User's Guideto
NIST Fingerprint | mage Software
(NFIS)

NISTIR 6813

Michael D. Garris (mgarris@nist.gov)
Craig . Watson (cwatson@nist.gov)

R. Michael McCabe (mccabe@nist.gov)
Charles L. Wilson (cwilson@nist.gov)
National Institute of Standards and Technology
Bldg. 225, Rm. A216

100 Bureau Drive, Mail Stop 8940
Gaithersburg, MD 20899-8940

ACKNOWLEDGEMENTS

We would like to acknowledge the Federal Bureau of Investigation who provided funding and
resources in conjunction with NIST to support the development of this fingerprint image
software.

NOTE TO READER

This document provides guidance on how the NIST Fingerprint Image Software (NFIS) is
installed and executed. Its content and format is one of user's guide and reference manual. Some
algorithmic overview is provided, but more complete descriptions are found in the cited
references.

Due to the size of this document, it is recommended the reader use the electronic PDF version
provided on the distribution's CD-ROM. The Table of Contents provides the reader a map into
the document, and the hyperlinks in the electronic version enable the reader to effectively
navigate the document and locate desired information. These hyperlinks are unavailable when
using a paper copy of the document.

il

TABLE OF CONTENTS

T A I 2 (@ 5 1 [0 1 O] TSP 1
2. INSTALLATION GUIDE ...ttt sttt et st b e s bt e ae e e e b e sb e st e s beeaeene e e aneeseen 4
2.1 SOFtWAre INSLATLATIONeevtieiiieieeiecieeeee ettt et e e et e st e et e et e enbessaessaesnnesseesseenseensennsens 4
2.2 Data and TestiNg DIrCCIOTIES.eeuiiiiiiiertiett ettt ettt sae ettt et ebe et et et estesbeesbeenees 5
3. PACKAGES. ... e R R R Rt e bRt R Rt ene e e re e 7
3.1 PCASYS — Fingerprint Pattern ClassifiCationooioiiiiirieieieee e 7
3.2 M NDTCT — MinUtiae DETECHIONccuveetieiieiieieetesiesitesiteteeteeeeesseesteeseessesssessaessaesseesesssesnsesseesseensessenes 9
3.2.1 Definition Of MINULIAC.oiiiriiiiiit ittt sttt et st sae e bt et et esteee e ebtesbeesbeeees 9
3.2.2 Latent FINZEIPIINTS ...eeoueeiiiieitieitierie ettt ettt ettt ettt e bt e bt ettt e e bt e sbe et e e st e esteenbeenbeeneeeneeene 11
33 AN2K — Standard Reference Implementationccecierieriercieiiieniesieie et ees 12
3.4 | MGTOOLS — General Purpose Image ULIIItIEScc.ceueeuiiieieieieie et 13
N S L I =1 1Y S T USSR 15
4.1 POASY S .ttt ettt bbbttt b e a e bbbt bttt st b et ebt et en
4.1.1 AlOrithmic DESCIIPLION.c..eiiiiiiiitieitiete ettt ettt et st sb e bt et ettt esaeesbe e beeteenneas
4.1.1.1 Segmentor [Src/ i b/ pcal sgmt. C; SOMLE ()] cooiieee e
4.1.1.2 Image ENRanCEMENLtc.coiiiiiiiiiiiiiiiii ettt ettt st eae s
4.1.1.3 Ridge-Valley Orientation Detector [src/ | i b/ pca/ridge.c; rors(), rgar()] ..
4.1.14 Registration [Src/ i b/ pcal r92a. C; TF928()] oot
4.1.1.5 Feature Set Transformation [src/ | i b/ pca/trnsfrm c;
4.1.1.5.1 Karhunen-Loeve Transform..........co.coccoeoiiiiiiniininineneceenseseecceeeeeeee

4.1.1.5.2 Regional Weights [src/ bi n/ opt rws/ opt rws. c]
4.1.1.53 Combined Transform [sr ¢/ bi n/ nkt ran/ nkt ran. c]

4.1.1.6 Probabilistic Neural Network Classifier [src/ i b/ pca/ pnn. c; pnn()] .

4.1.1.7 Multi-Layer Perceptron Neural Network Classifier..........coeoveiiiririnicniiiiiienienceeeeesesieeceeeecee e

4.1.1.8 Auxiliary Classifier: Pseudo-ridge Tracer [src/ | i b/ pca/ pseudo. ¢; pseudo()]

4.1.1.9 Combining the Classifier and Pseudo-ridge OUIPULS..........cceriirieieieiieicreeeee e
4.1.2 COMPULING FEATUIES ...c.veeuvieiiieiieeiietieiteieeieste st e st ete et e eatesteesseenseesseesaeassensaenseensesnsesseesseenseaseensennsenn

4.1.2.1 Make the Orientation AIraysc..cocceeruenee.

4122 Make the Covariance Matrix.....
4123 Make the Eigenvalues and Eigenvectors ...
4124 Run the Karhunen-Loéve Transform.............
4.1.3 Training the Neural Networks..........cccceveenenncnn
4.1.3.1 Optimizing the Probabilistic Neural Network
4.13.1.1 Optimize the Regional Weightscc...c.....
4.13.1.2 Make the Transform MatriXcccccecererenienieieiineneneneeeeeeeenene
4.13.13 Apply the Transform Matrixcocoeveriivierrininineneeeecceeene
4.13.14 Optimize the Overall Smoothing Factor
4132 Training the Multi-layer Perceptron Neural NetWork...........cocoiiiiiieiiiiiiiiireseeeee e
4.1.4 RUNNING PCASYS.. ..ottt ettt ettt et et e esbeessessbesseenseenseensesnsesneesseanseensennsens
4.14.1 PCASYS Data FIleScveueereuirieiiieieieieinicenteittetet ettt sttt sttt sttt sn e be e
4.14.2 COMUMANGS......c.veieieiieiieitetet ettt ettt a et be ettt et et ekt e bt et e b s et et et eatebeebe st b et et eneeneeaeas
4.142.1 Classifier Demos..........cccoceeeveervenennnee
4.14.2.2 Training (Optimization) Commands....
41423 Utility Commands.....
4143 Running the Classifier.........cccceeeeeveinineneneee
4.143.1 Graphical and Non-graphical Versions..................

41432 Default Parameters and Specifying Parameters
41433 OULPUL FILE .ottt s
4.1.5 Classification RESUILScoouiiiiiiiiiiiie ettt ettt st e e
4.2 IV DT CT ..ttt ettt ettt b et e eh e e e e a e e e ek e ebeee e es e entems e s e seeaeeeeebeeneeneeneensesseeteaneeneennans
42.1 Input ANSINIST File[src/lib/an2k/fntstd.c; read ANSI _N ST file()] 45
4.2.2 Generate Image Quality Maps [src/li b/l fs/ maps.c; gen_image nmaps()]ccoeenn. 45

il

4.2.2.1 Direction Map [src/lib/1fs/dft.c; dft_dir_powers()] . 45

4222 Low Contrast Map [src/ i b/1fs/block.c; low _contrast_bl 0ck()] .cccooerinnennennencnee 49
4223 Low FlowMap [src/lib/Ifs/maps.c; gen_initial _maps()] i 51
4224 High Curve Map [src/ i b/l fs/ maps.c; gen_high_curve_map()] .o 52
4225 QualityMap [src/lib/lfs/quality.c; gen_quality_map()] e 53
4.2.3 Binarize Image[src/lib/l1fs/binar.c; binarize_ V2()] .o 54
424 Detect Minutiae [src/li b/l fs/mnutia.c; detect_mnutiae V2()] cccooeveeevennnn. 55
4.2.5 Remove False Minutiae [src/|i b/ fs/renpve.c; renove false mnutia V2()] .56
4.2.5.1 Remove Islands and Lakes [src/ | i b/ | fs/renove. c; renove_i sl ands_and_| akes()] ..56
4252 Remove Holes[src/lib/lfs/renmove.c; remdve_hol €S()] i, 57
4253 Remove Pointing to Invalid BIOCKcccociiiiiniiniiiiiiiiieccr et 57
4254 Remove Near Invalid BIOCKS.cc.eiuiiiiieieieieesee ettt s 58
4255 Remove or Adjust Side MINULIAEoeeiruiriietiitiieeee ettt et s e e eneeneas 59
4.2.5.6 Remove Hooks [src/lib/lfs/renmove.c; rendve_hOoOKS()] . 60
4.2.5.7 Remove Overlaps [src/li b/l fs/remove. c; renmove_overl aps()] «eennieneieneeens 60
42.5.8 Remove Too Wide Minutiaec [src/ i b/ | fs/renmove.c; renove_nal formations()] 61
4259 Remove Too Narrow Minutiae [src/ | i b/ | fs/remove.c; renove_pores_V2()] ..o 62
4.2.6 Count Neighbor Ridges [src/lib/Ifs/ridges.c; count_mnutiae_ridges()].... 63
4.2.7 Assess Minutia Quality [src/lib/1fs/quality.c; conbined_mnutia_quality()] ... 63
4.2.8 Output ANSI/NIST file[src/|ib/an2k/fntstd.c; wite ANSI _N ST file()] 64
5. REFERENQCES. ...ttt ettt h e b e bt e be s e e st e sae e sae e be e bt eat e eaeeebe e saeesaeesaeesaeesaeenneanns 66
APPENDIX A. MLP TRAINING OUTPUT ...ttt et se e s e st sbe bbb s snee e 69
A.1 Explanation of the output produced during MLP training
AT T PatterN-WEIZHES ..oueeieieiiieii ettt sttt et ettt e st e st e st e enseensesnsessaesseeseenseensesnsesssanseeseensenn
AL 1.2 EXPlanation Of OULPUL.........coecuiiiiiieeiieiieeeieesieeeieesteesteesteessaeesbeessaeessseessseessseenssessssassseensseensseesssesnsees
YN B R (5 T (<) OO USSP U RRRPPR
A.1.2.2 Training Progress........coieevverieieinirineneneneneeeeeeeceesie e
A.1.2.2.1 Second progress linesccoeeeeerenenienienieceieceeseeeeene
A.1.2.2.2 First progress lines.........ocevveveeeirineneneeeeeceeeieeeene
A.1.2.2.3 Pruning 1ines (OPLIONAL)couiiuiiiiiiieie ettt ettt ettt eb et e e st eb et sb et e b e ee e nene
A.1.2.3 Confusion Matrices and Miscellaneous Information (Optional)...........ccceeiririiirenienienee e 76
A.1.2.4 Final Progress LINeSccoceovevieieiiinienenieneneieieeeeecse e
A.1.2.5 Correct-vs.-Rejected Table (Optional)

AL1.2.6 FINAL INFOTMALIONtitiiiiiiietieiesieetet ettt ettt ettt et e st e e st e en b e bt eatesbeente st entesseensesseensesaeensesneensesseensas
APPENDIX B. REFERENCE MANUAL ...ttt s sb e e 82
LIST OF TABLES
Table 1. NFIS utilities listed DY PACKAZEccveeeiuieiiieeiieiieeie ettt et e e teesteessbeessbeeesseessbaeenseesnseesnsaennns 5
Table 2. PNN CONTUSION MALIIX....uveeitiierieeitieesieeitieeseeestteesteesteessseessseessseessseessssessssesssesssssessesssssessssessssessssessssessssees 43
Table 3. MLP CONTUSION MALTIX ...vveiitiririieeiieesiieeiteeeiteeeteeesteeeteeesseesseessseessseesssessssessssesssseessseesssessssesssseesssessssesnsseens 43

v

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

LIST OF FIGURES

Hierarchical organization of teSting dir@CtOTY.cceerueriierierierieieeieeeese ettt ste st e e eesseesseesesaeennenns 6
Example fingerprints of the six pattern-level Classes.........ocvvierieriieciiniericeee e 8
Minutiae: bifurcation (square marker) and ridge ending (circle marker)...........ccoocvevieierciinieniienieeee e 9
MINULIAE OTTEIEATION. ...euttitietietieiteeite it te sttt ettt e et ea e st e b et e ea e e st e sbee st e e et emtesaeesbeenbeenbeenbeemtesnnesmeenee 10
Latent fingerprint (left) with matching tenprint (right).c.ccooieriiiiiiii e 11
Fingerprint used to demonstrate the fingerprint classification process (S0025236. WSQ).....ccceceeveeneenen. 16
Steps in the fingerprint SEZMENTALION PIOCESS. ...eevvirverrierrreriietieteetesteesseesseessesresseesseesseesesseesseesseesseessens 17
The sample fingerprint after SEZMENtALION.c.eeruiriiiriieiieiiereeie ettt et enbeeeaesnnesneeens 19
Sample fingerprint after eNhaNCEMENL.cceeriieriiiiieieiee ettt seeesseenseeseenneas 21
Pattern of slits (i = 1-8) used by the orientation deteCtor.c.eeevuieriieriiieriieeieeeie e 21
Array of local average orientations of the example fingerprintcooceeveroiiiiiieniiniieeeee 23
Left: Orientation array Right: Registered orientation array.c.ccceceereereeriereenieneenieeie e sieencesieenees 26
Absolute values of the optimized regional WEIghLS.coviiiiiiiiiiiiieee e 28
PNN output activations for the example fINgerPrint.cceevueeiirieiieriereeee e 30
MLP output activations for the example fINGErPrint..........ccceecuieeiieeiieiiiienie et sre e 30
Left: Pseudo-ridges traced to find concave-upward lobe. Right: Concave-upward lobe that was found. 32
Error versus reject curves for PNN and MLP classifiers and hybrid combinations..........c.ccecceeeveeennene. 43
MiINULIAE ELECTION PIOCESS. v.uvveuvrerrreirreeresteertterteetestesseesseesseasseassesseesseeseesesssesssesseessesnsesssssnsesssesseessesnsens 44
Adjacent blocks with overlapping WindOWS.c.cevierierieriieie ettt ee e seeseenseas 46
Window rotation at incremental OTIENTATIONS.eevervieriierieeieeieeieseeeeeieeeeestesteebeesesaeseesseesseenseensenns 47
DFT Waveform fr@QUENCIES.ccuvieiieiiieeiiecieeciee ettt et e et e s teesaeeseteesaaeessbeessaeesssaensseessseensseesssaensseens 48
DATECtiON MAP TESUILS. ...eeivieiiiiiiie et eteeectee et e et e et e et ee s teesbeesbeessbeessseeasseessseeasseessaensseessseensseesnseensseens 49
LOW CONLIaSt MAP TESUILS.veiiiiieeiieiiieeiieetieerteeeteeetteeteeeteesteeeteestaeeseesateeeseessseeasseessseesnseesnseenseennns 50
LOW flOW MAP TESUILS. ...uvvieiiiiiieeiie ettt etee ettt e et e et e st eebeesbeeeteesateeesseesnseeanseesnseesnseesnseeanseennes 51
High CUIVE MAP TESULLS. ..eoueiiitiiiieiet ettt s b e b et ettt et et eebeesbeenbeenneas 52
QUALTLY TNAP TESUILS. 1..veieiiiieiie ettt eee ettt et e et e st e e e bt e sebeesnbeessbeessseessseesssaessseeanseesnseesnseesnseeanseennns 53
Rotated grid used to binarize the fingerprint IMAZE.ccveriiecierierieeeie e 54
BiINArization TESUILS.ceetiriiriiriiiietieeei ettt st sb ettt et et s bt bt et et e besaesbe bt ebtennens 54
Pixel pattern used to detect ridge eNAINGS.cc.eevvieriieiieieriei ettt sse e e e enneas 55
Pixel patterns used to deteCt MINULIAC.eevereieriieiieeeeieetteie e eteetesee et e e eaeseesseesseeneeeseeeseenseenseensens 56
Removal of islands and 1aKes.........c..coeieiiiiiniiiine et 56
ReMOVAL OF NOIES. ...ttt ettt ettt b ettt 57
Removal of minutia pointing to an invalid blOCK.ccccoiiiiiiiiiii e 57
Removal of minutia near invalid BIOCKS.cooiiiiiiiiiiiii e 58
Removal or adjustment of minutiae on the side of a ridge or valley.cccccooeiviiiiniiniiiiiieeeee 59
REMOVAL OF NOOKS. ..t ettt st sttt et e sae e be et enneas 60
REMOVAL OF OVETLAPS. ..vieiiieiiieciie ettt et e st e et e e s te e stteesaaeessbeessaeesssaensseesssaansseesnseennseens 61
Removal of t00 Wide MINULIAC.oouiiitieiiiiieie ittt sttt et e b e b e b enaeas 61
Removal of t00 NAITOW MINULIAE.cc.ereeuieieiirentieteeieeit ettt ettt ettt sbeeanens 62
IMINULIAE TESULLS. ..euviteiieiieitetetete sttt ettt ettt s b bt e bt et e st et e st e s bt sbeebt et et e seeebesueebeennens 65

vi

User's Guideto NI ST Fingerprint | mage Software (NFIS)
M. D. Garris, C. I. Watson, R. M. McCabe, and C. L. Wilson

ABSTRACT

This report documents a public domain fingerprint image software distribution developed by the
National Institute of Standards and Technology (NIST) for the Federal Bureau of Investigation
(FBI). The software technology contained in this distribution is a culmination of a decade’s
worth of work for the FBI at NIST. Provided are a collection of application programs, utilities,
and source code libraries. These are organized into four major packages: 1. PCASYS is a neural
network based fingerprint pattern classification system; 2. M NDTCT is a fingerprint minutiae
detector; 3. AN2K is a reference implementation of the ANSI/NIST-ITL 1-2000 "Data Format for
the Interchange of Fingerprint, Facial, Scar Mark & Tattoo (SMT) Information" standard; and
4.1 MGTOOLS is a collection of image utilities, including encoders and decoders for Baseline and
Lossless JPEG and the FBI’s WSQ specification. This public domain source code distribution is
written in “C”, and has been developed to compile and execute under the Linux operating system
using the GNU gcc compiler and grneke utility. The source code may also be installed to run on
Win32 platforms that have the Cygwin library and associated tools installed. A Reference
Manual describing each program in the distribution is included at the end of this document.

Keywords. ANSI/NIST, FBI, fingerprint, image, JPEG, minutiae detection, neural network,
pattern classification, public domain software, WSQ, wavelet scalar quantization

1. INTRODUCTION

This report documents a public domain fingerprint image software distribution developed by the
National Institute of Standards and Technology (NIST) for the Federal Bureau of Investigation
(FBI). Its content and format is one of user's guide and reference manual. While some
algorithmic overview is provided, the cited references contain more complete descriptions of
how fingerprint software technologies work.

As background, the FBI has been utilizing computer technology to help capture, store, and
search fingerprint records since the late 70's. In the early 90's, they began developing a system to
enable the electronic exchange of fingerprint records and images by law enforcement agencies
and to handle electronic transactions with these agencies. This new system is called the
Integrated Automated Fingerprint Identification System (IAFIS) and it is currently in operation
in Clarksburg, West Virginia.

IAFIS has been primarily designed to process fingerprints that have been captured at a booking
station of a jail or that are being submitted for a civilian background check. These types of
fingerprints are typically taken by inking and rolling the fingertip onto a paper fingerprint card or
captured from the surface of a live scan device. Traditionally these fingerprints have been
referred to as tenprints, as all ten fingers are typically captured.

Over the years, the FBI has accumulated more than 40,000,000 fingerprint cards on file, and they
handle up to 60,000 fingerprint-related requests a day. This demand originated from the need to
support criminal investigations, but through the successful development and deployment of
technology to meet this demand, legislation continues to be passed progressively increasing the

demand for conducting civilian checks and clearances. The workload, which was once 80 %
criminal and 20 % civilian, is quickly approaching 50 % criminal and 50 % civilian, and demand
is projected to rapidly grow. In light of this situation, the FBI must continue to pursue the
development and exploitation of new technologies, and NIST is partnered with the FBI in
support of this pursuit.

NIST has a long-standing relationship with the FBI. Researchers at NIST began work on the
first version of the FBI's AFIS system back in the late 60's. Over the years, NIST has conducted
fingerprint research, developed fingerprint identification technology and data exchange
standards, developed methods for measuring the quality and performance of fingerprint scanners
and imaging systems, and produced databases containing a large repository of FBI fingerprint
images for public distribution.[1]-[30]

The software technology contained in this distribution is a culmination of a decade’s worth of
work for the FBI at NIST. Provided are a collection of application programs, utilities, and
source code libraries. These are organized into four major packages (PCASYS, M NDTCT, AN2K,
and | MGTOCLS). The first two are software systems.

The first package, PCASYS, is a pattern classification system designed to automatically
categorize a fingerprint image as an arch, left or right loop, scar, tented arch, or whorl.
Identifying a fingerprint’s class effectively reduces the number of candidate searches required to
determine if a fingerprint matches a print on file. For example, if the unknown fingerprint is an
arch, it only needs to be compared against all arches on file. These types of “binning” strategies
are critical for the FBI to manage the searching of its fingerprint repository. Section 3.1
describes this package in greater detail, and Section 4.1 provides an algorithmic overview and
functional description of the PCASYS system.

The second package, M NDTCT, is a minutiae detection system. It takes a fingerprint image and
locates features in the ridges and furrows of the friction skin, called minutiae. Points are
detected where ridges end or split, and their location, type, orientation, and quality are stored and
used for search. There are 100 to 200 minutiae on a typical tenprint, and matching takes place on
these points rather than the 250,000 pixels in the fingerprint image. Section 3.2 describes this
package in greater detail, and Section 4.2 provides an algorithmic overview and functional
description of the M NDTCT system.

Techniques of fingerprint pattern classification and minutiae detection typically share some
functionality. For example, both applications typically derive and analyze ridge flow within a
fingerprint image.[31] This is true of PCASYS and M NDTCT, and both conduct image
binarization of the fingerprint as well. It should be noted that these systems were developed
independently of each other, so although these processing steps are in common, different
algorithms are applied in each. Further study is required to determine if one system's algorithmic
approach is better than the other.

The most significant contribution NIST has made to the FBI, and to the fingerprint and law
enforcement communities at large, is the development of the ANSI/NIST-ITL 1-2000 "Data
Format for the Interchange of Fingerprint, Facial, Scar Mark & Tattoo (SMT) Information"
standard.[30] This standard defines a common file format, available to law enforcement
agencies in the U.S. since 1986, for the electronic exchange of fingerprint images and related
data.[9] Today, it supports other types of images as well, including palmprints, mugshots, scars,

and tattoos. This standard has been adopted by all major law enforcement agencies in the U.S.,
including the FBI, and has strong support and use internationally. IAFIS is implemented on this
data interchange standard. For the purposes of abbreviation, this standard will be referred to in
this documentation as the "ANSI/NIST" standard.

The third package, AN2K, contains a suite of utilities linked to a reference library implementation
of the ANSI/NIST-ITL 1-2000 standard. These utilities facilitate reading, writing, manipulating,
editing, and displaying the contents of ANSI/NIST files. Section 3.3 describes this package in
greater detail.

The last package, | MGTOOLS, is a large collection of general-purpose image utilities. Included
are image encoders and decoders supporting Baseline JPEG, Lossless JPEG, and the FBI’s
specification of Wavelet Scalar Quantization (WSQ). There are utilities supporting the
conversion between images with interleaved and non-interleaved color components; colorspace
conversion between RGB and YCbCr; and the format conversion of legacy files in NIST
databases. Section 3.4 describes this package in greater detail.

The source code in this distribution has been developed using the GNU project's gcc compiler
and gmake utility.[32] The software has been tested under LINUX, SGI Irix, and under
Windows NT using the Cygwin library [33] and associated tools.'

The baseline JPEG code in src/lib/jpegb uses the Independent JPEG Group’s
compression/decompression code. For details on its copyright and redistribution, see the
included file src/ 1 i b/ j pegb/ READVE. All other code is public domain, and any portion of it
may be used without restrictions because it was created with U.S. government funding. This
software was produced by NIST, an agency of the U.S. government, and by statute is not subject
to copyright in the United States. Recipients of this software assume all responsibilities
associated with its operation, modification, and maintenance. To request a copy of this software
free of charge on CD-ROM, please send an email request to the authors.

In this document, Section 2 provides instructions for installing and compiling the distribution’s
source code(); Section 3 discusses each package in greater detail; Section 4 presents an overview
of the algorithms used in the PCASYS and M NDTCT systems; and manual pages are included in
the Reference Manual in APPENDIX B. Source code references have been provided throughout
this document to direct the reader to specific files and routines in the distribution. The source
code should be considered the ultimate documentation. Technical questions are welcomed and
any problems with this distribution should be directed to the authors via email. Any updates to
this software will be posted for downloading at http://www.itl.nist.gov/iad/894.03.

! Specific software products and equipment identified in this paper were used in order to adequately support the
development of the technology described in this document. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the
software or equipment identified is necessarily the best available for the purpose.

2. INSTALLATION GUIDE

This section describes the organization and installation of the distribution. This distribution
contains a combination of software, documentation, and testing data all stored in a hierarchical
collection of directories stored on CD-ROM. The top-level directories containing source code
and used to support compilation are bi n, i ncl ude, | i b, and sr ¢; documentation is provided in
the doc and man directories; precomputed runtime files used by PCASYS are in the top-level
directory pcasys; and testing scripts, input data files, and example results are provided in t est .

2.1 Softwarelngallation

The distributed source code has been written in “C,” and compilation scripts compatible with the
UNIX rmeke utility are provided. The source code and compilation scripts have been designed
and tested to work with the free, publicly available Linux operating system and GNU gcc
compiler and gnmake utility.[34][32] The software may also be compiled to run on computers
running the family of Win32 operating systems by first installing the free, publicly available
Cygwin library and associated tools.[33] The porting of the software to other operating systems,
compilers, or compilation environments is the responsibility of the recipient.

