an estimation of the variance of the static
fracture initiation toughness, K,.. This second methodology
also leads to an estimation of K; with an expression of
uncertainty (error bar).
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