The software can be installed and compiled by first copying the contents of the CD-ROM to a
read/writable disk partition on your computer. The directory to which you copy is referred to as
the installation directory. Please note that if the installation directory is other than
/usr/local /nfis, then the header file i ncl ude/little. h will need to be edited prior to
compilation. Specifically, the definition for | NSTALL_DI R must be changed.

Copying only the top-level file makefi | e. mak and bi n, i ncl ude, | i b, and src directories is
required to successfully compile the software. The permissions on the copied subdirectories and
the compilation scripts (named "makefil e. mak") should then be changed to read/writable.
Once copied and permissions changed, the software can be compiled by executing the following
commands in the top-level installation directory on a Linux machine:

% make -f makefile.mk PRQIDI R=<install _dir> depend
% make -f makefile.mk PRQIDI R=<install _dir> install

where the text <install _dir> is replaced by your specific installation directory path.
Alternatively, on a Win32 machine with the Cygwin library and utilities installed, type the
following commands:

% make -f makefile. mak PRQIDI R=<install _dir>\
X11 EXST=0 EXEEXT=. exe depend

% make -f makefile. mak PRQIDI R=<install _dir>\
X11 EXST=0 EXEEXT=. exe install

Successful compilation under Linux will produce 51 executable files stored in the top-level bi n
directory. To invoke these utilities you can specify a full path to these files, or you may add the
top-level bi n directory to your environment's execution path. Table 1 lists these utilities broken
out by package. The fifth package listed, | JG contains utilities provided with the Independent
JPEG Group’s compression/decompression source code library.[35] To learn more about the
utilities in this package, refer to the Reference Manual in Appendix B.

Tablel1l. NFISutilitieslisted by package

NFIS Package Utilities
PCASYS M NDTCT AN2K | MGTOOLS 1JG
asc2bin nm ndt ct an2k?2i af cj pegb cj peg
bi n2asc an2k?2t xt cj pegl dj peg
chgdesc an2kt ool cws(q j pegtran
cnbnts dpyan2k di ffbyts rdj pgcom
dat ai nf o i af 2an2k dj pegb Wrj pgcom
eva_evt t xt 2an2k dj peg
fixwts dj pegl sd
kltran dpyi nage
lintran dwsq
meancov dwsql4d
nkoas i ntr2not
nkt ran not 2i ntr
mp rdwsgqcom
nm pfeats rgb2ycc
oas?2pi cs sd rfm
opt osf wrwsgcom
optrws ycc2rgb
opt r wsgw
pcasys
pcasysx
rwpi cs
st ackns

A manual page is provided for each utility in the top-level man directory. To view a man page
on a Linux machine or a Win32 machine running a Cygwin shell, type:

% man -M <install _dir>/ man <execut abl e>

where the text <i nstal | _dir> is replaced by your specific installation directory path and
<execut abl e> is replaced by the name of the utility of interest. These manual pages are also
included at the end of this document in the Reference Manual in Appendix B.

2.2 Dataand Testing Directories

As already mentioned, the top-level directory pcasys contains various runtime files required by
the non-graphical utility bi n/ pcasys and the graphical X Window version bi n/ pcasysx.
The graphical version utilizes the image files provided in pcasys/ i mages, while both utilities
require the parameters files and precomputed feature vectors and weights in pcasys/ par ns and
pcasys/ wei ght s. For more information see Section 4.1.4.

The top-level directory t est is provided to give examples of how each of the utilities in the
distribution are invoked. A simple csh script is provided for each utility along with sample
input data and resulting output. It should be noted that some utilities may, when run on other
computer architectures, produce slightly different results due to small differences in floating
point calculations and round off.

t est

<package n>

dat a execs

|
...input files ... l

<exec 1> <exec 2>

|
<exec 1>.src

...output files ...

Figure 1. Hierarchical organization of testing directory.

The test directory is organized hierarchically as illustrated in Figure 1. The utilities are
organized by packages within the t est directory, one subdirectory for each package. Within
each package, there are two directories. The dat a directory contains sample input files for the
utilities in the package. The execs directory contains one subdirectory for each utility in the
package. Within each utility subdirectory under execs, there is a simple script (with extension
"src") and example output files produced by the script. Note that the scripts can be executed
from within a csh shell by using the sour ce command.

Included among the input data files used for testing are color and grayscale versions of a face
image stored as an uncompressed pixmap, compressed using Baseline JPEG, and compressed
using Lossless JPEG. Similarly, versions of a grayscale fingerprint image are provided
uncompressed, compressed using Lossless JPEG, and compressed using WSQ. In addition, a set
of 2700 WSQ compressed grayscale fingerprint images are included to support the testing of
PCASYS.

3. PACKAGES

3.1 PCASYS-Fingerprint Pattern Classification

Automatic fingerprint classification is a subject of interest to developers of an Automated
Fingerprint Identification System (AFIS). In an AFIS system, there is a database of file
fingerprint cards, against which incoming search cards must be efficiently matched. Automatic
matchers now exist that compare fingerprints based on their patterns of ridge endings and
bifurcations (the minutiae). However, if the file is very large, then exhaustive matching of
search fingerprints against file fingerprints may require so much computation as to be
impractical. In such a case, the efficiency of the matching process may be greatly increased by
partitioning the file based on classification of fingerprints. Once the class for each fingerprint of
the search card has been determined, the set of possible matching file cards can be restricted to
those whose 10-tuple (one for each finger) of classes matches that of the search card. This
reduces the number of comparisons that must be performed by the minutiae-matcher.

Some fingerprint identification systems use manual classification followed by automatic
minutiae matching; the standard Henry classification system, or a modification or extension of it,
is often used. The handbook [36] provides a complete description of a manual classification
system. Automating the classification process would improve its speed and cost-effectiveness.
However, producing an accurate automatic fingerprint classifier has proved to be a very difficult
task. The object of the research leading to PCASYS is to build a prototype classifier that
separates fingerprints into basic pattern-level classes known as arch, left loop, right loop, scar,
tented arch, and whorl. Figure 2 shows example fingerprints of the several classes. The system
performs these steps: image segmentation and enhancement; feature extraction, registration, and
dimensionality reduction; running of a main classifier, either a Probabilistic or Multi-Layer
Perceptron Neural Network and an auxiliary whorl-detector that traces and analyzes pseudo-
ridges; and finally, creation of a hypothesized class and confidence level.

PCASYS is a prototype/demonstration pattern-level fingerprint classification program. It is
provided in the form of a source code distribution and is intended to run on a desktop
workstation. The program reads and classifies each of a set of fingerprint image files, optionally
displaying the results of several processing stages in graphical form. This distribution contains
2700 fingerprint images that may be used to demonstrate the classifier; it can also be run on user-
provided images.

The basic method used by the PCASYS fingerprint classifier consists of, first, extracting from the
fingerprint to be classified an array (a two-dimensional grid in this case) of the local orientations
of the fingerprint’s ridges and valleys. Second, comparing that orientation array with similar
arrays made from prototype fingerprints ahead of time. The comparisons are actually performed
between low-dimensional feature vectors made from the orientation arrays, rather than using the
arrays directly, but that can be thought of as an implementation detail.

o TV, T b

4. R.RING

2. R. INDEX 3 1. R. THUMB
i AT A
Figure 2. Examplefingerprints of the six pattern-level classes.

Going left-right, top-bottom, arch [A], left loop [L], right loop [R], scar [9],
tented arch [T], and whorl [W]. These are NIST Special Database 14
images s0024501. wsq, s0024310. wsq, s0024304. wsq, s0026117. wsq,
s0024372. wsq, and s002351. wsq, and they are among the fingerprint
imagesincluded on the CD-ROM int est/ pcasys/ dat a/ i mages.

o,
e
——

Orientation arrays or matrices like the ones used in PCASYS were produced in early fingerprint
work at Rockwell, CALSPAN, and Printrak. The detection of local ridge slopes came about
naturally as a side effect of binarization algorithms that were used to preprocess scanned
fingerprint images in preparation for minutiaec detection. Early experiments in automatic
fingerprint classification using these orientation matrices were done by Rockwell, improved
upon by Printrak, and work was done at NIST (formerly NBS). Wegstein, of NBS, produced the
R92 registration algorithm that is used by PCASYS and did important early automatic
classification experiments.[§]

The algorithms used in PCASYS are described further in Section 4.1 and in References [17] and
[22]-[24].
3.2 M NDTCT —Minutiae Detection

Another software system provided in this distribution is a minutiae detection package called,
M NDTCT. This section first describes what fingerprint minutiae are, and then some background
is provided as to why this package was developed for the FBI.

3.2.1 Definition of Minutiae

Traditionally, two fingerprints have been compared using discrete features called minutiae.
These features include points in a finger's friction skin where ridges end (called a ridge ending)
or split (called a ridge bifurcation). Typically, there are on the order of 100 to 200 minutiae on a
tenprint. In order to search and match fingerprints, the coordinate location and the orientation of
the ridge at each minutia point are recorded. Figure 3 shows an example of the two types of
minutiae. The minutiae are marked in the right image, and the tails on the markers point in the
direction of the minutia's orientation.

Figure 3. Minutiae: bifurcation (square marker) and ridge ending (circle marker).

The location of each minutia is represented by a coordinate location within the fingerprint's
image. Different AFIS systems represent this location differently. The ANSI/NIST standard
specifies units of distance in terms of 0.01 mm from an origin in the botfom left corner of the
image. For example, a 500600 pixel image scanned at 19.69 ppmm has dimensions
25.39%x30.47 mm which in standard units of 0.01 mm is

500 600

X
19.6900.01 19.69[10.01

Thus, the pixel coordinate (200, 192) will be represented in standard units at

(1016,2071) = (L ,3047 -1 —L)
19.69[10.01 19.6910.01

2539x3047 =

where the Y-coordinate is measured from the bottom of the image upward.

The orientation of the minutiae is represented in degrees, with zero degrees pointing horizontal
and to the right, and increasing degrees proceeding counter-clockwise. The orientation of a ridge
ending is determined by measuring the angle between the horizontal axis and the line starting at
the minutia point and running through the middle of the ridge. The orientation of a bifurcation is
determined by measuring the angle between the horizontal axis and the line starting at the
minutia point and running through the middle of the intervening valley between the bifurcating
ridges.

The minutiae plotted in Figure 4 illustrate the line to which the angle of orientation is measured.
Each minutia symbol is comprised of a circle or square, marking the location of the minutia
point, and the line or tail proceeding from the circle or square is projected along either the ridge
ending’s ridge, or the bifurcation’s valley. The angle of orientation as specified by the
ANSI/NIST standard is marked as angle “A” in the illustration.

Figure4. Minutiae orientation.
A. standard angle, B.FBI/IAFISangle

10

3.22 Latent Fingerprints

In addition to tenprints, there is a smaller population of fingerprints also important to the FBI.
These are fingerprints captured at crime scenes that can be used as evidence in solving criminal
cases. Unlike tenprints, which have been captured in a relatively controlled environment for the
expressed purpose of identification, crime scene fingerprints are by nature incidentally left
behind. They are often invisible to the eye without some type of chemical processing or dusting.
It is for this reason that they have been traditionally called /atent fingerprints.

As one would expect, the composition and quality of latent fingerprints are significantly different
from tenprints. Typically, only a portion of the finger is present in the latent, the surface on
which the latent was imprinted is unpredictable, and the clarity of friction skin details are often
blurred or occluded. All this leads to fingerprints of significantly lesser quality than typical
tenprints. While there are 100 to 200 minutiae on a tenprint, there may be only a dozen on a
latent. Figure 5 shows a "good" quality latent on the left and its matching tenprint on the right.

A bt . R et e A i

N

Figure5. Latent fingerprint (left) with matching tenprint (right).

Due to the poor conditions of latent fingerprints, today's AFIS technology operates poorly when
presented a latent fingerprint image. It is extremely difficult for the automated system to
accurately classify latent fingerprints and reliably locate the minutiae in the image.
Consequently, human fingerprint experts, called latent examiners, must analyze and manually
mark up each latent fingerprint in preparation for matching. This is a tedious and labor intensive
task.

To support the processing of latent fingerprints, the FBI and NIST collaboratively developed a
specialized workstation called the Universal Latent Workstation (ULW). This workstation has
been designed to aid the latent examiner in preparing a latent fingerprint for search. In addition,
the workstation provides for interoperability between different AFIS systems by functioning as a
vendor-independent font-end interface. These two aspects of the ULW contribute significantly
to the advancement of the state-of-the-art in latent fingerprint identification and law enforcement

11

in general. As such, the FBI has chosen to distribute the ULW freely upon request. To receive
more information regarding ULW, please contact:

Tom Hopper (thopper@leo.com)
FBI, JEH Bldg.

CJIS Div/Rm 11192E

935 PA Ave., NW

Washington, DC 20537-9700
202-324-3506

The successful application of the ULW is primarily facilitated by its use of the ANSI/NIST-ITL
1-2000 standard. NIST also developed some its underlying core technology, including the
minutiae detection package in this software distribution. M NDTCT takes a fingerprint image and
locates all minutiae in the image, assigning to each minutia point its location, orientation, type,
and quality. The command, m ndtct, reads a fingerprint image from an ANSI/NIST file,
detects the minutiae in the image, encodes the results into a Type-9 minutiaec record [30],
combines the record with the input data, and writes it all out to a new ANSI/NIST file.

An algorithmic description of M NDTCT is provided in Section 4.2.

3.3 AN2K-Standard Reference Implementation

The AN2K package is a reference implementation of the ANSI/NIST-ITL 1-2000 standard.[30]
This package contains utilities for reading, writing, and manipulating the contents of ANSI/NIST
data files. These files are comprised of a sequence of data fields and image records. Source
code is provided to parse ANSI/NIST files into memory, manipulate designated fields, and write
the sequence back to file. The utility an2kt ool does this in batch mode. Logical data units are
referenced on the command line, and the specified contents may be printed, inserted, substituted,
or deleted from the file.

Alternatively, two other utilities are provided to support interactive editing of the contents of an
ANSI/NIST file. The command an2k2t xt converts the textual content of an ANSI/NIST file
into a formatted text report, and any binary data (including images) are stored to temporary files
and externally referenced in the text report. In this way, the text report can then be loaded into
any common text editor and ASCII information can be added, deleted, or changed. When all
edits are complete, the command t xt 2an2k is run on the edited version of the text report,
externally referenced binary data files are incorporated, and a new ANSI/NIST file is written.

One of the many types of records in an ANSI/NIST file is the Type-9 record designed to hold
minutiae data for fingerprint matching. Currently there is no global consensus on how
fingerprint minutiae should be numerically represented. Different fingerprint systems use
different sets of attributes and representation schemes. To manage this, the fields of the Type-9
record have been divided into blocks, where each block is assigned to a registered vendor, and
the vendor defines how he will represent his minutiae data. In the standard, the first 4 fields of
the Type-9 record are mandatory and must always be filled. Fields 5 through 12 are fields in the
standard defined by NIST to hold among other things, the fingerprint’s core, delta, and minutiae
locations, along with neighbors and intervening ridge counts. The FBI's IAFIS is assigned fields
13 through 23. The definition of these fields is specified in the FBI's Electronic Fingerprint
Transmission Specification (EFTS), Reference [37].

12

Unfortunately, these two blocks of fields are different. Two utilities are provided in the AN2K
package to facilitate the conversion between these blocks of fields in a Type-9 record. The
command an2k?2i af translates the minutiae data stored in NIST fields 5-12 into the FBI/IAFIS
fields 13-23. The command i af 2an2k reverses the process. An X Windows ANSI/NIST file
image previewer is included in the package. The utility dpyan2k is designed to parse an
ANSI/NIST file, locating and displaying each image in the file to a separate window. In
addition, if any minutiae are included in a corresponding Type-9 record, then the minutia points
are plotted on top of the fingerprint image.

34 | MGTOOLS —General Purpose Ilmage Utilities

NIST has distributed several fingerprint databases [14],[18]-[20] over the past decade for use in
evaluating fingerprint matching systems. The images in these databases are formatted as NIST
[Head [14], [18] files using either Lossless JPEG or WSQ compression. The [Head format uses
a 296 byte header to store basic information about the image (i.e. pixel width, height, depth,
compression type, compressed length, etc.). Displaying these images is problematic as common
image viewing utilities do not support this format. Using utilities in the | MGTOOLS package,
users are able to take NIST legacy database files and convert them into standard compliant
formats, including Baseline JPEG which is widely supported.

Another issue is that these legacy files are not standard compliant. The utility sd_r f nt takes a
legacy database file and reformats it. For example, legacy IHead WSQ files are converted so
that they can be decoded with an FBI compliant WSQ decoder. The command dwsql4
decompresses fingerprint images distributed with NIST Special Database 14, while the command
dj pegl sd decompresses images distributed with NIST Special Database 4, 9, 10, & 18.[25]

| MGTOCLS also contains a collection of standard compliant and certifiable image encoders and
decoders. The utilities cj pegb and dj pegb encode and decode Bascline JPEG files
respectively. The utilities ¢j pegl and dj pegl encode and decode Lossless JPEG files. This
represents one of the only publicly available implementations of the standard Lossless JPEG
algorithm. Finally, the utilities cwsq and dwsq encode and decode FBI WSQ files. An X
Window application, dpyi mage, is provided to view these different file compression formats,
including IHead images and raw pixmaps.

Users should exercise caution when using these encoders and decoders in succession. The
decoders generate uncompressed, reconstructed image pixmaps that can be subsequently re-
encoded. Both Baseline JPEG and WSQ are lossy compression schemes, so taking their decoded
pixmaps and re-encoding them may produce undesirable results. The amount of image
degradation caused by lossy compression can be analyzed using the utility di ffbyts to
compare the pixels in an original image to those returned by one of the decoders.

All three compression algorithms in this distribution support internal comment blocks.
Applications typically need easy access to various image attributes. These attributes include
generic statistics such as pixel width, height, depth, and scan resolution, but often it is desirable
to store and retrieve application-specific information such as fingerprint type, mugshot pose, or
age/sex of the individual. To support applications, a structure called a NIl STCOM has been
defined, containing a text-based attribute list of (name, value) pairs. The encoders in | MGTOOLS
accept an optional NI STCOM file, and if provided, embed its contents into a comment block

13

within the encoded bytestream. The decoders on the other hand, search the encoded bytestream
for the presence of a NI STCOM and if found, merge its contents with those attributes the decoder
derives itself and writes the resulting attribute list to a separate text file with extension "ncm”
For more information on the NI STCOM convention, please refer to the Reference Manual in
Appendix B. A NI STCOMstored in a JPEG or WSQ file does not interfere with other standard
compliant decoders because it is contained in a standard comment block.

Several commands are provided to support Nl STCOM and comment blocks in general. The
utilities r dj pgcomand wr j pgcomread and write comments blocks to and from both Baseline

and Lossless JPEG files. Similarly, r dwsqgcomand wr wsqcomread and write comment blocks
to and from WSAQ files.

Two other capabilities are included in | MGTOOLS. The first handles the interleaving and non-
interleaving of color components in an image. The command i ntr2not takes an interleaved
color image and separates the components into individual planes, whereas the command
not 2i ntr reverses the process. The second capability handles converting between RGB and
YCbCr colorspaces. The command r gb2ycc converts from RGB to YCbCr, and ycc2r gb
reverses the process.

14

4. SYSTEMS

In this section, the algorithms used in the PCASYS and M NDTCT packages are described. The
source code in this distribution is the ultimate documentation for these systems; therefore, source
code references are provided in the subheadings below for the various steps in these systems.
Each reference is listed within square brackets, and they point to a specific file in the source code
followed by the name of the subroutine primarily responsible for executing the process step.
These references are provided as a road map into the source code distribution.

41 PCASYS

NIST released its first version of PCASYS to the public in 1995. The two main changes in this
new distribution are the addition of the multi-layer perceptron (MLP) classifier and replacing
EISPACK routines with more stable CLAPACK routines [47] for computing eigenvalues and
eigenvectors. Section 4.1.3.2 discusses the details of the MLP classifier. The CLAPACK
routines have proven more stable and reliable across different operating systems.

A large portion of the code has also been modified to be more general with the parameters of the
input data. For example, the original version required fingerprints to be at least 512x480 pixels,
six output-classes in the classifier, and a 28%30 array of ridge directions. The new code allows
for variations in these sizes. While most of the code is more general, the core detection
algorithm still requires a 32x32 array of ridge directions and several parameters are tuned based
on the old fixed dimensions that were used. For this reason many of the old “hard coded”
dimensions are still used, but they are defined in include files that the user could easily change
and then retune other parameters as needed.

An adjustment was also made to the enhancement/ridge flow detection. Previously, the
enhancement algorithm did local enhancement over the image every 24x24 pixels, starting at a
preset location (near top-left of image). Similarly, the ridge flow algorithm used 16x16 pixel
averages starting at a different preset location. The enhancement has been adjusted to work on
16x16 pixel windows that are aligned with the window used in ridge flow averaging. This helps
minimize the effect of enhancement artifacts when computing ridge flow averages, which occur
on the borders of the 16x16 window, causing erroneous ridge flow points in the final orientation
array.

Interpolation was added to the final segmentation process but there was no improvement in the
over all system performance, just an increase in preprocessing time. The old method of rounding
to the nearest pixel was kept when doing segmentation. The interpolation routine is included in
the source code (sgmt . ¢) but not used.

Finally, given the changes that were made to the feature extraction process, the parameters for
the PNN classifier, mainly the regional weights and overall smoothing factor, were optimized to
the new feature set.

15

4.1.1 Algorithmic Description

This section describes the details of feature extraction and classification for each fingerprint.
Sections 4.1.1.1 and 4.1.1.2 are preprocessing steps to prepare the fingerprint image for feature
extraction covered in Sections 4.1.1.3 - 4.1.1.5. Sections 4.1.1.6 - 0 discuss details of the neural
network classifiers. Figure 6 is an example print of the whorl class and will be used for
subsequent figures illustrating the stages of processing.

T e .

Figure 6. Fingerprint used to demonstrate the fingerprint classification process
(s0025236. wsq).

4.1.1.1 Segmentor[src/lib/pca/sgmt.c; sgmt ()]

The segmentor routine performs the first stage of processing needed by the classifier. It reads
the input fingerprint image. The image must be an 8-bit grayscale raster of width at least 512
pixels and height at least 480 pixels (these dimensions can be changed in the file
i ncl ude/ pca. h), and scanned at about 19.69 pixels per millimeter (500 pixels per inch). The
segmentor produces, as its output, an image that is 512%x480 pixels in size by cutting a
rectangular region of these dimensions out of the input image. The sides of the rectangle that is
cut out are not necessarily parallel to the corresponding sides of the original image. The
segmentor attempts to position its cut rectangle on the impression made by the first joint of the
finger. It also attempts to define the rotation angle of the cut rectangle and remove any rotation
that the finger impression had to start with. Cutting out this smaller rectangle is helpful because
it reduces the amount of data that has to undergo subsequent processing (especially the compute-
intensive image enhancement). Removing rotation may help since it removes a source of
variation between prints of the same class.’

? The images produced by the segmentor are similar to those of NIST Special Database 4 in which the corrections
for translation and rotation were done manually.

16

] O])
(2) 3) (4) () (6) (7)

Figure7. Stepsin thefingerprint segmentation process.

(1)

The segmentor decides which rectangular region of the image to snip out by performing a
sequence of processing steps. This and all subsequent processing will be illustrated using the
fingerprint from Figure 6 as an example. Figure 7 shows the results of the segmentor’s
processing steps.

First, the segmentor produces a small binary (two-valued or logical-valued) image. The binary
image pixels indicate which 8x8-pixel blocks of the original image should be considered the
foreground. Foreground is the part of the image that contains ink, whether from the finger
impression itself or from printing or writing on the card. To produce this foreground-image, it
first finds the minimum pixel value for each block and the global minimum and maximum pixel
values in the image. Then, for each of a fixed set of factor values between 0 and 1, the routine
produces a candidate foreground-image based on factor as follows:

threshold = global_min + factor x (global_max — global_min)

Set to true each pixel of candidate foreground-image whose corresponding pixel of the
array of block minima is < threshold, and count resulting true pixels.

Count the transitions between true and false pixels in the candidate foreground-image,
counting along all rows and columns. Keep track of the minimum, across candidate
foreground-images, of the number of transitions.

Among those candidate foreground-images whose number of true pixels is within predefined
limits, pick the one with the fewest transitions. If threshold is too low, there tend to be many
white holes in what should be solid blocks of black foreground; if threshold is too high, there
tend to be many black spots on what should be solid white background. If threshold is about
right, there are few holes and few spots, hence few transitions. The first frame in Figure 7 shows
the resulting foreground-image.

Next, the routine performs some cleanup work on the foreground-image, the main purpose of
which is to delete those parts of the foreground that correspond to printing or writing rather than
the finger impression. The routine does three iterations of erosion’ then deletes every connected
set of true pixels except the one whose number of true pixels is largest. The final cleanup step
sets to true, in each row, every pixel between the leftmost and rightmost true pixels in that row,
and similarly for columns. The routine then computes the centroid of the cleaned-up foreground-
image, for later use. The second frame in Figure 7 shows the result of this cleanup processing.

Next, the routine finds the left, top and right edges of the foreground, which usually has a
roughly rectangular shape. Because the preceding cleanup work has removed noise true pixels
caused by printed box lines or writing, the following very simple algorithm is sufficient for

? Erosion consists of changing to false each true pixel that is next to a false pixel.

17

finding the edges. Starting at the middle row of the foreground-image and moving upward, the
routine finds the leftmost true pixel of each row and uses the resulting pixels to trace the left
edge. To avoid going around the corner onto the top edge, the routine stops when it encounters a
row whose leftmost true pixel has a horizontal distance of more than 1 from the leftmost true
pixel of the preceding row. The routine finds the bottom part of the left edge by using the same
process but moving downward from the middle row; and it finds the top and right edges
similarly. The third, fourth, and fifth frames in Figure 7 depict these edges.

Next, the routine uses the edges to calculate the overall slope of the foreground. First, it fits a
straight line to each edge by linear regression. The left and right edges, which are expected to be
roughly vertical, use lines of the form x = my + b and the top edge use the form y = mx + b. The
next to last frame in Figure 7 shows the fitted lines. The overall slope is defined to be the
average of the slopes of the left-edge line, the right-edge line, and a line perpendicular to the top-
edge line.

Having measured the foreground slope, the segmentor now knows the angle to which it should
rotate its cutting rectangle to nullify the existing rotation of the fingerprint; but it still must
decide the location at which to cut. To decide this, it first finds the foreground top, in a manner
more robust than the original finding of the top edge and resulting fitted line. It finds the top by
considering a tall rectangle, whose width corresponds to the output image width, whose center is
at the previously computed centroid of the foreground-image, and is tilted in accordance with the
overall foreground slope. Starting at the top row of the rectangle and moving downward, the
routine counts the true pixels of each row. It stops at the first row which both fits entirely on the
foreground-image and has at least a threshold number of true pixels. The routine then finishes
deciding where to cut by letting the top edge of the rectangle correspond to the foreground top it
has just detected. The cut out image will be tilted to cancel out the existing rotation of the
fingerprint, and positioned to hang from the top of the foreground.

The last frame in Figure 7 is the (cleaned-up) foreground with an outline superimposed on it
showing where the segmentor has decided to cut. The segmentor finishes by actually cutting out
the corresponding piece of the input image; Figure 8 shows the resulting segmented image. (The
routine also cuts out the corresponding piece of the foreground-image, for use later by the
pseudo-ridge analyzer.)

18

Figure 8. The samplefingerprint after segmentation.

4.1.1.2 Image Enhancement
[src/libl/pcal enhnc.c; enhnc(), src/lib/fft/fft2dr.c; fft2dr()]

This step enhances the segmented fingerprint image. The algorithm used is basically the same as
the enhance-merit algorithm described in [38], and pp. 2-8 - 2-16 of [39] provide a description of
other research that independently produced this same algorithm. The routine goes through the
image and snips out a sequence of squares each of size 32x32 pixels, with the snipping positions
spaced 16 pixels apart in each dimension to produce overlapping. Each input square undergoes a
process that produces an enhanced version of its middle 16x16 pixels, and this smaller square is
installed into the output image in a non-overlapping fashion relative to other output squares.
(The overlapping of the input squares reduces boundary artifacts in the output image.)

The enhancement of an input square is done by first performing the forward two-dimensional
fast Fourier transform (FFT) to convert the data from its original (spatial) representation to a
frequency representation. Next, a nonlinear function is applied that tends to increase the power
of useful information (the overall pattern, and in particular the orientation, of the ridges and
valleys) relative to noise. Finally, the backward 2-d FFT is done to return the enhanced data to a
spatial representation before snipping out the middle 16x16 pixels and installing them into the
output image.

The filter's processing of a square of input pixels can be described by the following equations.
First, produce the complex-valued matrix 4 + iB by loading the square of pixels into 4 and
letting B be zero. Then, perform the forward 2-d discrete Fourier transform, producing the
matrix X + ;Y defined by

31 31

X, +i¥, =23 (4, +iB,,)exp(_;—zm (mj +nk)J

m=0 n=0

Change to zero a fixed subset of the Fourier transform elements corresponding to low and high
frequency bands which, as discussed below, can be considered to be noise. Then take the power

19

spectrum elements Xj; + Yy of the Fourier transform, raise them to the 0.3 power, and multiply
them by the Fourier transform elements, producing a new frequency-domain representation U +
iv:

U, +iv, =(x2 +v2)"(x, +iv,)

Return to a spatial representation by taking the backward Fourier transform of U + iV,
31 31 2

C, +iD, =33 (U, +iv,)exp(3—]: (jm + kn)j
=0 k=0

k=

then finish up as follows: find the maximum absolute value of the elements of C (the imaginary
matrix D is zero), and cut out the middle 16x16 pixels of C and install them in the output image,
but first applying to them an affine transform that maps 0 to 128 (a middle gray) and that causes
the range to be as large as possible without exceeding the range of 8-bit pixels (0 through 255).
The DC component of the Fourier transform is among the low-frequency elements that are
zeroed out, so the mean of the elements of C is zero; therefore it is reasonable to map 0 to the
middle of the available range.

However, for greater efficiency, the enhancer routine actually does not simply implement these
formulas directly. Instead, it uses fast Fourier transforms (FFTs), and takes advantage of the
purely real nature of the input matrix by using 2-d real FFTs. The output is no different than if
the above formulas had been translated straight into code.

We have found that enhancing the segmented image with this algorithm, before extracting the
orientation features, increases the accuracy of the resulting classifier. The table and graphs on
pp. 24-6 of [24] show the accuracy improvement caused by using this filter (localized FFT
filter), as well as the improvements caused by various other features. The nonlinear function
applied to the frequency-domain representation of the square of pixels has the effect of
increasing the relative strength of those frequencies that were already dominant. The dominant
frequencies correspond to the ridges and valleys in most cases. So the enhancer strengthens the
important aspects of the image at the expense of noise such as small details of the ridges, breaks
in the ridges, and ink spots in the valleys. This is not simply a linear filter that attenuates certain
frequencies, although part of its processing does consist of eliminating low and high frequencies.
The remaining frequencies go through a nonlinear function that adapts to variations as to which
frequencies are most dominant. This aspect of the filter is helpful because the ridge wavelength
can vary considerably between fingerprints and between areas within a single fingerprint.*

Figure 9 shows the enhanced version of the segmented image. At first glance, a noticeable
difference seen between the original and enhanced versions is the increase in contrast. The more
important change caused by the enhancer is the improved smoothness and stronger ridge/valley
structure of the image, which are apparent upon closer examination. Discontinuities are visible
at the boundaries of some output squares despite the overlapping of input squares, but these
apparently have no major harmful effect on subsequent processing, due to alignment of the
enhanced tiles with the orientation detection tiles.

‘A different FFT-based enhancement method, the directional FFT filter of [24], uses global rather than local FFTs
and uses a set of masks to selectively enhance regions of the image that have various ridge orientations. This
enhancer was more computationally intensive than the localized FFT filter, and did not produce better classification
accuracy than the localized filter.

20

Figure9. Samplefingerprint after enhancement.

Ba® T e »

4.1.1.3 Ridge-Valley Orientation Detector [src/ | i b/ pca/ridge.c; rors(), rgar()]

This step detects, at each pixel location of the fingerprint image, the local orientation of the
ridges and valleys of the finger surface, and produces an array of regional averages of these
orientations. This is the basic feature extractor of the classification.

6 718[1]12]3 4
6 4

5 5 C 5 5
4 6

4 312(1]8(7 6

3 2 1 8 7
Figure 10. Pattern of dits (i = 1-8) used by the orientation detector.

The routine is based on the ridge-valley fingerprint binarizer described in [40]. That binarizer
uses the following algorithm to reduce a grayscale fingerprint image to a binary (black and white
only) image. For each pixel of the image, denoted C in Figure 10, the binarizer computes slit
sums s;,7 = 1... 8, where each s;, is the sum of the values of the slit of four pixels labeled i (i.e., 1-
8) in the figure. The binarizer uses local thresholding and slit comparison formulas. The local
thresholding formula sets the output pixel to white if the value of the central pixel, C, exceeds
the average of the pixels of all slits, that is, if

8
c>2 s, (1)

21

Local thresholding such as this is better than using a single threshold everywhere on the image,
since it ignores gradual variations in the overall brightness. The slit comparison formula sets the
output pixel to white if the average of the minimum and maximum slit sums exceeds the average
of all the slit sums, that is, if

1 1<
_(Smin +Smax)>§zsi (2)

The motivation for this formula is as follows. If a pixel is in a valley, then one of its eight slits
will lie along the (light) valley and have a high sum. The other seven slits will each cross ridges
and valleys and have roughly equal lower sums. The average of the two extreme slit sums will
exceed the average of all eight slit sums and the pixel will be binarized correctly to white.
Similarly, the formula causes a pixel lying on a ridge to be binarized correctly to black. This
formula uses the slits to detect long structures (ridges and valleys), rather than merely using their
constituent pixels as a sampling of local pixels as formula 1 does. It is able to ignore small ridge
gaps and valley blockages, since it concerns itself only with entire slits and not with the value of
the central pixel.

The authors of [40] found that they obtained good binarization results by using the following
compromise formula, rather than using either (1) or (2) alone: the output pixel is set to white if

8
4C+‘Smin +Smax >gzsi (3)

This is simply a weighted average of (1) and (2), with the first one getting twice as much weight
as the second.

This binarizer can be converted into a detector of the ridge or valley orientation at each pixel. A
pixel that would have been binarized to black (a ridge pixel) gets the orientation of its minimum-
sum slit, and a pixel that would have been binarized to white (a valley pixel) gets the orientation
of its maximum-sum slit. However, the resulting array of pixel-wise orientations is large, noisy,
and coarsely quantized (only 8 different orientations are allowed). Therefore, the pixel-wise
orientations are reduced to a much smaller array of local average orientations, each of which is
made from a 16x16 square of pixel-wise orientations. The averaging process reduces the volume
of data, decreases noise, and produces a finer quantization of orientations.

The ridge angle 0 is defined to be 0° if the ridges are horizontal and increasing towards 1800 as

the ridges rotate counterclockwise (O0 =<0 < 1800). When pixel-wise orientations are averaged,
the quantities averaged are not actually the pixel-wise ridge angles 0, but rather the pixel-wise
orientation vectors (cos 20, sin 20). The orientation finder produces an array of these averages
of pixel-wise orientation vectors.” Since all pixel-wise vectors have length 1 (being cosine, sine
pairs), each average vector has a length of at most 1. If a square of the image does not have a
well-defined overall ridge and valley orientation, then the orientation vectors of its 256 pixels
will tend to cancel each other out and produce a short average vector. This can occur because of

. Averaging a set of local orientation angles can produce absurd results, because of the non-removable point of
discontinuity that is inherent in an angular representation, so it is better to use the vector representation. Also, the
resulting local average orientation vectors are an appropriate representation to use for later processing, because these
later steps require that Euclidean distances between entire arrays of local average orientations produce reasonable
results. Note: The R92 registration program requires converting the vectors into angles of a different format.

22

blurring or because the orientation is highly variable within the square. The length of an average
vector is thus a measure of orientation strength. The routine also produces as output the array of
pixel-wise orientation indices, to be used by a later routine that produces a more finely spaced
array of average orientations. Figure 11 depicts the local average orientations that were detected
in the segmented and filtered image from the example fingerprint.

Y ot e o oy e e e e S R e RN N NN
i L L N Y
e e e N N NN NN

B T e e LN NL ML NN N N N N N NN N
e e Bt N T T Y
e R AR R AR R
T o N N e e S

S e S S = e s SN NN NSNS
PP AP A BV g e A AN

N
R L L N Y
NN
N
l \
1
Iy
s/
s/
N et P S
Ve
/s
—— eSS
Ve
s

e S S
S LSS S

P i e N |
Ny o ey R g S

P
N

i T e e The L L
A e e e e, e
e e N
T e e B e e e
R e |

/
5\
AY
~

!

TN Ty e

/
B i Vi
e e e At S Vd
B TP YN
g o, o o o, o e e e et e ettt AL ——
T e e e S, R, M, e R i R o e B o i et et

M e e e e e
NS e e A A S S
| e gy P P
Flrewr sl s,
[V AV P S S oy S P S

M, ey e e e e e et o
N ——— e PSS SSS S

N i o AP S S
N e o et P B PSS S S
NN e st P AP LSS

N
-~
A
N
Y
A
T
j
/
/
/
/
7

RN
e

\
I
f

Figure11. Array of local average orientations of the example fingerprint
Each bar, depicting an orientation, is approximately parallel to the local
ridgesand valleys.

4.1.14 Registration[src/lib/pca/r92a.c; r92a()]

Registration is a process that the classifier uses in order to reduce the amount of translation
variation between similar orientation arrays. If the arrays from two fingerprints are similar
except for translation, the feature vectors that later processing steps will produce from these
orientation arrays may be very different because of the translation. This problem can be
improved by registering each array (finding a consistent feature and essentially translating the
array, bringing that feature to standard location).

To find the consistent feature that is required, we use the R92 algorithm of Wegstein [8]. The
R92 algorithm finds, in an array of ridge angles, a feature that is used to register the fingerprint.
The feature R92 detects in a loop and whorl fingerprint is located approximately at the core of
the fingerprint. The algorithm also finds a well-defined feature in arch and tented arch
fingerprints although these types of prints do not have true cores. After R92 finds this feature,
which will be denoted the registration point, registration is completed by taking the array of
pixel-wise orientations produced earlier and averaging 16x16 squares from it to make a new
array of average orientations. The averaging is done the same way it was done to make the first
array of average orientations (which became the input to R92). In addition, the squares upon
which averaging is performed are translated by the vector that is the registration point minus a

23

standard registration point defined as the component-wise median of the registration points of a
sample of fingerprints. The result is a registered array of average orientations.’

The R92 algorithm begins by analyzing the matrix of angles in order to build the “K-table.” R92
processes the orientations in angular form. It defines angle ranges from 0° to 90° as a ridge
rotates from horizontal counterclockwise to vertical, and 0° to —90° for clockwise rotation.

These angles differ from the earlier range 0° to 180° as the ridge rotates counterclockwise from
horizontal. This table lists the first location in each row of the matrix where the ridge orientation
changes from positive slope to negative slope to produce a well-formed arch. Associated with
each K-table entry are other elements that are used later to calculate the registration point. The
ROW and COL values are the position of the entry in the orientation matrix. The SCORE is how
well the arch is formed at this location. The BC SUM is the sum of this angle with its east
neighbor, while the AD SUM is BC SUM plus the one angle to the west and east of the BC
SUM. SUM HIGH and SUM LOW are summations of groups of angles below the one being
analyzed. For these two values, five sets of four angles are individually summed, and the lowest
and highest are saved in the K-table.

With the K-table filled in, each entry is then scored. The score indicates how well the arch is
formed at this point. The point closest to the core of the fingerprint is intended to get the largest
score. If scores are equal, the entry closest to the bottom of the image is considered the winner.
Calculating a score for a K-table entry uses six angles and one parameter, RK3. RK3 is the
minimum value of the difference of two angles. For this work, the parameter was set at 0
degrees, which is a horizontal line. The six angles are the entry in the K-table, the two angles to
its left and the three angles to its right. So if the entry in the K-table is (i,/), then the angles are at
positions (i,j - 2), (i,j - 1), (i,j), (ij + 1), (i, j + 2), and (i, j + 3). These are labeled M, A4, B, C, D,
and N, respectively. For each of the differences, M - B, 4 - B, C - N, and C - D, greater than
RK3, the score is increased by one point. If 4 has a positive slope, meaning the angle of 4 is
greater than RK3, or if M - A is greater than RK3, the score is increased by one point. If D has a
negative slope, meaning the angle of D is less than RK3, or if D - N is greater than RK3, then the
score is increased by one point. If N has a negative slope, then the score is increased by one
point. All these comparisons form the score for the entry.

Using the information gathered about the winning entry, a registration point is produced. First, it
is determined whether the fingerprint is possibly an arch; if so, the registration point (x, y) is

computed as:
x=a A(R.C) +C-1|+B
AR, C)-4(rR,C +1)

(ar + BJis(k +1)+ (@(R =1)+ Blis(k) + (a(R = 2) + Blis(k ~1)
ts(k +1)+ 1s(k) + 2s(k 1)

where 4 is the angle at an entry position, R is the row of the entry, C is the column of the entry, £
is the entry number, #s is a sum of angles, a is 16 (the number of pixels between orientation loci),

% The new array is made by re-averaging the pixel-wise orientations with translated squares, rather than just
translating the first average-orientation array. This is done because the registration point found by R92, and hence
the prescribed translation vector, is defined more precisely than the crude 16-pixel spacing corresponding to one step
through the average orientation array.

24

and f is 8.5. The #s value is calculated by summing up to six angles. These angles are the
current angle and the five angles to its east. While the angle isn’t greater than 99°, its absolute
value is added to ¢s. For angles 89, 85, 81, 75, 100, and 60, the sum would be 330 (89 + 85 + 81
+ 75). Since 100 is greater than 99, the summation stops at 75.

For an image that is possibly something other than an arch, the computation of the registration
point is slightly more complex:

dspl = A(R,C)- A(R,C +1)
dsp2 = A(R+1,JL) - A(R +1,JL +1)

{ a dspl 290

dhl =
dspla/90 otherwise

= {(dsp2 =90)a/90 dsp2>90
0 otherwise
dh = (dh1 + dh2)/2
A(R,C)
A(R,C)- A(R,C +1

wa=al ARFLIL) 0y g
dsp?2

xxl=a><()+C—l]+ﬁ

‘= dh(xxl - xx2) 2
ds

vy =aR —dh
Where 4, R, C, a, and [are as before and JL is the cross-reference point column.

The left picture in Figure 12 shows the orientation array of the example fingerprint with its
registration point, and the standard registration point is marked; the right picture shows the
resulting registered version of the orientation array. Obviously some lower and left areas of the
registered array are devoid of data, which would have had to be shifted in from undefined
regions. Likewise, data that were in upper and right areas have fallen off the picture and are lost;
but the improved classification accuracy that we have obtained as a result of registration shows
that this is no great cause for concern. The optimal pattern of regional weights, discussed later,
also shows that outer regions of the orientation array are not very important. The test results in
[24] show that registration improves subsequent classification accuracy.

25

N e e e e e e e e e Y N N
R T e e T W N NG N Y

I e T L R Y

B e T e S N N N N N N Y

LA i I e i N W R Y
P A R it L NN
L N B L Y
P e e R R L A RN
VPP i o e A N R R S N N N WY
P A
S ar———,

— e e e M N N N NN
B R RN
P i B i b e e e e e TV LN N N N N
e N e L R
o f LS e — N NN,
PR e T R N Y

VP e A A L Y

I

/£

/

[

I

.y
1

LR il eaa e g
N oy e e, i e S S
L Lt i S P gV 4
b, Y e el it e it S S S AN S
e e e e, ", o et o o A

N
NS
N
i1
V|
I

2

LY
2
/

M Sy e e e
—— LS

e e N N
N e e e e
s et L

4
!
!
!
/
!
[
!
I
1
1
AN

e e ey
e N Y
e e S
N N e ey S
T e N, S

1

1

1

1

1

[

i

i

I

N I
\ I
\ I
N I
} |
I

A\ [
\ 1
\ 1
I

e, e e Y

L N L SRS
R e SE O Y
NN =
N R — e
oy e o, o, e et o o
Ny ey ey e e
B i e

P e N

1
'
/
/
1
!
N
N
N

e ———— T, T, g,
N

£
/
£
/
/
1
I
!
\
1
1
\
5

O L S L
P N

N
A
N
A
\
1
1
|
I
|
/
/
!
!

T e e

N
\
\
\
1
1
1
}
{
/
!
!
7/

R e e N N
e Tt L L U Y
R e e)
NN T =

/
A
A
~

N
N
N
5
A
N
N
\
\
1
1
}
! /
/

N
N
N
N
A
A
N
\
A
\
\
i
/
/
!

AS
AS
AS
N
N
N
N
N
N
N
\
\
i
/
/
;

N, e e e o
Rt e e S PO R s

N

N
\
\
AY
N
N
A\
\
I
i/
/
;
7

S
N
N
\
\
1
1
|
I
I
!
/
!
!
/
/

A
hY
\
|
/
/
/
NSNSt Sy / /
NSNSt S A 7/
e e V4 Vd
I Sy e e e P P S 7
e e et et it R S S ——
e e, T T T, T Vo, T, e e st ol o i T e et et gt

e o e et ot

W T N e e e
My e
| & PSS

TN R S P P
[P i S P

o o o, e e e e
N e e A A S

NS e et o e S
W N e SIS

N S e e e

AS
N
A
A)
N\
A
A\
A
I
1
|
/
/
/

A
N ——

i
I
[

Figure12. Left: Orientation array Right: Registered orientation array.
The plus sign is registration point (core) found by R92, and plus sign in
squareis standard (median) registration point.

4.1.1.5 Feature Set Transformation [src/1ib/pca/trnsfrmc; trnsfrn()]

This step applies a linear transform to the registered orientation array. Transformation
accomplishes two useful processes. First, the reduction of the dimensionality of the feature
vector from its original 1680 dimensions to 64 dimensions (PNN) and 128 dimensions (MLP).
Second, the application of a fixed pattern of regional weights (PNN only) which are larger in the
important central area of the orientation array.

4.1.1.5.1 Karhunen-Loéeve Transform

The size of the registered orientation array (oa) representing each fingerprint is 1680 elements
(28%30 orientation vectors X two components per orientation vector). The size of these arrays

makes it computationally impractical to use them as the feature inputs into either of the neural
network classifiers (PNN/MLP).

It would be helpful to transform these high-dimensional feature vectors into much lower-
dimensional ones in such a way that would not be detrimental to the classifiers. Fortunately, the
Karhunen-Lo¢ve (K-L) transform [41] does exactly that. To produce the matrix that implements
the K-L transform, the first step is to make the sample covariance matrix of a set of typical
original feature vectors, the registered orientation arrays in our case. Then, a routine is used to
produce a set of eigenvectors of the covariance matrix, corresponding to the largest eigenvalues;
let m denote the number of eigenvectors produced. Then, for any n < m, the matrix w can be
defined to have as its columns the first n eigenvectors; each eigenvector has as many elements as
an original feature vector, 1680 in the case of orientation arrays. A version of a K-L transform’,

7 Usually the sample mean vector is subtracted from the original feature vector before applying ¥, but we omit this
step because doing so simplifies the computations and has no effect on the final results of either classifier. If the user
needs it, a full version, that subtracts the mean vector from each feature vector, is included in sr ¢/ bi n/ kl tr an.

26

which reduces an original feature vector u (an orientation array, thought of as a single 1680-
dimensional vector) to a vector w of n elements, can then be defined as follows:

w=%'u
The K-L transform thus may be used to reduce the orientation array of a fingerprint to a much
lower-dimensional vector, which may be sent to the classifier. This dimension reduction
produces approximately the same classification results as would be obtained without the use of
the K-L transform but with large savings in memory and compute time. A reasonable value of 7,
the number of eigenvectors used and hence number of elements in the feature vectors produced,

can be found by trial and error; usually #» can be much smaller than the original dimensionality.
We have found 64 to be a reasonable » for PNN and 128 for MLP.

In earlier versions of our fingerprint classifier, we produced low-dimensional feature vectors in
this manner, using the arrays of (28 % 30) orientation vectors as the original feature vectors.
However, later experiments revealed that significantly better classification accuracy could be
obtained by modifying the production of the feature vector. The modification allows the
important central region of the fingerprint to have more weight than the outer regions; what we
call regional weights. This is discuss in the next section.

4.1.1.5.2 Regional Weights [sr ¢/ bi n/ opt r ws/ opt r ws. c]

During testing, it was noted that the uniform spacing of the orientation measurements throughout
the picture area could probably be improved by using a non-uniform spacing. The non-uniform
spacing concentrated the measurements more closely together in the important central area of the
picture and had a sparser distribution in the outer regions. We tried this [23], keeping the total
number of orientation measurements the same as before (840) in order to make a fair
comparison, and the result was indeed a significant lowering of the classification error rate.

Eventually, we realized that the improved results might not have been caused by the non-uniform
spacing but rather by the mere assignment of greater weight to the central region, caused by
placing a larger number of measurements there. We tested this hypothesis by reverting to the
uniformly spaced array of orientation measurements, but now with a non-uniform pattern of
regional weights applied to the orientation array before performing the K-L transform and
computing distances. The application of a fixed pattern of weights to the features before
computing distances between feature vectors is equivalent to the replacement of the usual
Euclidean distance by an alternative distance. In [42], Specht improves the accuracy of PNN in
about the same manner: pp. 1-765-6 described the method used to produce a separate 0 value for
each dimension (feature).

To keep the number of weights reasonably small and thus control the amount of runtime that
would be needed to optimize them, we decided to assign a weight to each 2x2 block of
orientation-vectors. This produced 210 (14%15) weights, versus assigning a separate weight to
each of the 840 orientation-vectors. Optimization of the weights was done using a very simple
form of gradient descent, as discussed in Section 4.1.3.1.1. The resulting optimal (or nearly
optimal) weights are depicted in Figure 13. The gray tones represent the absolute values of the
weights (their signs have no effect), with the values mapped to tones by a linear mapping that
maps 0 to black and the largest absolute value that occurred, to white. These weights can be
represented as a diagonal matrix W of order 1680. Their application to an original feature vector
(orientation array) u, to produce a weighted version #, is given by the matrix multiplication

27

u=Wu

We have tried optimizing a set of weights to be applied directly to the K-L features, but this
produced poor generalization results. The regional weights described here are not equivalent to
any set of weights (diagonal matrix) that could be applied to the K-L features. Their use is
approximately equivalent to the application of the non-diagonal matrix /W mentioned in
Section 4.1.3.1.1, to the K-L feature vectors. We also have tried optimizing a completely
unconstrained linear transform (matrix) to be applied to the K-L feature vectors before
computing distances; that produced impressive lowering of the error during training but
disastrous generalization results. Among our experiments involving the application of linear
transforms prior to PNN distance computations, we obtained the best results by using regional
weights.

Figure 13. Absolute values of the optimized regional weights.
Each square represents one weight, associated with a 2x2 block from the
registered orientation array.

4.1.1.5.3 Combined Transform [sr ¢/ bi n/ nkt r an/ nktran. c]

Clearly, it is reasonable to apply the optimized regional weights W, and then to reduce
dimensionality with ¢/ before letting the PNN classifier compute distances. An efficient way to
do this is to make the combined transform matrix T =¢/W then when running the classifier on a
fingerprint, to use

w=Tu

to convert its orientation array directly into the final feature-vector representation.®

¥ Alter optimizing the weights W, we could have made new eigenvectors from the covariance matrix of the weighted
original-feature vectors. The (/W resulting from this new ¢ would presumably have then produced a more efficient
dimensionality reduction than we now obtain, allowing the use of fewer features. We decided not to bother with this,
since the memory and time requirements of the current feature vectors are reasonable.

28

4.1.1.6 Probabilistic Neural Network Classifier [src/ i b/ pca/ pnn.c; pnn()]

This step takes as its input the low-dimensional feature vector that is the output of the transform
discussed in Section 4.1.3.1, and it determines the class of the fingerprint. The Probabilistic
Neural Network (PNN) is described by Specht in [43]. The algorithm classifies an incoming
feature vector by computing the value, at its point in feature space, of spherical Gaussian kernel
functions centered at each of a large number of stored prototype feature vectors. These
prototypes were made ahead of time from a training set of fingerprints of known class by using
the same preprocessing and feature extraction that was used to produce the incoming feature
vector. For each class, an activation is made by adding up the values of the kernels centered at
all prototypes of that class; the hypothesized class is then defined to be the one whose activation
is largest. The activations are all positive, being sums of exponentials. Dividing each of the
activations by the sum of all activations produces a vector of normalized activations, which, as
Specht points out, can be used as estimates of the posterior probabilities of the several classes.
In particular, the largest normalized activation, which is the estimated posterior probability of the
hypothesgzed class, is a measure of the confidence that may be assigned to the classifier's
decision.

In mathematical terms, the above definition of PNN can be written as follows, starting with
notational definitions:

N number of classes (6 in PCASYS)
M; = number of prototype prints of class i (1 <i <N)

" = feature vector from ;™ prototype print of class i (1 <j < M)

X;

w feature vector of the print to be classified
f = asmoothing factor

a; = activation for class i

d; = normalized activation for class i

h = hypothesized class

¢ = confidence

For each class 7, the PNN computes an activation:

a, = %exp(— ,B(w —xs.i))t (w - xﬁi)))

It then defines 4 to be the i for which a; is greatest, and defines ¢ to be the A" normalized
activation:

’ This naive version of PNN must compute the distance of the incoming feature vector from each of the many
prototype feature vectors, possibly many cycles. Various methods have been found for increasing the speed of
nearest-neighbors classifiers, a category PNN may be considered to fall into (see, for example, [44], and [45] for a
very fast tree method). The classification accuracy of fast approximations to the naive PNN may suffer at high
rejection levels. For that reason, and because the naive PNN takes only a small fraction of the total time used by the
PCASYS classification system (image enhancement takes much longer), we have used the naive version.

29

Figure 14 is a bar graph of the normalized activations produced for the example fingerprint.
Although PNN only needs to normalize one of the activations, namely the largest, to produce the
confidence, all 6 normalized activations are shown here. The whorl (W) class has won and so is
the hypothesized class (correctly as it turns out), but the left loop (L) class has also received a
fairly large activation and therefore the confidence is only moderately high.

Figure 14. PNN output activationsfor the example finger print.

Figure 15. MLP output activationsfor the example finger print.

30

4.1.1.7 Multi-Layer Perceptron Neural Network Classifier
[src/lib/pca/mMp_sing.c; mp_single()]

This alternative classifier takes as input the low-dimensional feature vector, non-optimized, as
discussed in Sections 4.1.1.5 and 4.1.2.4 and a set of MLP weights. The weights are the result of
several training runs of MLP in which the weights are optimized to produce the best results with
the given training data. Section 4.1.3 discusses the training process in more detail. The output
of m p_singl e() is a set of confidence levels for each of the possible output classes and an
indication of which hypothetical class had the highest confidence. Figure 15 shows the MLP
output activations for the example fingerprint. The whorl (W) class has the highest activation
and is the correct answer.

4.1.1.8 Auxiliary Classifier: Pseudo-ridge Tracer [src/ i b/ pca/ pseudo. c; pseudo()]

This step takes a grid of ridge orientations of the incoming fingerprint and traces pseudo-ridges
[46], which are trajectories that approximately follow the flow of the ridges. By testing the
pseudo-ridges for concave-upward shapes, the routine detects some whorl fingerprints that are
misclassified by the classifiers. We were motivated to produce a whorl-detector when we
realized, upon examining the prints misclassified by the NN classifiers, that many of them were
whorls.

The routine takes as input an array of local averaged ridge orientations.'” Another input is a
small binary image that shows the region of the segmented image comprising the inked
foreground rather than the lighter background. First, the routine changes to zero vectors any of
the orientation vectors that either are not on the foreground, or are smaller than a threshold in
squared length. (Small squared length indicates uncertainty as to the orientation.) Next, it
performs a few iterations of a smoothing algorithm, which merely replaces each vector by an
average of itself and its four neighbors; this tends to improve anomalous or noisy vectors. Then,
it finds out which vectors are either off the foreground or, in their now smoothed state, smaller
than a threshold in squared length, and it marks these locations as bad, so that they will not be
used later. The program also makes some new representations of the orientation vectors - as
angles, and as step-vectors of specified length - which it uses later for efficient tracing of the
pseudo-ridges (an implementation detail).

Having finished with this preliminary processing, the process then traces pseudo-ridges. Starting
at a block of initial locations in the orientation array, it makes a pseudo-ridge by following the
orientation flow, first in one of the two possible directions away from the initial point and then in
the other direction. For example, if the ridge orientation at an initial point is “northeast-
southwest” then the program starts out in a northeast direction, and later comes back to the initial
point and goes in a southwest direction. If a location has been marked as bad, then no
trajectories are started there. A trajectory is stopped if it reaches a limit of the array of locations,
reaches a bad location, if the turn required in the trajectory is excessively sharp, or if a specified
maximum number of steps have been taken. The two trajectories traced out from an initial point
are joined end to end, producing a finished pseudo-ridge. The pseudo-ridge only approximately
follows the ridges and valleys, and is insensitive to details such as bifurcations or small scars.

' The array used has its constituent orientation vectors spaced half as far apart as those comprising the arrays used
earlier, and it does not undergo registration.

31

Figure 16. Left: Pseudo-ridgestraced to find concave-upward lobe. Right: Concave-
upward lobe that was found.

After the routine has finished tracing a pseudo-ridge, it goes through it from one end to the other
and finds each maximal segment of turns that are either all left (or straight) turns, or all right
turns. These segments can be thought of as lobes, each of which makes a sweep in a constant
direction of curvature. A lobe qualifies as a concave upward shape, if it’s orientation, at the
sharpest point of curvature (vertex), is close to horizontal and concave upward, and it has a
minimum amount of cumulative curvature on each side of it’s vertex. The routine checks each
lobe of the current pseudo-ridge to find out if the lobe qualifies as a concave upward shape. If no
lobe qualifies, it advances to the next location in the block of initial points and makes a new
pseudo-ridge. The routine stops when it either finds a concave upward shape or exhausts all
lobes of all pseudo-ridges without finding one. The final output shows if it did or did not find a
concave upward shape. Figure 16 shows a concave upward shaped lobe that was found.

This pseudo-ridge tracer is useful as a detector of whorls. It rarely produces a false positive,
defined as finding a concave upward lobe in a print that is not a whorl. It is more likely to
produce a false negative, defined as not finding a concave upward lobe although a print is a
whorl. The next section describes a simple rule that is used to combine the pseudo-ridge tracer's
output with the output of the main classifier (PNN or MLP), thereby producing a hybrid
classifier that is more accurate than the main classifier alone.

The ridge tracer has many parameters that may be experimented with if desired as well as the
parameter for combining the classifier and ridge tracing results (Section 0), but reasonable values
are provided in the default parameter file.

4.1.1.9 Combining the Classifier and Pseudo-ridge Outputs
[src/lib/pcs/conbine.c; conbine()]

This final processing module takes the outputs of the main Neural Network (NN) classifier and
the auxiliary pseudo-ridge tracer, and makes the decision as to what class, and confidence, to
assign to the fingerprint.

32

The NN classifier produces a hypothesized class and a confidence. The pseudo-ridge tracer
produces a single bit of output, whose two possible values can be interpreted as the print is a
whorl and it is not sure whether the print is a whorl. The pseudo-ridge tracer is never sure that a
print is not a whorl. A simple rule was found for combining the NN and pseudo-ridge tracer
results, to produce a classifier more accurate than the NN alone. The rule is described by this
pseudo-code:

i f(pseudo-ridge tracer says whorl) {
hypot hesi zed- cl ass = whorll
i f (pnn_hypot hesi zed_cl ass == whorl)
confidence = 1.
el se
confidence = .9

el se { /* pseudo-ridge tracer says not clear whether whorl */
hypot hesi zed_cl ass = pnn_hypot hesi zed_cl ass
confi dence = pnn_confidence

}

This is a reasonable way to use the pseudo-ridge tracer as a whorl detector, because as noted in
the preceding section, this detector has very few false positives but a fair number of false
negatives. So, if the whorl detector detects a whorl, the print is classified as a whorl even if the
NN disagrees, although disagreement results in slightly lower confidence, since whorl detection
implies that the print is almost certainly a whorl. If the whorl detector does not detect a whorl,
then the NN sets the classification and confidence.

Since the whorl detector detected a whorl for the example print and the NN classified this print
as a whorl, the final output of the classifier had a hypothesized class of whorl and a confidence
of 1. As it turns out, this is the best possible result that could have been obtained for this print,
since it actually is a whorl.

The pseudo-ridge tracer improves the result for some prints the NN would have correctly
classified as whorls anyway (such as the example print), by increasing the classification
confidences. It also improves the result for some whorls that the NN misclassifies, by causing
them to be correctly classified as whorls. The tracer harms the result only for a very small
number of prints, the non-whorls that it mistakenly detects to be whorls. The overall effect of
combining the pseudo-ridge tracer with the main NN classifier is a lowering of the error rate,
compared to the rate obtained using the NN alone.

4.1.2 Computing Features

The following subsections describe the process used to get the features that will be independently
optimized for each classifier. The name of the command is listed for each step. For details on
the arguments and parameter files used, see the Reference Manual in Appendix B. Section 4.1.3
discusses how the features are optimized for each classifier.

33

4.1.2.1 Make the Orientation Arrays
nkoas

This command reads the fingerprint image files and extracts the orientation array (oa). This is
run on the full set of fingerprints that will be used as the “training set” for the neural network
classifier.

4.1.2.2 Make the Covariance Matrix
nmeancov

This command reads a set of oas and computes their sample mean and sample covariance
matrix."" Is it typically run on the full set of orientation arrays from nkoas but could be run on
just a reasonably large subset of the training set.

4.1.2.3 Make the Eigenvalues and Eigenvectors

eva_evt

This program reads the covariance matrix and computes the eigenvalues, and the corresponding
eigenvectors. The eigenvalues are not needed in the training process, but may be of theoretical
interest. The program calls a sequence of CLAPACK routines [47].

4.1.2.4 Run the Karhunen-Loéve Transform

lintran

This command applies a specified linear transform to a set of vectors. The transform matrix is
the eigenvectors from eva_evt. The set of vectors to which the transform matrix is being
applied is the oas files, from nkoas, for the training fingerprints. This set of the resulting low-
dimensional Karhunen-Loéve (K-L) vectors will be used as the training set for the MLP
classifier when optimizing the classifier weights. A subset of the K-L vectors will be used as
data by optrws (optimize regional weights command, below) to help optimize the PNN
classifier. Remember this version of the K-L transform does not subtract the mean vector from
each feature vector. A complete version of the K-L transform is included in the command
Kl tran.

4.1.3 Training the Neural Networks

This section explains how to optimize the features for the PNN and MLP classifiers.
Optimization for PNN is done using the opt r ws (regional weights optimization) and opt osf
(optimize the overall smoothing factor) commands, described in Section 4.1.3.1. MLP uses the
features from Section 4.1.2 as its input but does a series of “training” runs to optimize its set of
neural network weights. Section 4.1.3.2 discusses the training process for MLP that results in
the set of optimized weights used by the classifier.

" The mean is not needed for further processing, but is computed because if multiple processors are available, it
may be possible to save time by running several simultaneous instances of meancov on different subsets of the oas.
The resulting output files are combined using the cmbnts command, but to combine several covariance matrices,
crbnts needs the means as wells as the covariance matrices of the subsets.

34

4.1.3.1 Optimizing the Probabilistic Neural Network

Several steps are needed to optimize the feature set for PNN. First a set of regional weights are
computed that place emphasis on the most significant regions of the fingerprint (typically the
core area). These results are combined with the eigenvectors to produce a transform matrix to
use when reducing the dimensionality of the original oa features. Finally, the overall smoothing
factor (osf) for PNN is optimized.

4.1.3.1.1 Optimize the Regional Weights
opt rws

This command optimizes the regional weights. First, it finds an optimal single value to set all
the weights. Having thus defined an initial point in weight space, the program finishes the
optimization by a very simple version of gradient descent. It estimates (by secant method) the
gradient of the activation error rate, using the PNN classifier and its prototype features.
Classification on the prototype features is done by excluding the print being classified from the
prototypes (i.e. leave-one-out). Then it searches the line pointing in the anti-gradient direction
from the initial point, using a very simple method to find the minimum (or at least a local
minimum) of the error along this line. The program then estimates the gradient there and does
another downhill search. It stops after a specified number of iterations. A reasonable number of
iterations are three or four, which may take several hours of time to run on a typical workstation,
if using a few thousand prints as the data. If several processors are available, it may be possible
to save opt r ws runtime by setting its parameters so that, in one of its phases of processing, it
spawns several processes to divide the work. Consult the manual page in Appendix B and the
default parameter file mentioned in the manual page to find about this. If your operating system
does implement fork() and execl(), which are required by the several-processes version of
optrws, then optrws can link properly (i.e., without the fork and execl calls becoming
unresolved references) by adding the argument - DNO_FORK_AND EXECL to the definition of
CLAGS in src/ bi n/ opt rws/ makefi | e. mak. That will cause a different subset of the source
code file to be compiled (conditional compilation).

In order to efficiently evaluate the error function at a point in regional-weights space, opt r ws
produces the square matrix ¥'WY¥ of order NFEATS from the eigenvectors ¥ and the diagonal
matrix W that is equivalent to the regional weights. It then applies this matrix to all the K-L
feature vectors before computing distances. This is only an approximation to the direct use of
the regional weights, because of the use of only a partial set of eigenvectors, which also are not
recomputed each time the weights are changed. The results seem satisfactory, and the total
runtime is much smaller than for direct methods.

4.1.3.1.2 Make the Transform Matrix
nktran

Reads the optimized regional weights made by opt rws, and the eigenvectors, and makes the
transform matrix ¥ used in the next step.

35

4.1.3.1.3 Apply the Transform Matrix
[intran

Li ntran should be run on the entire set of prototype oas made earlier, using the transform
matrix made by nkt r an. The resulting feature vectors will be the prototype feature vectors used
by the finished PNN classifier. The transform matrix applies both the optimal pattern of regional
weights, and uses the eigenvectors to accomplish dimension reduction. When the finished
classifier runs on an incoming print, it applies this same transform matrix to the oa made from
the print and then sends the resulting feature vector to PNN. This approximately duplicates the
effect that would have resulted if PNN had been used on the oas themselves, but with the
optimized regional weights pattern applied before the distance computation.

4.1.3.1.4 Optimize the Overall Smoothing Factor
opt osf

Optimizes an overall smoothing factor (osf) used by the PNN classifier. As noted above, the
optimization of the regional weights should be done using the K-L vectors of only a subset of the
prototype prints, to save time. Since the full set of prototypes will be used in the finished
classifier, better accuracy is expected if the classifier uses an osf that is slightly larger than 1,
which is the value used during regional weights optimization. This corresponds to Specht’s
observation [43] that as the number of prototypes increases, the optimal smoothing parameter o
decreases. Increasing the osf corresponds to decreasing ¢. If the full prototype set was used to
optimize the regional weights, then opt osf should not be run and the osf set to 1.

Completing the above optimization process results in the finished PNN classifier data, consisting
of prototype feature vectors, a transform matrix that will be applied to the oas of incoming
fingerprints, and the overall smoothing factor. The PNN classification system then consists of a
combination of the PNN classifier and the pseudo-ridge tracer.

4.1.3.2 Training the Multi-layer Perceptron Neural Network
mp

The program n p trains a 3-layer feed-forward linear perceptron [48] using novel methods of
machine learning that help control the learning dynamics of the network. As a result, the derived
minima are superior, the decision surfaces of the trained network are well formed, the
information content of confidence values is increased, and generalization is enhanced. As a
classifier, MLP is superior to the PNN classifier in terms of its memory requirements and
classification speed. The theory behind the machine learning techniques used in this program is
discussed in References [49], [50], & [51]. The main routine for this program is found in
src/bin/m p/m p.c and the majority of supporting subroutines is located in the library
src/lib/nmp.

Machine learning is controlled through a batch-oriented iterative process of training the MLP on
a set of prototype feature vectors, then evaluating the progress made by running the MLP (in its
current state) on a separate set of feature vectors. Training on the first set of patterns then
resumes for a predetermined number of passes through the training data and then the MLP is
tested again on the evaluation set. This process of training and then testing continues until the
MLP has been determined to have satisfactorily converged. For details on the command line and

36

specfile parameters see the included manual page in the Reference Manual in Appendix B or on
the CD-ROM.

This command trains or tests an MLP neural network suitable for use as a classifier. The
network has an input layer, a hidden layer, and an output layer, each layer comprising a set of
nodes. The input nodes are feed-forwardly connected to the hidden nodes, and the hidden nodes
to the output nodes, by connections whose weights (strengths) are trainable. The activation
function used for the hidden nodes can be chosen to be sinusoid, sigmoid (logistic), or linear, as
can the activation function for the output nodes. Training (optimization) of the weights is done
using either a Scaled Conjugate Gradient (SCG) algorithm [52], or by starting out with SCG and
then switching to a Limited Memory Broyden Fletcher Goldfarb Shanno (LBFGS) algorithm
[53]. Boltzmann pruning [54], i.e. dynamic removal of connections; can be performed during
training if desired. Prior weights can be attached to the patterns (feature vectors) in various
ways.

When ni p is invoked, it performs a sequence of runs. Each run does either training, or testing:

training run: A set of patterns is used to train (optimize) the weights of the network.
Each pattern consists of a feature vector, along with either a class or a target vector. A
feature vector is a tuple of floating-point numbers, which typically has been extracted
from some natural object such as a fingerprint image. A class denotes the actual class to
which the object belongs, for example "whorl.” The network can be trained to become a
classifier: it trains using a set of feature vectors extracted from objects of known classes.
Training runs finish by writing the final values of the network weights as a file. It also
produces a summary file showing information about the run, and optionally produces a
longer file that shows the results the final (trained) network produced for each individual
pattern.

testing run: A set of patterns is sent through a network, after the network weights are
read from a file. The output values, i.e. the hypothetical classes are compared with target
classes or vectors, and the resulting error rate is computed. The program can produce a
table showing the correct classification rate as a function of the rejection rate.

Output files generated from mp training are provided n
t est/ pcasys/ execs/ m p/ m p_dir. The specfile used by m p to train the classifier on
fingerprint images is spec. This specfile requires the input files pat nanes, patwts, pri ors,
the training set f v1- 9 p. kl s, and the testing set sv10mi p. kl s, and it invokes 5 sequential
pairs of nl p training/testing sessions. Three files are generated from each training/testing
session. For example, from the first session: trnl.err, trnll.err, trnl.ws, and
tstl.err are created. Trnl.err is a report of the progressive error rates achieved on the
training set. Trnll . err is a file containing the output activations for each fingerprint in the
training set. Trnl. wts is the resulting weights trained in the session. Tst 1. err is a report of
the error rate achieved on the testing set using the most recent set of weights from training.

For the next training/testing session, training resumes with the MLP network initialized to the
weights contained in t rnl. wt s. The output files from this session are trn2. err,trn2. err,
trn2. wts,andtst2. err. The weights file t r n2. wt s is then used as input to the next session
and so on until the final session is complete. The filestrn5.err,trn5l .err,andtrn5. wts
contain the final results of training and t st 5. er r contains the error rate achieved by using the

37

final set of weights to classify the testing set contained in sv10m p. kI s. Appendix A gives
more details about the output files of the m p training process including formulas and sample
data from PCASYS training.

There are numerous parameters (see the manual page for details on all the parameters) to be
specified in the specfile for running the program m p. A good strategy for training the MLP on a
new classification problem is to first work with a single training/testing session. Try different
combinations of parameter settings until a reasonable amount of training is achieved within the
first 50 iterations, for example. This typically involves using a relatively high value for
regularization (such as 2.0 with fingerprint classification); varying the number of hidden nodes in
the network; and trying different levels of temperature, typically incrementing or decrementing
by powers of 10. For fingerprint classification, the number of hidden nodes is typically set to
equal or greater than the number of input KL features, and a temperature of 1.0e-5 works well.

Once reasonable training is achieved, these parameters should remain fixed, and successive
sessions of training/testing are performed according to a schedule of decreasing regularization.
For fingerprint classification it works well to specify about 50 iterations for each training
session, and to use a regularization factor schedule starting at 2.0 and decreasing to 1.0, 0.5, 0.2,
0.1 for each successive training session. This process of multiple training/testing sessions
initiates MLP training within a reasonable solution space. It also enables the machine learning to
refine its solution so that convergence is achieved while maintaining a high level of
generalization by controlling the dynamics of constructing well “behaved” decision surfaces.
The intermediate testing sessions allow one to evaluate the progress made on an independent
testing set, so that a judgment can be made as to whether incremental gains in training have
reached diminishing returns. The theory behind the control of dynamical changes within the
MLP learning process is discussed in References [49], [50], & [51].

Training the MLP in this fashion generates superior decision surfaces thus providing robust
activations for use as confidence values when rejecting confusing classification. This training
process is of course done once off-line, and then the resulting weight files are reused by the
actual recognition system. In practice, the user could use the ml p command to do a batch run
over a set of test data versus running the PCASYS commands and processing each test image
individually. The PCASYS commands are merely for demonstrating the procedure used to get the
final classification results and when possible allow the user to see graphics of the progress at
each step along the way.

38

414 Running PCASYS

4.1.4.1 PCASYS Data Files

For the purpose of conveniently storing and transporting data, formats have been defined for
three types of data.

matrix: A matrix of real numbers.

covariance: A covariance matrix of real numbers. This format saves disk space by
storing only the non-strict lower triangle, which is sufficient because a covariance matrix
1S symmetric.

classes: A list of classes, thought of as unsigned characters. For use with fingerprints in
PCASYS, class values 0 through 5 denote arch, left loop, right loop, scar, tented arch, and
whorl respectively. A classes file can be used for any classification situation with no
more than 255 classes.

Each type of file can exist in either an ASCII or a binary storage mode. A data file contains
header information followed by the data itself. The header information contains a description
string (can be of any length, but must contain no new lines; or can be left empty), code bytes
indicating the file type and storage mode, and additional information specific to the file type.
Additional information includes: if matrix, the two dimensions; if covariance, the order (i.e.,
what both dimensions of the symmetric matrix are) and the number of vectors used to build the
covariance; and if classes, the number of elements. The dat ai nf o command can be run on any
PCASYS data file. Dat ai nf o writes a report of the header information to the standard output.

4.1.4.2 Commands

Installation of PCASYS provides the following commands, shown here with short descriptions.
For a complete description and usage instructions for any of these commands, consult the manual
pages in Appendix B or on the CD-ROM.

4.1.4.2.1 Classifier Demos

pcasys non-graphical demo
pcasysx graphical demo

4.1.4.2.2 Training (Optimization) Commands

eva_evt finds the eigenvalues and eigenvectors

[intran runs a linear transform on a set of vectors

nmeancov makes mean and covariance from a set of vectors

kltran runs a Karhunen-Loéve transform on a set of vectors

nkoas makes orientation arrays from fingerprints

nktran makes transform matrix incorporating the optimized regional weights
opt osf optimizes the overall smoothing factor

optrws optimizes the regional weights

39

4.1.4.2.3 Utility Commands

asc2bin converts an ASCII data file to binary

bi n2asc converts a binary data file to ASCII

chgdesc changes the description string of a data file

cnbnts combines several mean/covariance file pairs

datai nfo reports the header info of a data file to standard output

oas2pi cs makes [Head pictures of orientation arrays

rwpi cs makes [Head pictures of regional weights or estimated gradients
st ackns stacks several matrix files together

4.1.4.3 Running the Classifier

4.1.4.3.1 Graphical and Non-graphical Versions

The classifier has a graphical version (pcasysx) and a non-graphical version (pcasys). The
graphical version, which requires the X Window System, produces windows on the screen
containing graphics showing the results of the phases of processing used to classify each
fingerprint. Many of the illustrations in this report were made from screen dumps of the
graphical demo. The non-graphical version classifies the fingerprints but produces no graphics;
it is suitable if you do not have X Windows, or for greatest running speed. Both versions
optionally produce a stream of messages on the terminal showing which fingerprint the classifier
is working on and what phase of processing it is performing, and both versions produce an
output file.

4.1.43.2 Default Parameters and Specifying Parameters

The default files needed by the classifier are located in the distribution's top-level pcasys
directory. The subdirectory pcasys/ i mages contains a set of images used to create the screens
when running the graphics version. The subdirectory pcasys/ parns has all the default
parameter files used by the classifier. The pcasys/wei ghts directory is split into two
subdirectories pnn and m p, which contain the optimized prototypes for each of the classifiers.
The 2700 sample images used by the classifier are located in t est / pcasys/ dat a/ i mages. If

the user needed to save disk space this directory could be created as a link to the mounted
CD-ROM.

Please note that if the installation directory is other than / usr/ | ocal / nfi s, then by default the
PCASYS utilities will not know where the parameter files are located in the distribution. In this
case, the definition for | NSTALL_DI R in the header file i ncl ude/ i ttl e. h must be changed
prior to compilation. See Section 2.1 for installation instructions.

4.1.4.3.3 Output File

The output file has a line for each of the fingerprints that were classified. Each line shows: the
fingerprint filename; the actual class (A, L, R, S, T, and W stand for the pattern-level classes
arch, left loop, right loop, sear, tented arch, and whorl); the output of the classifier (a
hypothesized class and a confidence); the output of the auxiliary pseudo-ridge tracing whorl

40

detector (whether or not a concave-upward shape, a “conup,” was found); the final output of the
hybrid classifier, which is a hypothesized class and a confidence; and whether this hypothesized
class was right or wrong. The output showing the first and last 10 sample images using the PNN
classifier is:

s0024301.wsq: is W nn: hyp W conf 0.59; conup y; hyp W conf 1.00; right
s0024302.wsq: is R nn: hyp R conf 0.88; conup n; hyp R conf 0.88; right
s0024303.wsq: is R nn: hyp R conf 1.00; conup n; hyp R conf 1.00; right
s0024304.wsq: is R nn: hyp R conf 1.00; conup n; hyp R conf 1.00; right
s0024305.wsq: is R nn: hyp R conf 0.99; conup n; hyp R conf 0.99; right
s0024306.wsq: is L; nn: hyp L, conf 0.99; conup n; hyp L, conf 0.99; right
s0024307.wsq: is L; nn: hyp L, conf 0.94; conup n; hyp L, conf 0.94; right
s0024308.wsq: is L; nn: hyp L, conf 0.99; conup n; hyp L, conf 0.99; right
s0024309.wsq: is L; nn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
s0024310.wsq: is L; nn: hyp L, conf 1.00; conup n; hyp L, conf 1.00; right
s0026991.wsqg: is W nn: hyp W conf 1.00; conup y; hyp W conf 1.00; right
s0026992.wsq: is W nn: hyp W conf 1.00; conup y; hyp W conf 1.00; right
s0026993.wsq: is T; nn: hyp A conf 0.79; conup n; hyp A conf 0.79; wong
s0026994.wsq: is W nn: hyp W conf 1.00; conup y; hyp W conf 1.00; right
s0026995.wsq: is W nn: hyp W conf 1.00; conup y; hyp W conf 1.00; right
s0026996.wsq: is W nn: hyp W conf 0.84; conup y; hyp W conf 1.00; right
s0026997.wsq: is W nn: hyp W conf 0.75; conup y; hyp W conf 1.00; right
s0026998.wsq: is L; nn: hyp L, conf 0.84; conup n; hyp L, conf 0.84; right
s0026999.wsq: is W nn: hyp W conf 1.00; conup y; hyp W conf 1.00; right
s0027000.wsqg: is W nn: hyp W conf 0.96; conup y; hyp W conf 1.00; right
pct error: 7.07

A L R S T w

A 41(83.7) 3(6.1) 0o(0.0) 0(0.0) 4(8.2) 1(2.0)
L 3(0.4) 784(97.5) 3(0.4) 0(0.0) 5(0.6) 9(1.1)
R 7(1.0) 6(0.8) 699(95.1) 0o(0.0) 5(0.7) 18(2.4)
S 0o(0.0) 4(80.0) 0(0.0) 0(0.0) 1(20.0) 0(0.0)
T 19(22.6) 26(31.0) 14(16.7) 0(0.0) 25(29.8) 0(0.0)
w 1(0.1) 35(3.4) 27(2.6) 0(0.0) 0O(0.0) 960(93.8)

The last part of the output file is a brief summary of the results. First, there is the percent error,
1.e. the percentage of the fingerprints that were classified incorrectly. Following this is a
confusion matrix. It has the same format as Table 2 and Table 3, described in the next section.

415 Classfication Results

The fingerprint images used to train and test the PCASYS classifier were taken from NIST
Special Database 14 (SD14) [20]. This database consists of images scanned from 2700 pairs of
standard fingerprint cards. Each pair of cards contains fingerprints taken from a single
individual, but captured on two different occasions. One card is the card stored in the FBI file
for this person and is denoted the file card. The other card was sent in to be searched against the
database and is denoted the search card. Each card was scanned at 19.69 pixels per millimeter
(500 pixels per inch), then parsed into individual fingerprint images, by cutting out rectangles of
predefined locations and dimensions, corresponding to the printed boxes in which the rolled
finger impressions were made.

41

We trained (optimized) the main classifiers using file prints f 0000001. wsqg through
f 0024300. wsq of SD14. Then, the finished classification system was made by adding to the
classifier the pseudo-ridge tracer, with its parameters set to values that had been arrived at much
earlier as a result of testing. With all aspects of the classification system settled, we then tested
its accuracy on search prints s0024301. wsq through s0027000. wsq of SD14. The test set
that was used is provided on the CD-ROM in directory t est/ pcasys/ dat a/ i mages, in the
form of the original fingerprint images. The classifier may be run on this entire set if desired, to
duplicate the test results, or it may be run on a subset of these prints or on other prints provided
by the user. The 24,300 prints from which the NN training feature vectors are derived are not
provided on the CD-ROM because there would not be enough space, but the prototype feature
vectors themselves are provided (t est / pcasys/ dat a/ oas).

The result of the test was an error rate (fraction of the test prints misclassified) of 7.07 % for
PNN and 8.19 % for MLP. More insight into the behavior of the classifiers can be obtained by
examining the confusion matrix of Table 2 and Table 3. This matrix has a row for each actual
class and a column for each hypothesized class, and it shows, as the non-parenthesized numbers,
how many test prints fell into each (actual class, hypothetical class) cell. For example, it shows
that 784 of the L (left loop) prints were classified as L and that 4 of them were classified as R
(right loop). Each parenthesized number is the percentage that its corresponding count
comprises of the sum of the counts in that row. For example, the parenthesized numbers show
that 97.4 % of the L prints were classified as L, and that 0.5 % of them were classified as R. The
entries shown in boldface correspond to correct classifications.

The 7.07 % (or 8.19 %) error rate and confusion matrix, pertain to the use of the classifier
without rejection: it is required to produce a hypothesized class for every print. However, if the
classifier is allowed to reject some prints, indicating it is uncertain about the hypothesized class,
it can achieve an error rate much lower than 7.07 % (or 8.19 %) on the prints that it accepts. The
confidence number produced by the classifier is used to provide an adjustable rejection level. To
implement rejection, it is sufficient to set a confidence threshold, then reject all prints for which
the classifier produces a confidence below the threshold. The larger a threshold is used, the
greater is the percentage of the prints that are rejected (obviously), but also the smaller is the
percentage of the accepted prints that are misclassified. The curves in Figure 17 are error vs.
reject curves that summarize this behavior, produced from the results of the test runs. Curves are
included for a classifier consisting of PNN or MLP alone or with the help of the pseudo-ridge
analyzer; clearly the hybrid classifier is more accurate than the PNN or MLP alone, at all
rejection levels.

42

Table2. PNN Confusion matrix
Non-parenthesized: Actual count that occurred for that cell.
Par enthesized: Per centage of total row sums.

Actual Hypothesized Class
Class A L R S T \\%
A 41 (83.7) 3(6.1) 0(0.0) 0(0.0) 4(8.2) 1(2.0)
L 3(04) 784 (97.5) 3(04) 0(0.0) 5(0.6) 9(1.1)
R 7 (1.0) 6 (0.8) 699 (95.1) 0(0.0) 5(0.7) 18 (2.4)
S 0 (0.0) 4 (80.0) 0(0.0) 0(0.0 1 (20.0) 0(0.0)
T 19 (22.6) 26 (31.0) 14 (16.7) 0(0.0) 25 (29.8) 0(0.0)
W 1(0.1) 534 27 (2.6) 0(0.0) 0(0.0) 960 (93.8)
Table3. MLP Confusion matrix
Same layout as Table 1.
Actual Hypothesized Class
Class A L R S T \\%
A 10(20.4) 20 (40.8) 18 (36.7) 0(0.0) 0(0.0) 1(2.0)
L 0(0.0) 783 (97.4) 4(0.5) 0(0.0) 0(0.0) 17 (2.1)
R 0 (0.0) 9(1.2) 704 (95.8) 0(0.0) 0(0.0) 22 (3.0)
S 0 (0.0) 3 (60.0) 2 (40.0) 0(0.0 0(0.0) 0(0.0)
T 0 (0.0) 43 (51.2) 40 (47.6) 0(0.0) 0(0.0 1(1.2)
w 0(0.0) 29 (2.8) 12 (1.2) 0(0.0) 0(0.0) 982 (96.0)
§ —=—mlp_ntrc
3 —e—mlp_trc
E —A— pnn_ntrc
S —x—pnn_trc
|
80

Reject Percentage

Figure17. Error versusreject curvesfor PNN and MLP classifiersand hybrid

combinations.

43

42 M NDTCT

The algorithms used in M NDTCT were inspired by the Home Office’s Automatic Fingerprint
Recognition System; specifically the suite of algorithms commonly referred to as "HO39."[55]
The NIST software is an entirely original implementation exceeding the capabilities of HO39. It
incorporates new algorithms, a modular design, dynamic allocation, and flexible parameter
control, which provide a framework for supporting future enhancement and adaptation of the
technology. It should be noted that the algorithms and software parameters have been designed
and set to optimally process images scanned at 19.69 pixels per millimeter (ppmm) (500 pixels
per inch) and quantized to 256 levels of gray.

e A
1. Input ANSI/NIST File

& J

s i —\
2. Generate Image Maps

& J

4 i N\
3. Binarize Image

& J

4 i N\
4. Detect Minutiae

& J

'a i —\
5. Remove False Minutiae

. J

'a i —\
6. Count Neighbor Ridges

. J

'a i —\
7. Assess Minutiae Quality

N J

I

[8. Output ANSI/NIST File]

Figure 18. Minutiae detection process.

Once the software is successfully installed and compiled, the program, mi ndt ct, is available for
detecting minutiae in a fingerprint image. This section describes each of the major steps in the
minutiae detection process. It should be noted that two generations of minutiae detection have
been developed prior to the public release of this software. Thus, m ndtct calls second

44

generation (or Version 2) routines. Version 1 routines are included in the libraries for
comparison, but in general, they will perform less satisfactorily. Figure 18 lists the functional
steps executed.

The software has been designed in a modular fashion so that each of the steps listed in Figure 18
is primarily executed by a single subroutine. This permits other alternative approaches to be
implemented and substituted into the process, and the overall impact on performance can be
evaluated. To support the many required operating parameters, a single global control structure
is used to record sizes, tolerances, and thresholds. This structure, | f spar m V2, is automatically
constructed and initialized in the file src/ 1 i b/ | f s/ gl obal s. ¢ and the values of its members
are defined in src/ i ncl ude/ | f s. h. Many of the principal control parameters are discussed in
this section.

4.2.1 Input ANSI/NIST File[src/lib/an2k/fntstd.c; read_ANSI_NI ST file()]

M ndt ct inputs a fingerprint image and automatically detects minutiae on the fingerprint. The
algorithms and parameters have been developed and set for images scanned at 19.69 ppmm and
quantized to 256 levels of gray. The application reads in an ANSI/NIST formatted file and
searches the file structure for a grayscale fingerprint record. Once found, the fingerprint image
in this record is processed. The application is capable of processing ANSI/NIST Type-4, Type-
13, and Type-14 fingerprint image records.[30] Currently, only the first grayscale fingerprint
record in the ANSI/NIST file is processed, but the application could be changed to process all
grayscale fingerprints in the file.

4.2.2 Generatelmage Quality Maps[src/lib/Ifs/ maps.c; gen_i mage_maps()]

Because the image quality of a fingerprint may vary, especially in the case of latent fingerprints,
it is critical to be able to analyze the image and determine areas that are degraded and likely to
cause problems. Several characteristics can be measured that are designed to convey information
regarding the quality of localized regions in the image. These include determining the
directional flow of ridges in the image and detecting regions of low contrast, low ridge flow, and
high curvature. These last three conditions represent unstable areas in the image where minutiae
detection is unreliable, and together they can be used to represent levels of quality in the image.
Each of these characteristics is discussed below.

4.2.2.1 Direction Map [src/lib/Ifs/dft.c; dft_dir_powers()]

One of the fundamental steps in this minutiae detection process is deriving a directional ridge
flow map, or direction map. The purpose of this map is to represent areas of the image with
sufficient ridge structure. Well-formed and clearly visible ridges are essential to reliably
detecting points of ridge ending and bifurcation. In addition, the direction map records the
general orientation of the ridges as they flow across the image.

To locally analyze the fingerprint, the image is divided into a grid of blocks. All the pixels
within a block are assigned the same results. Therefore, in the case of the direction map, all the
pixels in a block will be assigned the same ridge flow direction. Several considerations must be
made when using a block-based approach. First, it must be determined how much local
information is required to reliably derive the desired characteristic. This area is referred to as the
window. The characteristic measured within the window is then assigned to each pixel in the

45

block. It is typically desirable to share data used to compute the results assigned to neighboring
blocks. This way some of the image that contributed to one block’s results is included in the
neighboring block’s results as well. This helps minimize the discontinuity in block values as you
cross the boundary from one block to its neighbor. This “smoothing” can be implemented using
a system where a block is smaller than its surrounding window, and windows overlap from one
block to the next. This is illustrated in Figure 19.

L

L=24 M=8 N=8

1,1 11112 £l 12 1)

2,1 2122

Figure 19. Adjacent blockswith overlapping windows.

The large frame at the top of the figure depicts a window (in white) surrounding a smaller block
(in gray). Assuming that neighboring blocks are adjacent and non-overlapping, this scenario is
defined by three parameters: the window size “L,” the block size “M” and the offset of the block
from the window’s origin “N.” In the global control structure, | f spar ms_V2, these parameters
are defined as MAP_W NDOWS| ZE_V2=24, MAP_BLOCKSI ZE_V2=8, and MAP_W NDONOFFSET V2=8
respectively. As a result, the image is divided up into a grid of 8x8 pixel blocks with each block
being assigned a result from a larger surrounding 24%24 pixel window, and the area for windows
of neighboring blocks overlap by up to 2/3.

The bottom row of frames in the Figure 19 illustrates how this works in practice. Designating
the address of a block by its (row index, column index), the left frame shows the first block (1,1)
being computed. The next frame advances to the next adjacent block to the right, block (1,2).
Correspondingly, its window is shifted 8 pixels, and the new block receives its results. Note that
there are two copies of the image being used. Each window operates on the original image data,

46

while block results are written to a separate output image. The third frame in the illustration
depicts the window configuration for block (2,1), and the fourth frame shows its right neighbor
being computed.

One additional consideration must be made when using blocks. It must be determined how to
handle the edges of the image. The dimensions of the image will likely not be an even multiple
of blocks, and the windows surrounding blocks along the perimeter of the image may extend off
the image. In this software, the image is padded by a margin of medium gray pixels (set to
intensity 128). This margin is sufficiently large to contain the perimeter windows in the image.
The processing of partial blocks is also accounted for at the right and bottom of the image. This
blocking scheme is implemented in src/ i b/ | fs/ bl ock. c; bl ock_of fsets().

Given the above approach for computing block results with an overlapping window, the
technique used for determining ridge flow direction in the image can be described. For each
block in the image, the surrounding window is rotated incrementally and a Discrete Fourier
Transform (DFT) analysis is conducted at each orientation. Figure 20 illustrates the incremental
rotation of the window. The top left box in the figure depicts a window with its rows rotated 90°
counterclockwise so that they are aligned vertically. This is considered orientation “0” in the
software. The parameter NUM DI RECTI ONS in the global control structure, | fspars_V2,
specifies the number of orientations to be analyzed in a semicircle. This parameter is set to 16,
creating an increment in angle of 11.25° between each orientation. These orientations are
depicted on the circle in the figure. The bottom row in the figure illustrates the incremental
rotation of the window’s rows at each defined orientation.

24

1. 11.25° 2. 225° 3. 33.75° 8. 90° 15. 168.75°
Figure 20. Window rotation at incremental orientations.

When determining the direction of ridge flow for a block, each of its window orientations is
analyzed. Within an orientation, the pixels along each rotated row of the window are summed
together, forming a vector of 24 pixel row sums. The 16 orientations produce 16 vectors of row
sums. Each vector of row sums is convolved with 4 waveforms of increasing frequency. These
are illustrated in Figure 21. The top waveform in the figure has a single period extending across
the length of the entire vector. The second waveform’s frequency is doubled from the first; the
third is doubled from the second, and so forth. Discrete values for the sine and cosine functions
at the 4 different frequencies are computed for each unit along the vector. The row sums in a
vector are then multiplied to their corresponding discrete sine values, and the results are

47

accumulated and squared. The same computation is done between the row sums in the vector
and their corresponding discrete cosine values. The squared sine component is then added to the
squared cosine component, producing a resonance coefficient that represents how well the vector
fits the specific waveform frequency.

Figure21. DFT waveform frequencies.

The spatial frequency of the top waveform in Figure 21 discretely represents ridges and valleys
with a width of approximately 12 pixels. The second waveform represents 6 pixel wide ridges
and valleys. The third waveform represents 3 pixel wide ridges and valleys. Finally, the fourth
waveform represents 1.5 pixel wide ridges and valleys. Given an image scanned at 19.69 ppmm,
these waveforms cover ridges and valleys ranging in width from 0.6 mm down to 0.075 mm.

The resonance coefficients produced from convolving each of the 16 orientation’s row sum
vectors with the 4 different discrete waveforms are stored and then analyzed. Generally, the
dominant ridge flow direction for the block is determined by the orientation with maximum
waveform resonance. The details are in the source code.

48

In Figure 22, an original fingerprint image is shown on the left. The image on the right, is the
same fingerprint image annotated with the ridge flow directions recorded in the resulting
direction map. Each direction in the map is represented as a rotated line segment centered within
its corresponding 8x8 pixel image block.

Figure 22. Direction map results.

4.2.2.2 Low Contrast Map [src/1i b/l fs/block.c; |ow contrast_bl ock()]

It 1s difficult, if not impossible, to accurately determine a dominant ridge flow in certain portions
of a fingerprint image. This is true of low contrast areas that contain image background and
smudges. It is desirable to detect these areas and prevent artificially assigning ridge flow
directions where there really are no clearly defined ridges. To derive an arbitrary ridge flow
strictly from the data within these areas is problematic.

An image map called the low contrast map is computed where blocks of sufficiently low contrast
are flagged. This map separates the background of the image from the fingerprint, and it maps
out smudges and lightly-inked areas of the fingerprint. Minutiae are not detected within low
contrast blocks in the image.

One way to distinguish a low contrast block from a block containing well-defined ridges, is to
compare their pixel intensity distributions. By definition, there is little dynamic range in pixel
intensity in a low contrast area, so the distribution of pixel intensities will be very narrow. A
block containing well-defined ridges will, on the other hand, have a considerably broader range
of pixel intensities as there will be pixels ranging from very light in the middle of valleys to very
dark in the middle of ridges.

In order to determine if a block is low contrast, this software computes the pixel intensity
distribution within the block's surrounding window. A specified percent of the distribution’s
high and low tails are trimmed, and the width of the remaining distribution is measured. If the
measured width is sufficiently small, then the block is flagged in the map as having low contrast.
In the global control structure, | fsparms_V2, the parameter PERCENTI LE M N_MAX=10

49

causing the lowest and highest 10 % of pixel intensities in the distribution to be trimmed. By
trimming the tails, the subsequent width measurement is made in a much more stable portion of
the distribution. The parameter M N_CONTRAST_DELTA=S5 is the pixel intensity threshold less
than which indicates a low contrast block. This threshold was derived empirically from a
training sample of low and high contrast blocks extracted from real fingerprint images. The
image maps are actually computed in this software on a 6-bit pixel intensity image with 64 levels
of gray. The threshold here of 5 actually corresponds to a threshold of 10 shades of gray in the
original 8-bit pixel intensity image with 256 levels of gray. In other words, if the dynamic range
of the center 80 % of a block’s pixel intensity distribution is not larger than 10 shades of gray, it
is determined to be low contrast.

The white cross marks in the corner of the fingerprint image in Figure 23 label blocks with
sufficiently low contrast.

50

4223 LowFlowMap[src/lib/lfs/maps.c; gen_initial_maps()]

It is possible, when deriving the initial direction map, for some blocks to have no dominant ridge
flow. These blocks typically correspond to low-quality areas in the image. Initially these blocks
are not assigned an orientation in the direction map, but subsequently some of these blocks may
be assigned an orientation by interpolating the ridge flow of neighboring blocks. The low flow
map marks the blocks that could not initially be assigned a dominant ridge flow.

In the event that minutiae are detected in these blocks, their assigned quality is reduced because
they have been detected within a less reliable part of the image. The white cross marks in the
fingerprint image in Figure 24 label blocks with no dominant ridge flow.

o i eIy s e —

Figure24. Low flow map results.

51

4224 HighCurve Map [src/lib/|fs/maps.c; gen_hi gh_curve_map()]

Another part of fingerprint image that is problematic when it comes to detecting minutiae
reliably is in areas of high curvature. This is especially true of the core and delta regions of a
fingerprint.[36] The high curve map marks blocks that are in high-curvature areas of the
fingerprint. Two different measures are used. The first called, vorticity, measures the
cumulative change in ridge flow direction around all the neighbors of a block. The second
called, curvature, measures the largest change in direction between a block’s ridge flow and the
ridge flow of each of its neighbors. The details are in the source code.

In the event that minutiae are detected in these blocks, their assigned quality is reduced because
they have been detected within a less reliable part of the image. The white cross marks in the
fingerprint image in Figure 25 label blocks with high-curvature ridges.

52

4225 QualityMap([src/lib/Ifs/quality.c; gen_quality_nmap()]

The final image map produced by this package is a quality map. As discussed, the low contrast

map, low flow map, and the high curve map all point to different low quality regions of the
image. The information in these maps is integrated into one general map, as shown in Figure 26,
and contains 5 levels of quality. The quality assigned to a specific block is determined based on

its proximity to blocks flagged in these various maps. The details are in the source code.

[eolelo]o]elololololo]o]olo]olololololo]lolo]olola]olololo]olalololololololololole)]
OO0O0O0O0O0TddddddddddddddAddddddAdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO
OOOOCO—HAHNNNNNNNNNANNNANANNNANNNANNNNNNNNNNNNNNNNNANNNNANNNANNNNNNNNNNNEHO
[elelelel b Lo IaUer AR A S S AN NS NI AN SIS SNBSS SESIESE AN SIS A A B A A I S NS (=
OO A NN T T I T T T I T T T T T T I T T T T T I T T I T T I I T T I TITITITTIITITITITITITIITITITNAHO
OO O NMNMMNMN T T T T TNt T T T T T T I T T T I I T I T I ITNAHO
OO NMMNMN T T T I T T I T T MM I T T T T T T I T T I T T OOONOOOONTITITITITNAHO
O ANNMNMN T T T T T T T T TNt T T T T T T I T IO OO TITITNAHO
O T T I T T I T T I I T T T T T T I T T I T T OOOOANOONTITITITIINAHO
O NN T T T T T T T T TNt T I T T T T I T IO OO ITNAHO
oM T T T T T T T I T T TN T I T T T T T T I T T I T T OO OO TITITNAHO
O NMN T T T TONMNMNNMNTNMNNNNN T T T T T T T I T T T I T I T TIITTITIIITIITIITITITNAHO
O T T T T MMM T T I T T T T T T I T T I T T I I T I I I TITITITITIITITTIITITITIITITITNAHO
O NMN T T T T OMNNNNT NN T T T T T T T T I T T I I T T I TIINAHO
O T T T TN NMNN T I T I T T T T T T I T OONNMNONTIITITITITIITITITIITITIINAHO
O T T TN T T T NONNNNNNNONILIIIITITIITITIINAHAO
O AT T T T T I T T I T T IO T T T OOOONOANNOONONTIIITIITITITIITITIINAHO
O AT T T T T T T T T T T T T T T T T T I T T T OOOANNNOONONILIIIIITIIITIINAHO
O AT T T T T I T T I T T T T T I T T I I T T I T I OOOO OO ONTIIIITOMNMNONOMNTNAHO
O AT T T T T T T T T T I I T T I T T I T IO NETITNNNMMNMNOOMTNAHO
oA T T T T I T T T T T T Y T T T T Y T T I T T T T T T I T T I T T OO OOOON OO N HO
O AT T T T T T T T T T T Y T Y Y T T Y T T Y T T T T T I T T I TSI TOOOOANANNOONTNAHAO
oA T T T T T T T I T T T T T Y T T T T T I T T T T T T I T T I TITITITIITITIITITITITITITOOOOANAN DM NNHO
O AT T T T T T T T T T Y T Y Y T T T T T T T T T I T I IOV OOAN NN NN O
AT T T T T T T T I T T I T Y T T T T T I T T T T T T I T T I T TSI OO OOOON AN NN O
O AT T T T T T T T T T Y T Y Y T T Y T T T T T T T I T I TSI TITOOOOODNODO DOV N O
oA T T T T T T T I T T T T T T T T T T T I T T T T T T I T T I I T OO OOAN N NN O
O AT T T T T T T T T T I ONNMMNNMT IOV OANNDMNNAHO
AT T T T T I T T I T T I T I TN ITTIITITITITIITITIITITITITITITOOOOANANNANONNAHO
O NN T T I T T I T T T OOANNNNOOSETITTITTIITIITITIITITITITITITOOOANNNDNNNAO
OrdNMNMNMN T T I T T I T T I T TTOOMOANANNOOTITITTIITTITITIITITIITITITITITIT OO OOAN OO NN O
Ot T T T T I T T T ONNMNNNMSTITITTITTIITIITIIIITIITITITOOO OO NN TN HO
O T T I T T I T T I T I T OO ITTI I T TIITIITITIITITITIITIT OO OO N HO
O NNt T T T T T T T T Y Y T T Y T T Y T T T T I T T I I TOOOONOONT NN O
oMM T T I T T I T T T T T T T T T T T T I T T T T T T I T T I I TIITIITITIITITITITITIT OO OOON NN NN O
[eLaIa\erlerlephS AN SN IS NN I N IS I I I I S SN SESIESE SN A B A D S I A A B i erlerTerTeolarlerlerler Lo Ly (o)
O MMM T T I T T T T T T T T T T T T T T T T T T I T T I I T I IITITIITITTIITITIITITITITOOOONNHO
O AN MMM T I T T T T T Y T T Y Y T Y Y T T T T I T T I T T I I TSI TTOOOONNHO
O MMNANMNNNTI T T T T T T I T I T T IIT TITITIITITTIITITIITITITITOOOD NN HO
O NMNMMMNMNMNN T T T T T T T T T T Y T T Y Y T T T T I T T T I I TSI TIT OO NN HO
ONMNMMNANNMNNN T I T T I T T T T T T T T Y T T T T T I T T I T T I I T T I TIITITTIITITIITITITIITITIINAHO
O NMMANNANNNN T T T T T T Y T T T Y Y T Y Y T T T T T T T T T T I I T I TN AHO
oA ANANANNMNNN T I T T I T T T T Y T T T T T T T T I T T I T T I I T T I TITIIITTIITITIITITITIITITITNAHO
O ANANANANNMNNMN T T T T T T T T Y T Y Y T T T T T T T T T I I T I TITNAHO
O ANNANANNNNMN T T I I T T T T T T T Y T T T T T I T T I T T I I T T ITITIITITTIITITTIITITITIITITITNAHO
O ANANANANNNNMNT T I T T T T T T T Y T T T T T I T T I T IOV OO N HO
O ANANANANNNNMN T T I I T T T T T T T T T I T T I T T T ITTIITITIIITIIITITITONOOONONONONON NN NHO
O NANNANNNNNOMNT T T T T T T T T I T T T T I OOOO NN OO ANDNTITNAHO
O—NMANANANNNNMNT T I I T T I I T I I T T I T I T T T TITITIITITIIITITITOOONOONONOOAN OO NN TIINAHO
O—NANNANANNNNMNT T T T I T T I T I T I TT OO OO OO ANANANDNTITNAHO
OddANANANANNMNNNMN T T I I T T I I T I I T T I T I I TTITITIITITIIITITITOOOOAN D OO OOANNANMMNNTINAHO
OddANANNANNNNNT T T T T T T T T T I T I T OOONODONNTIOOMOOANNNNNTTNAHO
OddANANANANNMNNN T I T I I T T I I T I I T T I T T I T ITITIITITIIITITIT OO OO ONONON NN NN NTINHO
O ANANANNMNNN T T T T T T T T T T T T Y T T T T T I T T I OOON OO OO TN HO
oA ANANANNNN T I T T T T T Y T T T T T T I T T T T T T I T T I T TIITIITITIITITITITITITOOOOAN OO VN O
O ANNMNMNMN NNt T T T T T T T T T T T T T T T T T T I T T I OOOO OO AN DDAV N O
oMM T I T T T I T T T T T T T I T T T T T T I T T I T TIITITIITITIITITITITITITOOONOOON NN AN AN O
[eLa Laleolerlerleph i N NS I NN A I I I I I S SIS ASESIESE A A A A B A D B B A I seTerTeolerTerlerleolerlerlerl ol L Ly (@)
oMM T T I T T T I T T I I T I I T T I T I I T OOONONOOONTT OO M O
O ANNMNMNNMN T T I T T I I T I T T I T IO MM NOANNNMN A A A A AAAO
O A = ANANNANNNNNNNNNNNNNNANNNANNNANNNNANNNNNNNNNATANNNNNNAAAAAAAAAANO OO
Odddddddddd A A A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAATAO O OOOO
[e]lelo]o]ololololololololo]olololololo]lolo]ololalolololo]olo]olololololololololole)]

Figure 26. Quality map results.

53

423 Binarizelmage([src/lib/lfs/binar.c; binarize_V2()]

The minutiae detection algorithm in this system is designed to operate on a bi-level (or binary)
image where black pixels represent ridges and white pixels represent valleys in a finger's friction
skin. To create this binary image, every pixel in the grayscale input image must be analyzed to
determine if it should be assigned a black or white pixel. This process is referred to as image
binarization.

A pixel is assigned a binary value based on the ridge flow direction associated with the block the
pixel is within. If there was no detectable ridge flow for the current pixel's block, then the pixel
is set to white. If there is detected ridge flow, then the pixel intensities surrounding the current

pixel are analyzed within a rotated grid as illustrated in Figure 27.
7

Ridge Flow
Direction

Figure 27. Rotated grid used to binarize the finger print image.

This grid is defined in the global control structure, |fsparmnms_V2, with column width
(DI RBI N_GRI D_W set to 7 pixels and row height (DI RBI N_GRI D_H) set to 9 pixels. With the
pixel of interest in the center, the grid is rotated so that its rows are parallel to the local ridge
flow direction. Grayscale pixel intensities are accumulated along each rotated row in the grid,
forming a vector of row sums. The binary value to be assigned to the center pixel is determined
by multiplying the center row sum by the number of rows in the grid and comparing this value to
the accumulated grayscale intensities within the entire grid. If the multiplied center row sum is
less than the grid's total intensity, then the center pixel is set to black; otherwise, it is set to white.

Figure 28. Binarization results.

54

The results of binarization are shown in the Figure 28. The original grayscale image is on the
left, and its binarization results are on the right.

It should be noted that the binarization step is critical to the successful detection of minutiae in
this approach. The binarization results need to be robust in terms of effectively dealing with
varying degrees of image quality and reliable in terms of rendering ridge and valley structures
accurately. These are challenging, and at times conflicting goals. It is desirable to preserve as
much image information and ridge/valley structure as possible so that minutiae are not missed,
and yet it is undesirable to accentuate degraded areas in the image to the point of introducing
false minutiae. Significant effort has been invested to promote both robust and reliable binary
images, and yet the current system tends to produce a considerable number of false minutiae.
This is particularly troublesome when processing latent fingerprint images.

424 Detect Minutiae[src/lib/1fs/minutia.c; detect_nminutiae_V2()]

This step methodically scans the binary image of a fingerprint, identifying localized pixel
patterns that indicate the ending or splitting of a ridge. The patterns searched for are very
compact as illustrated in Figure 29. The left-most pattern contains six binary pixels in a 2x3
configuration. This pattern may represent the end of a black ridge protruding into the pattern
from the right. The same is true for the next 2x4 pattern. The only difference between this
pattern and the first one is that the middle pixel pair is repeated. In fact, this is true for all the
patterns depicted. This "family" of ridge ending patterns can be represented by the right-most
pattern, where the middle pair of pixels (signified by “«””) may repeat one or more times.

2x3 El! Pattern
2x4

2x5 2xN

Figure 29. Pixel pattern used to detect ridge endings.

Candidate ridge endings are detected in the binary image by scanning consecutive pairs of pixels
in the image looking for sequences that match this pattern. Pattern scanning is conducted both
vertically and horizontally. The pattern as illustrated is configured for vertical scanning as the
pixel pairs are stacked on top of each other. To conduct the horizontal scan, the pixel pairs are
unstacked, rotated 90° clockwise, and placed back in sequence left to right.

Using the representation above, a series of minutiae patterns are used to detect candidate minutia
points in the binary fingerprint image. These patterns are illustrated in Figure 30. There are two
patterns representing candidate ridge endings, the rest represent various ridge bifurcations. A
secondary attribute of appearing/disappearing is assigned to each pattern. This designates the
direction from which a ridge or valley is protruding into the pattern. All pixel pair sequences
matching these patterns, as the image is scanned both vertically and horizontally, form a list of
candidate minutia points.

55

1. Ridge Ending 2. Ridge Ending 3. Bifurcation 4. Bifurcation 5. Bifurcation

(appearing) (disappearing) (disappearing) (appearing) (disappearing)
6. Bifurcation 7. Bifurcation 8. Bifurcation 9. Bifurcation 10. Bifurcation
(disappearing) (appearing) (appearing) (disappearing) (appearing)

a B e = %

Figure 30. Pixel patternsused to detect minutiae.

425 RemoveFalseMinutiae[src/lib/lfs/remove.c; renove_false_minutia V2()]

Using the patterns in Figure 30, candidate minutiae points are detected with as few as six pixels.
This facilitates a particularly greedy detection scheme that minimizes the chance of missing true
minutiae; however, many false minutiae are included in the candidate list. Because of this, much
effort is spent on removing the false minutiae. These steps include removing islands, lakes,
holes, minutiae in regions of poor image quality, side minutiae, hooks, overlaps, minutiae that
are too wide, and minutiae that are too narrow (pores). A short description of each of these steps
is provided in the order in which they are executed.

4.2.5.1 Remove Islands and Lakes [src/1i b/ | fs/remove.c; renmove_isl ands_and_| akes()]

ISLAND LAKE

- EX

1. If (distance(A,B) <= 16 pixels) Then
2. If (direction_angle(A,B) >= 123.75°) Then
3. If (on_loop(A) && on_loop(B)) Then
4. |If (loop_length <= 60 pixels) Then
5. remove(A,B)
6. fill_loop()

Figure 31. Removal of islands and lakes.

In this step, ridge ending fragments and spurious ink marks (islands) along with interior voids in
ridges (lakes) are identified and removed. These features are somewhat larger than the size of
pores in the friction skin and they are often elliptical in shape; therefore, they typically will have

a pair of candidate minutia points detected at opposite ends. An illustratrion of these types of
features is shown in Figure 31.

56

Included at the bottom of the figure are the criteria used to detect islands and lakes. A pair of
minutia must be within 16 pixels (MAX_RMIEST_DI ST_V2) of each other. If so, then the
directions of the two minutiac must be nearly opposite (= 123. 75°) each other. Next, both
minutiae must lie on the edge of the same loop, and the perimeter of the loop must be < 60 pixels
(MAX_HALF_LOOP_V2 x 2). If all these criteria are true, then the pair of candidate minutiae are
removed for the list and the binary image is altered so that the island/lake is filled. Note that this
is the only removal step that modifies the binary fingerprint image.

4.2.5.2 Remove Holes[src/lib/lfs/renove.c; renmove_hol es()]

HOLE

Ac—>>

1. If (on_loop(A)) Then
2. If (loop_length <= 15 pixels) Then
3. remove(A)

Figure 32. Removal of holes.

Here a hole is defined similarly to an island or lake, only smaller, and the loop need only have
one minutia point on it. The criteria for removing a hole are illustrated in Figure 32. If a
candidate minutia point lies on the edge of a loop with perimeter length < 15 pixels
(SMALL_LOCOP_LEN), then the point is removed from the candidate list.

4.2.5.3 Remove Pointing to Invalid Block
[src/lib/lfs/renove.c; renmove_pointing_ invbl ock V2()]

This step and the next identify and remove candidate minutiae that are located near blocks that
contain no detectable ridge flow. These blocks are referred to as containing invalid ridge flow
direction and represent low-quality areas in the fingerprint image.

Current Neighbor
Block Block
Direction =7 Direction = Invalid
B
__.-O
A o——»

B = translate(A, 4 pixels, direction(A))
D = direction(block(B))

If (D == Invalid) Then

4. remove(A)

W=

Figure 33. Removal of minutia pointing to an invalid block.

57

This step is illustrated in Figure 33. A minutia point is translated 4 pixels
(TRANS_DI R_PI X_V2) in the direction the minutia is pointing. If the translated point lies within
a block with invalid ridge flow direction, then the original minutia point is remove from the list.

4.2.5.4 Remove Near Invalid Blocks
[src/libl/lfs/renove.c; renove_near _invbl ocks V2()]

Neighbor Neighbor
Block 1 Block 2
Direction=9 } Direction =
Invalid 7 ? r)
Neighbor
e ? Block 2 ?
Current An\Erectlon-g Neighbor
Block Block 3
? ? ?
1. Nbrs = block_neighbors(A)
2. InvNbrs = invalid_directions(Nbrs)
3. Foreach Niin InvNbrs

4. Ni_Nbrs = neighbors(Ni)
5. Ci = count_valid_directions(Ni_Nbrs)
6. If (Ci<7)Then

7. remove(A)

Figure 34. Removal of minutia near invalid blocks.

Here, the proximity of a candidate minutia to a number of surrounding blocks with invalid ridge
flow direction is evaluated. Given a minutia point, the blocks sufficiently close to the minutia
(details left to the source code), and immediately neighboring the block in which the minutia
resides, are tested in turn. If one of these neighboring blocks has invalid ridge flow direction,
then its surrounding 8 neighbors are tested. The number of surrounding blocks with valid ridge
flow direction are counted, and if the number of valid blocks is < 7 (RM_VALI D_NBR_M N), then
the original minutia point is removed from the candidate list. Figure 34 illustrated this step.

58

4.2.5.5 Remove or Adjust Side Minutiae
[src/libl/llfs/renove.c; remove_or_adjust_side_m nutiae_V2()]

Adjusted Removed

Pts = trace_contours(A, 7 pixels)
R_Pts = rotate_points_vertical(Pts, direction(A))
{Min_Ys,Max_Ys} = min_and_max_Ys(R_Pts)
If (#Min_Ys == 1) Then
Adjust(A, Pts[Min_Y1])
Else If ({Min_Ys,Max_Ys} ==
{Min_Y1,Max_Y1,Min_Y2}) Then
Min_Y = point_at_min_Y(R_Pts, Min_Ys)
Adjust(A, Pts[Min_Y1])
6. Else revove(A)

bl

o

Figure 35. Removal or adjustment of minutiae on the side of aridge or valley.

This step accomplishes two purposes. The first is to fine-tune the position of a minutia point so
that it is more symmetrically placed on a ridge or valley ending. In the process, it may be
determined that there is no clear symmetrical shape to the contour on which the candidate
minutia lies. This is often the case with points detected along the side of a ridge or valley instead
of the ridge or valley's ending. In this case, the misplaced minutia point is removed. In Figure
35, the illustration on the left depicts the adjustment of a minutia point from point A¢ to Ap. The
illustration on the right depicts the removal of a side point, B.

To accomplish this, starting at the candidate minutia point, the edge of either the ridge or valley
is traced to the right and to the left 7 pixels (SI DE_HALF_CONTOUR), producing a list of 15
contour points. The coordinates of these contour points are rotated so that the direction of the
candidate minutia is pointing vertical. The rotated coordinates are then analyzed to determine
the number and sequence of relative maxima and minima in the rotated y-coordinates. If there is
only one y-coordinate minima, then the point of the minimum is assumed to lie at the bottom of a
bowl-shaped rotated contour, and the candidate minutia is moved to correspond to this position
in the original image. If there are more than one y-coordinate minima, then a specific sequence
of minima-maxima-minima must exist, in which case the candidate minutia is moved to the point
in the original image corresponding to the lowest y-coordinate minima. Again, this is assumed
to be the bottom of a relatively bowl-shaped rotated contour. If there is more than one y-
coordinate minima and there is not an exact minima-maxima-minima sequence along the rotated
contour, then the minutia point is determined to lie along the side of a ridge or valley, and it is
removed from the candidate list.

59

4.2.5.6 Remove Hooks [src/lib/Ifs/renove.c; remove_hooks()]

HOOK

1. If (distance(A,B) <= 16 pixels) Then
2. If (direction_angle(A,B) >= 123.75°) Then
3. If (type(A) != type(B)) Then
4. Pts =trace_contours(A, 30 pixels)
5. If (in_points(Pts, B)) Then
6. remove(A,B)

Figure 36. Removal of hooks.

A hook is a spike or spur that protrudes off the side of a ridge or valley. An example is
illustrated in Figure 36. This feature typically has two minutiae of opposite type, one on a small
piece of ridge and the other in a small valley, that are relatively close to each other. The two
points must be within 16 pixels (MAX_RMIEST_DI ST_V2) of each other, their directions must be
nearly opposite (= 123. 75°), they must be of opposite type, and they must lie on the same
ridge/valley edge within 30 contour pixels (MAX_HOOK_LEN V2) from each other. If all these
are true, then the two minutia points are removed from the candidate list.

4.2.5.7 Remove Overlaps [src/lib/lfs/renove.c; renove_overlaps()]

In this step, an overlap is a discontinuity in a ridge or valley. These artifacts are typically
introduced by the fingerprint impression process. A break in a ridge causes 2 false ridge endings
to be detected, while a break in a valley causes 2 false bifurcations. The criteria for detecting an
overlap are illustrated in Figure 37. Two minutia points must be within 8 pixels
(MAX_OVERLAP_DI ST) of each other, and their directions must be nearly opposite (= 123. 75°).
If so, then the direction of the line joining the two minutia points is calculated. If the difference
between the direction of first minutia and the joining line is (£ 90°), then the two minutiae are
removed from the cadidate list. Otherwise, if the minutiae are within 6 pixels
(MAX_OVERLAP_JA N_DI ST) of each other, and there are no pixel value transitions along the
joining line, then the points are removed from the candidate list.

60

OVERLAP
A
B
1. If (distance(A,B) <= 8 pixels) Then
2. If (direction_angle(A,B) >= 123.75°) Then
3. If(type(A) == type(B)) Then
4. J=join_direction(A,B)
5. If(direction_angle(180°-A,J) <= 90° Then
6. remove(A,B)
7. Else If (distance(A,B) <= 6 pixels &&

free_path(A,B)) Then
8. remove(A,B)

Figure 37. Removal of overlaps.

42.5.8 Remove Too Wide Minutiae [src/lib/1fs/renmove.c; renove_nal formations()]

The next two steps identify false minutiae that lie on malformed ridge and valley structures. A
generalized ridge ending is comprised of a Y-shaped valley enveloping a black rod. The inverse
is true for a generalized bifurcation. Simple tests are applied to evaluate the quality of this Y-
shape.

TOO WIDE?

Pts1 = trace_contour(A, 20 pixels)
Pts2 = trace_contour(A, -20 pixels)
B = Pts1[10]; C = Pts1[20]

E = Pts2[10]; F = Pts2[20]

D10 = distance(B,E)

D20 = distance(C,F)

If (D20/D10) > 2.0) Then

8. remove(A)

Noohkowd =

Figure 38. Removal of too wide minutiae.

This step evaluates whether the structure enveloping a ridge or valley ending is relatively Y-
shaped and not too wide. Figure 38 illustrates the criteria applied. The edge of the ridge or
valley is traced to the left and to the right 20 pixels (MALFORMATI ON_STEPS_2), producing 2

61

lists of contour points. On each contour, coordinates at pixel index 10 (B&E) and at pixel index
20 (C&F) are stored. The distance between pixels at index 10 (MALFORMATI ON_STEPS 1) is
computed as is the distance between pixels at index 20. The ratio of these two distances is then
calculated (D2o/D10), and if the ratio is larger than 2.0 (M N_MALFORNMATI ON_RATI O), then the
minutia point is removed from the candidate list. It should be noted that based on these criteria
the bifurcation in the illustration would not be removed.

42.5.9 Remove Too Narrow Minutiac[src/|ib/1fs/renove.c; renmove_pores V2()]

TOO NARROW?

1. T =180° - direction(F)

2. R =translate(F, 3 pixels, T)

3. Q=find_edge(R, Up, 12 pixels)
4. P =find_edge(R, Down, 12 pixels)
5. Pts = trace_contour(Q, 10 pixels)
6. A=Pts[10]

7. Pts =trace_contour(Q, -8 pixels)
8. C =Pts[8]

9.

Pts = trace_contour(P, 10 pixels)
10. B = Pts[10]

11. Pts = trace_contour(P, -8 pixels)
12. D = Pts[8]

13. D1 = distance(A,B)

14. D2 = distance(C,D)

15. If ((D1/D2) <= 2.25) Then

16. remove(F)

Figure 39. Removal of too narrow minutiae.

The previous step tests for candidate minutiae that are too wide. This step tests for points that
are on structures that are too narrow. This is typical, for example, of pores in the friction skin.
Figure 39 illustrates this test. Starting with the candidate minutia point, F, its coordinates are
translated 3 pixels (PORES_TRANS_R) opposite the minutia's direction. The top edge and bottom
edges of the enveloping structure are then located at (Q&P). From these two points, the edge is
traced to the left 10 pixels (PORES_STEP_FWD) and to the right 8 pixels (PORES_STEP_BWD).
The points at the end of the 10 pixel contours are stored (A&B), and the points at the end of the
8-pixel contours are stored (C&D). Next, distances are computed between these pairs of points,

62

and the ratio (D1/D2) is computed. If the ratio is < 2.25 (PORES_MAX_RATI O), then the minutia
point is removed from the candidate list. In fact, if the process fails to find any of the points in
the illustration, then the candidate minutia is removed. It should be noted that, m ndt ct, only
searches for minutiae that are too narrow within high-curvature regions or regions where ridge
flow direction is non-determinable.

426 Count Neighbor Ridges[src/lib/Ifs/ridges.c; count_m nutiae_ridges()]

Fingerprint minutiae matchers often use information in addition to just the points themselves.
Ancillary information usually includes the minutia's direction, its type, and it may include
information pertaining to minutiae neighbors. Beyond a minutia's position, direction, and type,
there are no standard neighbor schemes. Different AFIS systems use different neighbor
topologies and attributes. One common attribute is the number of intervening ridges (called
ridge crossings) between a minutia and each of its neighbors. For example, the FBI's IAFIS uses
ridge crossings between a minutia and its 8 nearest neighbors, where each neighbor is the closest
within a specified octant.[37]

The neighbor scheme distributed with this system has been directly inherited from HO39.[55]
Up to 5 nearest neighbors (MAX_NBRS) are reported. Given a minutia point, the closest
neighbors below (in the same pixel column), and to the right (within entire pixel columns) in the
image are selected. These nearest neighbors are sorted in order of their direction, starting with
vertical and working clockwise. Using this topology, ridge counts are computed and recorded
between a minutia point and each of its nearest neighbors.

4.2.7 AssessMinutiaQuality [src/lib/lfs/quality.c; conbined_minutia_quality()]

One of the goals of developing this software package was to compute a quality/reliability to be
associated with each detected minutia point. Even with the lengthy list of removal steps above,
false minutiae potentially remain in the candidate list. A robust quality measure can help
manage this in that false minutiac should be assigned a lower quality than true minutiae.
Through dynamic thresholding, a trade off between retaining false minutiae and throwing away
true minutiae may be determined. To this end, m ndtct, computes and reports minutiae
qualities.

Two factors are combined to produce a quality measure for each detected minutia point. The
first factor, L, is taken directly from the location of the minutia point within the quality map
described in Section 4.2.2.5. One of five quality levels is initially assigned, with 4 being the
highest quality and 0 being the lowest.

The second factor is based on simple pixel intensity statistics (mean and standard deviation)
within the immediate neighborhood of the minutia point. The size of the neighborhood is set to
11 pixels (RADI US_MW). This is sufficiently large to contain generous portions of an average
ridge and valley. A high quality region within a fingerprint image will have significant contrast
that will cover the full grayscale spectrum. Consequently, the mean pixel intensity of the
neighbor hood will be very close to 127. For similar reasons, the pixel intensities of an ideal
neighborhood will have a standard deviation = 64.

63

Using this logic, the following reliability measure, R, is calculated given neighborhood mean, L,
and standard deviation, O:

-127
p-1o-bt
127
1.0 ifo>64
FU: o
— otherwise
64
R =min(F,, F,)

Minutia quality, O, is calculated using quality map level, L, and reliability, R, as:
S0+ (490R) ifL=4
25+(240R) ifL=3
0=1.10+(140R) ifL=2
05+ (040R) ifL=1
.01 ifL=0

This results in a quality value on the range .01 to .99. A low quality value represents a minutia
detected in a lower quality region of the image, whereas a high quality value represents a minutia
detected in a higher quality region.

4.2.8 Output ANSI/NIST file[src/lib/an2k/fntstd.c; wite ANSI _NI ST file()]

Upon completion, m ndt ct, takes the contents of the input ANSI/NIST formatted file and
inserts two new records. A Type-9 record, holding the detected minutiae, is constructed and
inserted along with a Type-13 or Type-14 record, holding the image binarization results. If the
input image is of a latent fingerprint, then the binarization results are stored in a Type-13 record;
otherwise, the image results are stored in a Type-14 record. It should be noted that the minutiae
in the Type-9 record are formatted in the NIST-assigned fields 5-12 according to the ANSI/NIST
standard.[30] The utilities, an2k2i af and i af 2an2k, as described in the Reference Manual of
this document may be used to convert between these fields and the FBI/IAFIS-assigned fields
13-23.[37]

A number of other files are produced in addition to the output ANSI/NIST file. These include a
file for each of the image maps described in Section 4.2.2 and a log file listing all the detected
minutiae and their associated attributes. All of these are text files and are created by mi ndt ct in
the current working directory with fixed file names. The direction map is stored in dmap. t xt ;
the low contrast map is stored in | cmap. t xt ; the low flow map is stored in | f map. t xt ; the
high curve map is stored in hcmap. t xt ; and the quality map is stored in grmap. t xt . The maps
are represented by a grid of numbers, each corresponding to a block in the fingerprint image.
The last text output file, m n. t xt, contains a formatted listing of attributes associated with each
detected minutiae in the fingerprint image. Among these attributes are the minutia's pixel
coordinate location, its direction, and type. The format and all the attributes reported in this file
are described within the m ndt ct manual page in the Reference Manual. Output files generated
from m ndt ct are provided int est/ mi ndt ct / execs/ m ndtct.

64

Figure 40 displays the detected minutiae for the example fingerprint.

Figure40. Minutiaeresults.

65

5. REFERENCES
(A number of the references listed can be downloaded at http://www.itl.nist.gov/iaui/894.03.)

[1] JH. Wegstein, “A Semi-automated Single Fingerprint Identification System,” NBS
Technical Note 481, April 1969.

[2] J.H. Wegstein, “Automated Fingerprint Identification,” NBS Technical Note 538, August
1970.

[3] J.H. Wegstein, “Manual and Computerized Footprint Identification,” NBS Technical Note
712, February 1972.

[4] R.T. Moore, “The Influence of Ink on The Quality of Fingerprint Impressions,” NBS
Technical Report NBSIR 74-627, December 1974.

[5] J.H. Wegstein, “The M40 Fingerprint Matcher,” NBS Technical Note 878, July 1975.

[6] J.H. Wegstein, and J.F. Rafferty, “The LX39 latent Fingerprint Matcher,” NBS Special
Publication 500-36, August 1978.

[7]1 R.T. Moore, “Results of Fingerprint Image Quality Experiments,” NBS Technical Report
NBSIR 81-2298, June 1981.

[8] J.H. Wegstein, “An Automated Fingerprint Identification System,” NBS Special Publication
500-89, February 1982.

[9] R.M. McCabe, and R.T. Moore, “Data Format for Information Interchange,” American
National Standard ANSI/NBS-ICST 1-1986, August 1986.

[10] R.T. Moore, “Automated Fingerprint Identification Systems - Benchmark Test of
Relative Performance,” American National Standard ANSI/IAI 1-1988, February 1988.

[11] R.T. Moore, “Automated Fingerprint Identification Systems — Glossary of Terms and
Acronyms,” American National Standard ANSI/IAI 2-1988, July 1988.

[12] R.T. Moore, R.M. McCabe, and R.A. Wilkinson, “AFRS Performance Evaluation Tests,”
NBS Technical Report NBSIR 88-3831, August 1988.

[13] “Minimum Image Quality Requirements for Live Scan, Electronically Produced
Fingerprint Cards,” Technical Report for the Federal Bureau of Investigation — Identification
Division, November 1988.

[14] C. Watson, "NIST Special Database 4: 8-bit Gray Scale Images of Fingerprint Image
Groups," CD-ROM & documentation, March 1992.

[15] C.L. Wilson, G.T. Candela, P.J. Grother, C.I. Watson, and R.A. Wilkinson, "Massively
Parallel Neural Network Fingerprint Classification System," Technical Report NISTIR 4880,
July 1992.

[16] R. McCabe, C. Wilson, and D. Grubb, “Research Considerations Regarding FBI-IAFIS
Tasks & Requirements,” NIST Technical Report NISTIR 4892, July 1992.

[17] G.T. Candela and R. Chellappa, "Comparative Performance of Classification Methods for
Fingerprints," Technical Report NISTIR 5163, April 1993.

[18] C. Watson, "NIST Special Database 9: 8-Bit Gray Scale Images of Mated Fingerprint
Card Pairs," Vol. 1-5, CD-ROM & documentation, May 1993.

[19] C. Watson, "NIST Special Database 10: Supplemental Fingerprint Card Data (SFCD) for
NIST Special Database 9," CD-ROM & documentation, June 1993.

66

[20] C. Watson, "NIST Special Database 14: Mated Fingerprint Card Pairs 2," CD-ROM &
documentation, September 1993.

[21] R.M. McCabe, “Data Format for the Interchange of Fingerprint Information,” American
National Standard ANSI/NIST-CSL 1-1993, November 1993.

[22] J.L. Blue, G.T. Candela, P.J. Grother, R. Chellappa, C.L. Wilson, "Evaluation of Pattern
Classifiers for Fingerprint and OCR Application," in Pattern Recognition, 27, pp. 485-501, 1994.
[23] C.L. Wilson, G.T. Candela, C.I. Watson, " Neural Network Fingerprint Classification," in
Journal for Artificial Neural Networks, 1(2), 203-228, 1994.

[24] C.I. Watson, J. Candela, P. Grother, "Comparison of FFT Fingerprint Filtering Methods
for Neural Network Classification," Technical Report NISTIR 5493 September 1994.

[25] C. Watson, "NIST Special Database 18: Mugshot Identification Database of § bit gray
scale images," CD-ROM & documentation, December 1994.

[26] G.T. Candela, P.J. Grother, C.I. Watson, R.A. Wilkinson, C.L. Wilson, "PCASYS - A
Pattern-level Classification Automation System for Fingerprints," Technical Report NISTIR
5647 & CD-ROM, April 1995.

[27] R.M. McCabe, "Data Format for the Interchange of Fingerprint, Facial & SMT
Information," American National Standard ANSI/NIST-ITL 1a-1997, April 1997.

28] C. Watson, "NIST Special Database 24: Digital Video of Live-Scan Fingerprint Data,"
CD-ROM & documentation, July 1998.

[29] M.D. Garris and R.M. McCabe, "NIST Special Database 27: Fingerprint Minutiae From
Latent and Matching Tenprint Images," CD-ROM & documentation, June 2000.

[30] R.M. McCabe, "Data Format for the Interchange of Fingerprint, Facial, Scar Mark &
Tattoo (SMT) Information," American National Standard ANSI/NIST-ITL 1-2000, July 2000.
Available from R.M. McCabe at NIST, 100 Bureau Drive, Stop 8940, Gaithersburg, MD 20899-
8940.

[31] L Hong, Y. Wan, and A. Jain, "Fingerprint Image Enhancement: Algorithm and
Performance Evaluation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20,
no. &, pp. 777-789, August 1998.

[32] GNU project - free UNIX-like utilities. Learn more at http://www.gnu.org.

[33] Cygwin tools - free GNU utility port for Win32 machines. Learn more at
http://sources.redhat.com/cygwin.

[34] Linux - a freely available clone of the UNIX operating system. Learn more at
http://www.linux.org.

[35] Independent JPEG Group (IJG) - learn more at http://www.ijg.org.

[36] "The Science of Fingerprints," Rev. 12-84, U.S. Department of Justice, Federal Bureau of
Investigation. Available from U.S. Government Printing Office, Washington D.C. 20402.

[37] "Electronic Fingerprint Transmission Specification," CJIS-RS-0010 (V7). Available
from Criminal Justice Information Services Division, Federal Bureau of Investigation, 935
Pennsylvania Avenue, NW, Washington D.C. 20535.

[38] Automated classification system reader project (ACS), Technical report, DeLaRue
Printrak Inc., February 1985.

67

[39] Automated Fingerprint Classification Study, Phase I Final Report, Technical report,
Ektron Applied Imaging, May 1985.

[40] R.M. Stock and C.W. Swonger, “Development and evaluation of a reader of fingerprint
minutiae,” Cornell Aeronautical Laboratory, Technical Report CAL No. XM-2478-X-1:13-17,
19609.

[41] A.K. Jain, Fundamentals of Digital Image Processing, chapter 5.11, pages 163-174.
Prentice Hall Inc., prentice hall international edition, 1989.

[42] D.F. Specht, “Enhancements to Probabilistic Neural Networks,” In International Joint
Conference on Neural Networks, pages 1-761 - 1-768, June 1992.

[43] D.F. Specht, “Probabilistic neural networks,” Neural Networks, 3(1):109-118, 1990.

[44] B.V. Dasarathy, editor, “Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques,” IEEE Computer Society Press, 1991.

[45] P.J. Grother, G.T. Candela, and J.L. Blue, “Fast Implementations of Nearest Neighbor
Classifiers,” IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995.

[46] W.R. Smith, “Improved Feature Set for Fingerprint Image Classification,” In
Proceedings from the Research in Criminal Justice Information Services Technology
Symposium, pages C-111 - C-127, September 1993.

[47] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbau S.
Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen. C translation by J. Demmel and
Xiaoye Li, LAPACK Users Guide, SIAM, Philadelphia, 1992.

[48] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Parallel Distributed Processing, Volume
1: Foundations, edited by D.E. Rumelhart, J.L. McClelland, et al., MIT Press, Cambridge, pp.
318-362, 1986.

[49] C.L. Wilson, J.L. Blue, O.M. Omidvar, "The Effect of Training Dynamics on Neural
Network Performance," Technical Report NISTIR 5696, August 1995.

[50] C.L. Wilson, J.L. Blue, and O.M. Omidvar, “Improving Neural Network Performance for
Character and Fingerprint Classification by Altering Network Dynamics,” Technical Report
NISTIR 5695, National Institute of Standards and Technology, 1995.

[51] C.L. Wilson, J.L. Blue, and O.M. Omidvar, “Improving Neural Network Performance for
Character and Fingerprint Classification by Altering Network Dynamics,” In World Congress on
Neural Networks Proceedings II, pages 151 - 158, Washington DC, July 1995.

[52] J. L. Blue and P. J. Grother, "Training Feed Forward Networks Using Conjugate
Gradients," Technical Report NISTIR 4776, February 1992, and in Conference on Character
Recognition and Digitizer Technologies, Vol. 1661, pp. 179-190, SPIE, San Jose, February 1992.

[53] D. Liu and J. Nocedal, "On the Limited Memory BFGS Method for Large Scale
Optimization," Mathematical Programming B, Vol. 45, 503-528, 1989.

[54] O.M. Omidvar and C.L. Wilson, "Information Content in Neural Net Optimization,"
Technical Report NISTIR 4766, February 1992, and in Journal of Connection Science, 6:91-103,
1993.

[55] Home Office Automatic Fingerprint Recognition System (HOAFRS), License 16-93-
0026, Science and Technology Group, Home Office, London, 1993.

68

APPENDIX A. MLP TRAINING OUTPUT

Explanation of the output produced during MLP training

When the program m p does a training run, it writes output to the standard error and writes the
same output to the short_outfile specified in the specfile. The purpose of this appendix is to
explain the meaning of this output. M p produces similar output for a testing run except that the
"training progress" part is missing.

Patter n-Weights

As a preliminary, it will be helpful to discuss the "pattern-weights" which ml p uses, since they
are used in the calculations of many of the values shown in the output. The pattern-weights are
"prior" weights, one for each pattern;'? they remain constant during a training (or testing) run,
although it is possible to do a training "meta-run" that is a sequence of training runs and to
change the pattern-weights between the runs. The setting of the pattern-weights is controlled by
the priors value set in the specfile and may be affected by provided data files, as follows (in all
cases, the division by N is merely a normalization that slightly reduces the amount of calculation
needed later):

allsame: if priorsis allsame, then each pattern-weight is set to (1/N), where N is the number of
patterns.

class: a file of given class-weights must be supplied; each given class-weight is divided by the
actual class-weight of the input data set and the new class-weights are normalized so their
sum is 1.0. Then each pattern-weight is set to the new class-weight of the class of the
corresponding pattern, divided by N (number of patterns). The end result is that if the
actual distribution of the data set does not equal that of the given class-weights, class-
weights are adjusted so the final results approximate what the scores would be if the
distribution were the same as the given class-weights. If the user is only concerned about
the unadjusted score for the given data, set the given class-weights equal to the actual
class-weights.

pattern: a file of (original) pattern-weights must be supplied; each of them is divided by N to
produce the corresponding pattern-weight.

both: files of class-weights and (original) pattern-weights must both be supplied; each pattern-
weight is then set to the class-weight (class-weights are adjusted as discussed in the class
portion of this list) of the class of the corresponding pattern, times the corresponding
(original) pattern-weight, divided by N.

The pattern-weights are used in the calculation of the error value that m p attempts to minimize
during training. When the training patterns are sent through the network, each pattern produces
an error contribution, which is multiplied by the pattern-weight for that pattern before being
added to an error accumulator (Section A.1.1.2.2). The pattern-weights are also involved in the
calculations of several other quantities besides the error value; all these uses are described below.
References [49] discuss the use of class-based prior weights (Section 5.4, pages 10-11) which
correspond to the class setting of priors.

12" A pattern is a feature-vector/class or feature-vector/target-vector pair

69

Explanation of Output

A.1.1.1 Header

The first part of the output is a "header" showing the specfile parameter values. Here is the
header of the short_outfilet est / pcasys/ execs/ ml p/ m p_dir/trnl. err produced by the
first training run of a sequence of runs used to train the fingerprint classifier:

Classifier MP
Trai ning run
Patterns file: fvl-9m p.kls; using all 24300 patterns
Final pattern-wts: made from provided class-wts and pattern-wts,
files priors and patwts
Error function: sum of squares
Reg. factor: 2.000e+00
Activation fns. on hidden, output nodes: sinusoid, sinusoid
Nos. of input, hidden, output nodes: 128, 128, 6
Bol t zmann pruning, thresh. exp(-w*2/T), T 1.000e-05
W1l use SCG
Initial network weights: random seed 12347
Fi nal network weights will be witten as file trnl.ws
Stopping criteria (max. no. of iterations 50):
(RVB err) <= 0.000e+00 OR
(RVMB g) <= 0.000e+00 * (RMB W) OR
(RV5 err) > 9.900e-01 * (RVS err 10 iters ago) OR
(OK - NG count) < (count 10 iters ago) + 1. (OK level: 0.000)
Long outfile: trnll.err

G ven and Actual Prior Wights
A => 0.036583 0.038025

. 338497 0. 319506

. 316920 0. 306584

. 000000 0. 005597

. 029482 0.030123

. 278518 0. 300165

tual = New Prior Wights

193897

213518

. 208333

. 000000

. 197247

. 187005

s-4nxor
11
\Y

0]
<
1
VVVVVV>VVVYV

en/ Al

>

OCO0O0O0O0H 000000

8 s4nor>

[02)

doing <= 50 iterations; 17286 vari abl es.

70

A.1.1.2 Training Progress

The next part of the output lists a running update on the training progress. The first few lines of
training progress reported are:

pr uned 80 6 86 C 1.67872e+05 H 2.40068e+04 R 85.70 M -0.00 T 0.0841
lter Err (Ep Ew) K UNK NG K UNK NG
0 0.474 (0.240 0.289) 6564 0 17736 = 27.0 0.0 73.0 %
000 0 419 0 070
pruned 108 3 111 C 1.75555e+05 H 2.54052e+04 R 85.53 M -0.00 T 0.0836
pruned 124 5 129 C 1.84026e+05 H 2.58204e+04 R 85.97 M -0.00 T 0.0824
pruned 129 6 135 C 2.20275e+05 H 2.72642e+04 R 87.62 M -0.00 T 0.0814
pruned 138 3 141 C 1.73226e+05 H 2.76075e+04 R 84.06 M -0.00 T 0.0803
pruned 138 5 143 C 1.78328e+05 H 2.99593e+04 R 83.20 M -0.00 T 0.0762
pruned 152 4 156 C 1.74579e+05 H 3.03576e+04 R 82.61 M -0.00 T 0.0745
pruned 167 5 172 C 1.81337e+05 H 3.14710e+04 R 82.65 M -0.00 T 0.0681
pruned 149 7 156 C 1.89832e+05 H 3.95510e+04 R 79.17 M -0.00 T 0.0536
pruned 178 7 185 C 1.78410e+05 H 3.90489e+04 R 78.11 M -0.00 T 0.0526
pruned 184 7 191 C 2.19716e+05 H 3.99658e+04 R 81.81 M -0.00 T 0.0490
10 0.328 (0.103 0.220) 19634 0 4666 = 80.8 0.0 19.2 %
0.0 29099 0 1 68
The line
lter Err (Ep Ew) K UNK NG K UNK NG

comprises column headers that pertain to those subsequent lines that begin with an integer ("first
progress lines"); each first progress line is followed by a "second progress line,” and there are
"pruning lines" if Boltzmann pruning is used. These three types of lines are discussed below,
second progress lines first because some of the calculations used to produce them are later used
to make the first progress lines.

A.1.1.2.1 Second progresslines

These are the lines that begin with fractional numbers; the first of them in the above example is

0.0 0 419 0 070

Ignoring for a moment the first value in such a line, the remaining values are the "percentages"
right by class, which ml p calculates as follows. It maintains three pattern-weight-accumulators
for each class:

ai(") = right pattern-weight-accumulator for correct class i

ai(w) = wrong pattern-weight-accumulator for correct class i

(u)

a;"’=unknown (rejected) pattern-weight-accumulator for correct class i

When m p sends a training pattern through the network the result is an output activation for each
class; the hypothetical class is, of course, whichever class receives the highest activation. If the
highest activation equals or exceeds the rejection threshold oklvl set in the specfile, then m p

accepts its result for this pattern, and adds its pattern-weight (Section 0) to either ai(") or a,.(w)

(where i is the correct class of the pattern) according to whether the network classified the
pattern rightly or wrongly. Otherwise, (i.e. if the highest activation is less then oklvl) nl p adds

the pattern-weight to ai(“). These accumulators reach their final values after all of the training

71

patterns are sent through the network. M p then defines the right "percentage" of correct class i
to be

1004
T 1 0 5 g

i i i

It shows these values, rounded to integers, in the second progress lines, as the values after the
first one. For example, the second progress line above shows that the right "percentages" of
correct classes 0 and 1 are 0 and 4."

If priors is allsame then the pattern-weights are all equal and so a,.(’), etc. are the numbers

classified rightly, etc. times this single pattern-weight; the pattern-weight cancels out between
the numerator and denominator of the above formula, so that the resulting value really is the
percentage of the patterns of class i that the network classified rightly. If priors has a value other
than allsame (i.e. class, pattern, or both) then the right "percentages" of the classes are not the
simple percentages but rather are weighted quantities, which may make more sense than the
simple percentages if some patterns should have more impact than others, as indicated by their
larger weights.'*

As for the first value of a second progress line, this is merely the minimum of the right
"percentages" of the classes, but shown rounded to the nearest tenth rather than to the nearest
integer. This minimum value shows how the network is doing on its "worst" class."”

A.1.1.2.2 First progresslines

These are the lines that begin with an integer. The column headings, which pertain to these lines,
and the first of these lines in the example, are:

lter Err (Ep Ew) K UK NG K UNK NG
0 0.474 (0.240 0.289) 6564 0 17736 = 27.0 0.0 73.0 %

The values in a first progress line have the following meanings:

Iter: Training iteration number, numbering starting at 0. A first progress line (and second
progress line) are produced every nfreq'th iteration (set in the specfile).

Err, Ep, Ew: The calculations leading to these values are as follows.

13 In this case the classes “index numbers” are 0 through 5 and the classes are fingerprint types Arch (A), Left Loop
(L), Right Loop (R), Tented Arch (T), Scar (S), and Whorl (W). In this discussion, “class i’ merely means the
class whose index number, number starting at 0, is i. Note also that although the software uses class index numbers
that start at 0, the class index numbers it writes to long_outfile start at 1.

' In particular, if the training patterns set is such that the proportions of the patterns belonging to the various classes
are not approximately equal to the natural frequencies of the classes, then it may be a good idea to use class-weights
(priorsset to class, and class-weights provided in a file) to compensate for the erroneous distribution. See [49].

"> When m p uses hybrid SCG/LBFGS training rather than only SCG (it does this only if pruning is not specified) it
switches from SCG to LBFGS when the minimum reaches or exceeds a specified threshold, scg_earlystop_pct.

72

ajj
lj
(pat)

w.

1

E (put,mse)

i

El(mse)

E(pat,typel)

1

El(typel)

(pat, possum '
E i

El(typel)

El
Ep

e

Ew

E
Err

number of patterns

number of classes

activation produced by pattern i at output node j (i.e. class j)
target value for a;

pattern-weight of pattern i (Section A.1.1)

n-1

z (a,.j —1;)2 , error contribution for pattern i if errfuncis mse
J=0
N-1
LS) o)
2n

1
1+ Zﬂ_k exp(— a(a,.k -

error contribution for pattern i if errfuncis type 1 (a is alpha)

» , where k is correct class of pattern i,

1 N-1
_Z W, pat pat typel)

i=0

S

L

n—

@qa —t\+q

I
f=}

J

errfuncis pos_sum

L

1 N-
_Z W, pat put possum)

i=0

S

El(’”‘“’), E, () o E, () “according to errfunc
E, iferrfuncis pos_sum, ,2E, otherwise
half of mean squared network weight

250sa)
E, +regfacx st

2E

M p prints the Err, Ep and Ew values as defined above. Note that the value ml p attempts to
minimize is £, but presumably the same effect would be had by attempting to minimize Err,
since it is an increasing function of E.

73

OK, UNK, NG, OK, UNK, NG: "Numbers" of patterns OK (classified correctly), UNKnown
(rejected), and wroNG or No Good (classified incorrectly), then the corresponding
"percentages.” M p calculates these values as follows. It adds up the by-class

accumulators ai("), a ,.(W) ,and a ,.(“) defined earlier to make overall accumulators, where 7 is
the number of classes:

(v)

Q

It computes "numbers" right, wrong, and unknown -- the first OK, NG, and UNK values of a
first progress line -- as follows, where N is the number of patterns and square brackets denote
rounding to an integer:

a™) =) 4 40 4)
) = [Na / a(”””)] = “number” right
n(w) — [Na (w)/a(rwu)] = *number” wrong

n® = N =n0) =) = number” unknown

From these "numbers,” m p computes corresponding "percentages" -- the second OK, NG, and
UNK values -- as follows:

p =[100n")/N]
p™ =[1001"/N]
" =[1002"/N]

If priors is allsame then since the pattern-weights are all equal, cancellation of the single
pattern-weight occurs between the numerators and denominators of the formulas above for nt)
and n) , so that they really are the numbers of patterns classified rightly and wrongly. Then it is
obvious that n®) really is the number unknown and that p("), etc. really are the percentages
classified rightly, etc.

74

A.1.1.2.3 Pruning lines (optional)

These lines, which begin with "pruned,” appear if Boltzmann pruning is specified (boltzmann
set to abs_prune or square_prune in specfile, and a temperature set). The first pruning line of
the example is

pruned 80 6 86 C 1.67872e+05 H 2.40068e+04 R 85.70 M -0.00 T 0.0841

Regardless of nfreq, nl p writes a pruning line every time it performs pruning. The first three
values of a pruning line are the numbers of network weights that m p pruned (temporarily set to
zero) in the first weights layer, in the second layer, and in both layers together. The remaining
values announced by the letters C, H, R, and M, are calculated as follows (the value announced
by T actually is not calculated correctly, and should be ignored):

(wts)

number of network weights (both layers)

n
plpruned) = number of weights pruned
yywnpruned) = () — jplprned)
plmax) | (min) = maximum & minimum absolute values of unpruned weights
’ c = plowmed) ((log W) —1og yp(min))/ (log2)+ 1) = capacity
sleats) = sum of logarithms of absolute values of unpruned weights
s = sl [1og 2) 4+ p) (1 — (jog w™™)/(log 2))
H = c-s0t)= entropy
R = 100xs02 012/
M = mean of unpruned weights

75

A.1.1.3 Confusion Matrices and Miscellaneous I nformation (Optional)

If do_confuse is set to true in the specfile, the next part of the output consists of two "confusion

matrices" and some miscellaneous information:

okl vl 0.00
Hi ghest two outputs (nean) 0.784 0.145; nean diff 0.639
key name

ey: A L R S T \W

ow. correct, columm: actua
A: 333 315 267 0 0 9
L: 12 7522 86 0 0 144
R 21 148 7128 0 0 153
S: 0 0 0 0 0 0
T: 60 346 323 0 0 3
W 2 798 509 0 0 5985

A A
L L
R R
S S
T T
w W
k

r

HEHHFEHHFHFHFHHH

* 0 0 0 0 0 0

percent of true IDs correctly identified (rows)
36 97 9% 0 0 82

of predicted IDs correctly identified (cols)
78 82 86 0 0 95

per cent

nmean hi ghest activation |eve

row correct, columm: actual

key: A L R S T W
A: 35 43 43 0 0 38
L: 32 83 41 0 0 48
R 32 43 83 0 0 49
S: 88 4666 4042 0 317
T: 33 49 48 0 0 38
W 29 61 58 0 0 85
unknown

* 0 0 0 0 0

H st ogram of errors,
15899 5322

10.9 3.7 7.2

10477 14278
9.8

from2~(-10) to 1

15596 22398
10.7 15. 4

16728
11.5

13376
9.2

9364
6.4

16005
11.0

6357
4. 4%

The first line of this optional section of the output shows the value of the rejection threshold
oklvl set in the specfile (this was already shown in the header). The next line shows the mean
values, over the training patterns as sent through the network at the end of training, of the highest
and second-highest output node values, and the mean difference of these values. Next is a table
showing the short classname ("key") and long classname ("name") of each class. In this example
the keys and names are the same, but in general the names can be quite long whereas the keys
must be no longer than two characters in length: the short keys are used to label the confusion

matrices.

76

Next are the confusion matrices of "numbers" and of "mean highest activation level.” M p has
the following accumulators:

alres) = pattern-weight accumulator for correct class i and hypothetical class j

g

a (ﬁighac)

p = high-activation accumulator for correct class i and hypothetical class j

a (ﬁighac,u)

g

= high-activation unknown accumulator for correct class i

If a pattern sent through the network produces a highest activation that meets or exceeds oklvl
(parwts)

(so that m p accepts its result for this pattern), then M p adds its pattern-weight to a; and

(highac)

adds the highest activation to a; ; where i and j are the correct class and hypothetical class of

the pattern. Otherwise, i.e. if M p finds the pattern to be unknown (rejects the result), it adds its
pattern-weight to alg") (Section A.1.1.2.1) and adds the highest activation to a¢"**)

i , where i is
the correct class of the pattern. After it has processed all the patterns, m p calculates the
confusion matrix of "numbers" and its "unknown" line; some additional information concerning
the rows and columns of that matrix; and the confusion matrix of "mean highest activation level"

and its "unknown" line, as follows.

77

First define some notation:

Nl = number of patterns of correct class i

i
(confuse)
i
(confuseu)
i

= value in row i and column j of first confusion matrix (of “numbers”)

i value of “unknown” line at bottom of first confusion matrix

P,»(o) 2 i" value of “percent of true IDs correctly identified (rows)” line
(r.cot))
P = /™ value of “percent of predicted IDs correctly identified (cols)” line
h (cozzfuse)
ij = value in row i and column j of second confusion matrix
h (corg/hse,u)

i = /™ value of “unknown” line at bottom of second confusion matrix

M p calculates the values as follows, where a,.(’), a.(W), a") and are as defined in Section

1 1

A.1.1.2.1 and square brackets again denote rounding to an integer:'®

NA(PH!S) a A(patwts)

(confuse) -

1 Y
i (u) n-1 (patwts)
a; "+ z_,-:o aj;

" (wnfus‘_,#) — { N[(Pats)a[(u) :|
(r
al

(rymw) B 1 00 nISCO)zfuse)
- N(pats) -n (corgfuse,u)

1

loon(%’onfuse) i
pj > — — J

(cmy‘use)
ZFO 1 |

B (ighac) 7
h (cmy‘use) — 1 00 a!/'
ij - niconfusei

i

B highac,
J onisea) | 100 g lighaca)
i n (confuse,u)

1

If priors is allsame, the pattern-weights are all equal, and cancellation of the single pattern-

weight between numerator and denominator causes né."""f”“)

(confuse.u)

of correct class i and hypothetical class j; similarly, #;

1

above to be the number of patterns

really is the number of patterns of

'® The denominators of the expression shown here for nleonfise) and ylconfiseu) are equal, but these expressions show

ij i

what the software actually calculates.

78

(r,col)
j

diagonal (correctly classified) numbers in the matrix comprise of their rows and columns
respectively; hiﬁm”f"‘ve) really is the mean highest activation level (multiplied by 100 and rounded

(r,mw)
i

correct class i that were unknown; p and p really are the percentages that the on-

(confuse.u)
i

to an integer) of the patterns of correct class i and hypothetical class j; and & really is the

mean highest activation level of the patterns of correct class i that were unknown. If priors has
one of its other values, the printed values are weighted versions of these quantities.

The final part of this optional section of the output is a histogram of errors. This pertains to the
absolute errors between output activations and target activations, across all output nodes (6 nodes
in this example) and all training patterns (24,300 patterns in this example), when the patterns are
sent through the trained network. Of the resulting set of absolute error values (243,000 values in
this example), this histogram shows the number (first line) and percentage (second line) of these
values that fall into each of the 11 intervals (-0, 277, (27'°, 2], ..., @', 1].

A.1.1.4Final ProgressLines

The next part of the output consists of a repeat of the column-headers line, final first-progress-
line, and final second-progress-line of the training progress part of the output, but with an F
prepended to the final first-progress-line:

Iter Err (Ep Ew) (04 UNK NG K UNK NG
F 50 0.098 (0.081 0.040) 21211 0 3089 = 87.3 0.0 12.7 %
0.0 36 97 96 0 0 82

A.1.1.5 Correct-vs.-Rejected Table (Optional)

If do_cvr is set to true in the specfile, the next part of the output is a correct-vs.-rejected table;
the first and last few lines of this table, from the example output, are:

t hresh right unknown wWr ong correct rejected

1tr 0. 000000 21211 0 3089 87. 29 0. 00

2tr 0. 050000 21211 0 3089 87. 29 0. 00

3tr 0. 100000 21211 0 3089 87. 29 0. 00

4t r 0. 150000 21211 0 3089 87. 29 0. 00

5tr 0. 200000 21211 0 3089 87. 29 0. 00

48t r 0. 975000 3777 20521 2 99. 95 84. 45
49t r 0. 980000 3230 21068 2 99.94 86. 70
50tr 0. 985000 2691 21607 2 99. 93 88. 92
51tr 0. 990000 2141 22158 1 99. 95 91.19
52tr 0. 995000 1509 22791 0 100. 00 93.79

79

M p produces these table values as follows. It has a fixed array of rejection-threshold values,
which have been set in an unequally-spaced pattern that works well, and it uses three pattern-

tc = k" threshold
a ,E“V”) = right pattern-weight-accumulator for #” threshold
alg“w’w) = wrong pattern-weight-accumulator for " threshold
qle«) = unknown pattern-weight-accumulator for k" threshold

weight-accumulators for each threshold:

As m p sends each pattern through the finished network,'” it loops over the thresholds #: for
each k, it compares the highest network activation produced for the pattern with # to decide
whether the pattern would be accepted or rejected. If accepted, it adds the pattern-weight of that

pattern either to a,g‘w”) or to aﬁ‘v"w) according to whether it classified the pattern rightly or
orom) = a7 4 gl) 4 glora)
o) = [Na,(f””") / a,(f””’w”)] = “number right”
(eorn) = [Na,(f””w) / a,(fv"’”"“)] = “number wrong”
o) = N =n@r) —plerw) — «pumber unknown” (rejected)
(ercor) = 100) / (n (err) 4 n(CV"’W)) = “percentage correct”
p ondl) - — 10054 / N = “percentage rejected”
wrongly; if rejected, it adds the pattern-weight to a,E‘W’”). After all the patterns have been

through the network, m p finishes the table as follows. For each threshold # it calculates the
following values:

M p then writes a line of the table. The values of the line are the threshold index & plus 1 with
"tr"'® appended, # ("thresh"), nlrr) ("right"), pler) ("unknown"), nler) ("wrong"), p(
("correct"), and p("w”“j) ("rejected"). If priorsis allsame then, since all pattern-weights are the
same, cancellation of the single pattern-weight occurs between numerator and denominator in the
above expressions for n) and n , so they really are the number of patterns classified
rightly and wrongly if threshold # is used. Also, it is obvious that PR really is the number of
patterns unknown for this threshold, p("w"’””) really is the percentage of the patterns accepted at

cvr,corr)

(cvr,w)

(cvr,rej)

this threshold that were classified correctly, and p really is the percentage of the N patterns

that were rejected at this threshold. If priors has one of its other values, then the tabulated
values are weighted versions of these quantities.

7 If do_cvr is true then M p calculates a correct vs. reject table, but only for the final state of the network in the
training run.
'8 for “training”; the correct vs. reject table for a test run uses “ts”

80

A.1.1.6 Final Information
The final part of the output shows miscellaneous information:

Ilter 50; ierr 1 : iterationlimt
Used 51 iterations; 154 function calls; Err 0.098; |g|]/|wW 1.603e-04
Rrms change in weights 0.289

User +systemtine used: 3607.3 (s) 1:00:07.3 (h:ms)
Wote weights as file trnl.ws

The first line here shows what iteration the training run ended on, and the value and meaning of
the return code ierr, which indicates why m p stopped its training run: in the example, the
specified maximum number of iterations (niter_max), 50, had been used. This training run was
actually the first run of a sequence; its initial network weights were random, but each subsequent
run used the final weights of the preceding run as its initial weights. The only parameter varied
from one run to the next was the regularization factor regfac, which was decreased at each step:
successive regularization. Each run was limited to 50 iterations, and it was assumed that this
small iteration limit would be reached before any of the other stopping conditions were satisfied.
When sinusoid activation functions are used, as in this case, best training requires that successive
regularization be used. If sigmoid functions are used, it is just as well to do only one training
run, and in that case one should probably set the iteration limit to a large number so that training
will be stopped by one of the other conditions, such as an error goal (egoal).

The next line shows: how many iterations m p used (counting the 0'th iteration; yes, this is stupid
after it already said what iteration it stopped on); how many calls of the error function it made;
the final error value; and the final size of the error gradient vector (square root of sum of
squares), normalized by dividing it by the final size of the weights. The next line shows the root-
mean-square of the change in weights, between their initial values and their final values. The
next line shows the combined user and system time used by the training run.'”” The final line
merely reports the name of the file to which m p wrote the final weights.

1% Setting the initial network weights, reading the patterns file, and other (minor) setup work, are not timed.

81

APPENDIX B. REFERENCE MANUAL

This appendix contains manual pages describing the invocation and use of the utilities provided
in this software distribution. The utilities are listed in alphabetical order. Those belonging to the
PCASYS package are designated as belonging to command set (1A), M NDTCT as (1B), AN2K as
(1C), | MGTOOLS as (1D), and | JGutilities are designated as (1E).

The manual pages listed in this section are included on the CD-ROM. To view a man page from
CD-ROM on a Linux machine or a Win32 machine running a Cygwin shell, type:

% man -M <install _dir>/man <execut abl e>

where the text <i nstal | _dir> is replaced by your specific installation directory path and
<execut abl e> is replaced by the name of the utility of interest.

82

AN2K2IAF(1C) NFISReference Manual AN2K2IAF(1C)

NAME
an2k2iaf — Modifies minutiae and fingerprint image records in an ANSI/NIST 2000 file to meet FBI/IAFIS
specifications.
SYNOPSIS
anzkziaf <file in> <file out>
DESCRIPTION
An2k2iaf parses a standardompliant ANSI/NISTITL 1-2000 file and, if necessargorverts specific
records and fields to meet FBI/IAFIS specificatioRéease note that this utility does nghaustvely vali-
date the output to ensure compliant FBI/IAFIS transactions, rather it focuses on the format of minutiae and
image records.
Minutiae fields:
When a Vpe-9 record is encountered in the input file, this utility checks to see which fields are populated.
If the NIST-assigned fields 5-12 are populatedt, the FBI/IAFIS-assigned fields 13-23 are emfitgn the
FBI/IAFIS fields are populated by translating the data recorded in the NIST fields, and the NIST fields are
removed.
Image records:
FBI/IAFIS specifications (EFTS V7) require binary field images; therefore, this utility looks for tagged
field fingerprint records and cegrts them appropriatelylf a Type-13 or Vpe-14 record is encountered, it
is inspected to determine if the image is beleor grayscale and to see what scan resolution and image
compression &s used.Records containing bidel images scanned at 19.69 ppmm (500 ppi) and either
WSQ-compressed or uncompressed are@ted to pe-6 records; records containing grayscale images
scanned at 19.69 ppmm and either WSQ-compressed or uncompressedvatedcem ype-4 records;
otherwise, the tagged field image record is ignored.
OPTIONS
<file in>
the ANSI/NIST file to be corerted
<file out>
the resulting ANSI/NIST file
EXAMPLES
Fromtest/an2k/recs/an2k2iaf/an2k2iasic:
% an2k2iaf ../../data/nist.an2 iafis.an2
SEE ALSO
iaf2an2k(1C), mindtct (1B)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 83

AN2K2TXT(1C) NFISReference Manual AN2K2TXT(1C)

NAME
an2k2txt — Cowmerts an ANSI/NIST 2000 file to a formattectdile.

SYNOPSIS
an2k2txt <ansi_nist in> <fmttext out>

DESCRIPTION
An2k2txt parses a standarcompliant ANSI/NISTTL 1-2000 file and writes its contents to awi#le in a
textually viewable and editable formatThe contents of binary image fields are stored to temporary files
and eternally referenced in the output file.

OPTIONS

<ansi_nist in>
the ANSI/NIST file to be corerted

<fmttext out>
the output tet file

OUTPUT FORMAT
Every line in the output t& represents a single information item from the ANSI/NIST flleese lines are
formatted as follwvs:

r.f.s.i[t.n]=value{US}

r.f.s.i references the information item with

r the items positionalrecord ind& in the file
f the items positionalfield index in the record
S the items positionalsubfield inde in the field

[the items positionalitem inde in the subfield

Note that all indices start at 1.

t.n references the Recorgfe and Field ID from the standard.
t the recordstype
n the fields ID number

value is the tetual content of the information item, unless the information item contains binary
image data, in which case, thalwe is the name of anxternal file containing the binary
data.

{US} s the non-printable ASCII character 0x1Fhis separator character is one of 4 used in
the standardIn VIM, this non-printable character may be entered using the "v command
and entering the decimal code "31lh Emacs, this non-printable character may be
entered using the "qg command and entering the octal code "037".

Example Output Lines
1.5.1.1 [1.005]=19990708

This is the information item corresponding to the Dat&T(Dfield in the standardlt is the 5th
field in a Type-1 record, and theype-1 record is atays the first record in the ANSI/NIST file;
therefore, its record indds 1, its field inde& is 5 its subfield indeis 1, and its item indg is 1
The \alue of this information item represents the date of July 8, 1988.' at the end of the
line represents the non-printable {US} character

1.3.4.1[1.003]=14-
This information item is part of the File Content (CNT) fielthe CNT field is the 3rd field in a

NIST 02April 2001 84

AN2K2TXT(1C) NFISReference Manual AN2K2TXT(1C)

Type-1 record, so this information itesnecord ind& is 1 and its field ind& is 3 This informa-
tion item is in the 4th subfield of the CNT field, and has an itenxiofl&; therefore, its alue 14
signifies that the 4th record (the subfield xjde this ANSI/NIST file is a ¥pe-14 record.

4.14.1.1 [14.999]=fld_2_14.tmpe

This information item corresponds to an Image Data field ofpe-L4 record.This field alays
has numeric ID 999 and isvadys the last field in the image recor@his Type-14 record is the 4th
record in this ANSI/NIST file, so the Image Data information item has record #ded it is in
the 14th field (field inde14) in the record.This information item in the ANSI/NIST file contains
binary pixel data, so the outputlue "fld_2_14.tmp" references axternal filename into which
an2k2txt stored the itens binary data.

EXAMPLES
Fromtest/an2k/eecs/an2k2txt/an2k2txtcsr

% an2k2txt ../../data/nist.an2 nist.fmt

SEE ALSO
an2ktool(1C), txt2an2k(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 85

AN2KTOOL(1C) NFISReference Manual AN2KTOOL(1C)

NAME
an2ktool — Rrses, manipulates, and/or writes the results to an ANSI/NIST 2000 file in batch mode.

SYNOPSIS
an2ktool <option>
-print <all|r[.fl.4.i]]]> <file in> [file ouf
-deleter[.f[.4.i]]] <file in> [file ouf
-substitute r.f.s.i <new value> dile in> [file ouf
-substitute r[.f[.g]] <fmttext file> <file in> [file ouf
-insert r.f.s.i<new value> dile in> [file oud
-insert r[.fl.g]] <fmttext file> <file in> [file ouf

DESCRIPTION
An2ktool parses a standardompliant ANSI/NISTITL 1-2000 file, manipulates its contents, and writes
the results back outBatch operations may be conducted at thel lef record, field, subfield, or informa-
tion item. Possible operations include printing, deleting, substituting, or inserting data.

OPTIONS
All switch names may be ablated; for &le,-print may be writtenp.

PRINT OPTION
-print <all|r[.fl.4.i]]]> <file in> [file ouf

Prints the contents of the specified structure {file, record, field, subfield, or information item} to either the
specified output file or to standard output.
Option settings:

all The entire contents of the input file is printedny binary image fields in the file are
stored to temporary files, and their file names atrereally referenced in the printed out-
put. Thisoption setting is equélent to runningan2k2txt on the input file.

r The contents of the record at positioin the file is printed.
r.f The contents of the field at positibwithin recordr is printed.
r.f.s The contents of the subfield at positewvithin field f within recordr is printed.
rf.s.i The contents of the information item at positionithin subfields within field f within
recordr is printed.
<file in>
The ANSI/NIST file whose content is to be printed.

[file oud
The optional output filelf omitted, results are printed to standard output.

DELETE OPTION
-deleter[.f[.4.i]]] <file in> [file ouf

Deletes the contents of the specified structure {record, field, subfield, or information item} from the
ANSI/NIST file, writing the results to either the specified output file or to standard output.
Option settings:

r The contents of the record at position the file is deleted.

r.f The contents of the field at positibwithin recordr is deleted.

NIST 02April 2001 86

AN2KTOOL(1C) NFISReference Manual AN2KTOOL(1C)

r.f.s The contents of the subfield at positewithin field f within recordr is deleted.
rf.s.i The contents of the information item at positionithin subfields within field f within
recordr is deleted.
<file in>
The ANSI/NIST file whose content is to be modified.

[file oud
The optional output filelf omitted, results are printed to standard output.

SUBSTITUTE OPTION 1
-substitute r.f.s.i <new value> dile in> [file ouf

Substitutes the contents of the specified information item in an ANSI/NIST file with the sthirggpro-
vided on the command line, writing the results to either the specified output file or to standard output.

rf.s.i The position indices of the information item to be substituted.

<new value>
The nev string value.

<file in>
The ANSI/NIST file whose content is to be modified.

[file oud
The optional output filelf omitted, results are printed to standard output.

SUBSTITUTE OPTION 2
-substitute r[.f[.g]] <fmttext file> <file in> [file ouf

Substitutes the contents of the specified structure {record, field, or subfield} in an ANSI/NIST file with the
contents of a formattedxefile consistent in format to those producedabk?txt. The results are written
to either the specified output file or to standard output.

Option settings:
r The contents of the record at positioin the file is substituted.
r.f The contents of the field at positibwithin recordr is substituted.
r.f.s The contents of the subfield at positewvithin field f within recordr is substituted.
rf.s.i The contents of the information item at positionithin subfields within field f within
recordr is substituted.
<fmttext file>
The formatted te file containing the ne values.

<file in>
The ANSI/NIST file whose content is to be modified.

[file oud
The optional output filelf omitted, results are printed to standard output.

INSERT OPTION 1
-insert r.f.s.i<new value> dile in> [file oud

Inserts an information item at the specified position within an ANSI/NIST file, assigningvihi¢ene the

string \alue praeided on the command linelhe results are written to either the specified output file or to
standard output.

NIST 02April 2001 87

AN2KTOOL(1C) NFISReference Manual AN2KTOOL(1C)

rf.s.i The position indices where theménformation item is to be inserted.

<new value>
The nev information items gring value.

<file in>
The ANSI/NIST file whose content is to be modified.

[file oud
The optional output filelf omitted, results are printed to standard output.

INSERT OPTION 2
-insert r[.fl.g]] <fmttext file> <file in> [file ouf

Inserts a structure {record, field, or subfield} at the specified position within an ANSI/NISTT fite nev
structure is assigned the contents of a formattztl fte consistent in format to those produced by
an2k2txt. The results are written to either the specified output file or to standard output.

Option settings:
r A record at position is inserted.
r.f A field at positiorf within recordr is inserted.
r.f.s A subfield at positiors within field f within recordr is inserted.
rf.s.i An information item at position within subfield s within field f within recordr is
inserted.
<fmttext file>
The formatted tet file containing the ne values.

<file in>
The ANSI/NIST file whose content is to be modified.

[file oud
The optional output filelf omitted, results are printed to standard output.

EXAMPLES
Fromtest/an2k/eecs/an2ktool/an2ktool sr

% an2ktool -d 2.12.1.4 ../../data/nist.an2 delete.an2
deletes the information item recording the first minatige.

% an2ktool -i 2.12.1.4 A delete.an2 insert.an2
inserts an information item setting the first mingtigtpe to "A".

% an2ktool -s 2.12.1.4 A ../../data/nist.an2 subitem.an2
replaces the information item recording the first minstigde with the alue "A".

% an2ktool -s 2.12.1 subfld.fmt ../../data/nist.an2 subfld.an2

replaces the subfield containing all the atii@s related to the first minutia with the contents of the format-
ted tet file subfld.fmt

SEE ALSO
an2k2iaf(1C), an2k2txt(1C), dpyan2k(1C),iaf2an2k(1C), txt2an2k(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 88

ASC2BIN(1A) NFISReference Manual ASC2BIN(1A)

NAME
asc2bin — coverts a PCASYS data file from ascii to binary form.

SYNOPSIS
asc2bin<ascii_data_in> <binary_data_out>
DESCRIPTION
Asc2binreads a PCASYS ascii data file ofyagpe, or the standard input, and produces a corresponding
PCASYS binary data file.
OPTIONS
<ascii_data_in>
Ascii data file to be read.
<binary_data_out>
Binary data file to be writtenif this file already rists, asc2binerwrites it.

EXAMPLE(S)
Fromtest/pcasysiecs/asc2bin/asc2bincsr

% asc2bin ../../data/oas/fv1.cls fv1.bin
Corverts the class file from ascii to binary data.

SEE ALSO
bin2asc (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 89

BIN2ASC(1A) NFISReference Manual BIN2ASC(1A)

NAME

bin2asc - coverts a PCASYS data file from binary to ascii form.
SYNOPSIS

bin2asc<binary_data_in> <ascii_data_out>
DESCRIPTION

Bin2ascreads a PCASYS binary data file ofyagype, and produces a corresponding PCASYS ascii data
file or writes the ascii data to the standard output.

OPTIONS
<binary_data_in>
Binary data file to be read.

<ascii_data_out>
Ascii data file to be written. If the file alreadyigts, bin2asc\@erwrites the file.

EXAMPLE(S)
Fromtest/pcasysiecs/bin2asc/bin2asccsr

% bin2asc ../asc2bin/fv1.bin fvi.cls
Corverts the class file from binary to ascii data.

SEE ALSO
asc2bin (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 90

CHGDESC(1A) NFIReference Manual CHGDESC(1A)

NAME
chgdesc — changes the description string of a PCASYS data file.
SYNOPSIS
chgdesc<datafile> <new_desc>
DESCRIPTION
Chgdescreplaces thexasting description string of a PCASYS data file with thevjated string.
The nev description can be of grlength, lnt it must not contain embeddedwiime characterslf it con-
tains spaces, tabs, or shell metacharacters that are notxpaneled, then it should be quotetb delete a
file's description string, i.e. to replace it with the empty string, ugquoted empty string) as the string
argument.
The command mas, and then remes, a temporaryersion of the data file, in the same directory as the
original file; its filename is the original filename with _chgdesc<pid> appended, where <pid> is the process
id of the chgdesc command instan€k the unlilely event that a file of this name alreadyiss, chgdesc
exits with an error message, rather than replacing that fii¢he original data file is lge, then ma& ure,
before running chgdesc, that the disk partition where the originaMigHas enough room for the tempo-
rary copy.
OPTIONS
<datafile>
Data file whose description field is to be changed.
<new_desc>
The nev description string.
EXAMPLE(S)
Fromtest/pcasyskecs/tbigdesc/bgdesc.s:
% chgdesc fvl.acl 'fvl.cls’
Puts the string fv1.cls in the description field of the file fvl.acl.
SEE ALSO
datainfo (1A)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 91

CJPEG(1E) NFIReference Manual CJPEG(1E)

NAME
cjpeg — compress an image file to a JPEG file

SYNOPSIS
cjpeg| options] [filename]

DESCRIPTION
cjpeg compresses the named image file, or the standard input if no file is named, and produces a JPEG/JFIF
file on the standard outpuThe currently supported input file formats are: PPM (PBMPLUS color format),
PGM (PBMPLUS gray-scale format), BMParga, and RLE (Utah Rasterdblkit format). (RLE is sup-
ported only if the UR library is aailable.)

OPTIONS
All switch names may be ablviated; for &le,—grayscalemay be written-gray or —gr. Most of the
"basic" switches can be abbi@ed to as little as one letteUpper and lwer case are equalent (thus
-BMP is the same asbmp). British spellings are also accepted (e-tgreyscalg, though for breity
these are not mentioned belo

The basic switches are:

—quality N
Scale quantization tables to adjust image quaf@yality is O (worst) to 100 (best); datilt is 75.
(See belwr for more info.)

—grayscale
Create monochrome JPEG file from color inpBe sure to use this switch when compressing a
grayscale BMP file, becausgpeg isn’'t bright enough to notice whether a BMP file uses only
shades of grayBy saying —grayscale you'll get a smaller JPEG file that &k less time to pro-
cess.

—optimize
Perform optimization of entrgpencoding parametersWithout this, dedult encoding parameters
are used.—optimize usually maks the JPEG file a little smalléwt cjpeg runs somehat slaver
and needs much more memorynage quality and speed of decompression arefaatedl by
—optimize.

—progressve
Create progresgt PEG file (see belo).

—targa Input file is Targa format. Thma fies that contain an "identification" field will not be automatically
recognized byjpeg; for such files you must speciffargato male cjpeg treat the input asafga
format. For most Rma fies, you von't need this switch.

The —quality switch lets you trade btompressed file size amst quality of the reconstructed image: the
higher the quality setting, the ¢gar the JPEG file, and the closer the output image will be to the original
input. Normallyyou want to use the lpest quality setting (smallest file) that decompresses into something
visually indistinguishable from the original imagEor this purpose the quality setting should be between
50 and 95; the datilt of 75 is often about rightlf you see defects atquality 75, then go up 5 or 10
counts at a time until you are hgppith the output image(The optimal setting will ary from one image

to anothe))

—quality 100 will generate a quantization table of a#l, Thinimizing loss in the quantization stept(there

is still information loss in subsampling, as well as roufdobr). Thissetting is mainly of interest for
experimental purposesQuality values abwe @out 95 arenot recommended for normal use; the com-
pressed file size goes up dramatically for hardiygain in output image quality

In the other direction, qualityalues belas 50 will produce ery small files of lav image quality Settings
around 5 to 10 might be useful in preparing anxmfe large image libraryfor example. Ty —quality 2

(or so) for some amusing Cubisfesfts. (Noteguality values belar about 25 generate 2-byte quantization
tables, which are considered optional in the JPEG standgrelg emits a varning message when yowei
such a quality alue, because some other JPEG programs may be unable to decode the resulisg file.

3G 20March 1998 92

CJPEG(1E) NFIReference Manual CJPEG(1E)

3G

—baselineif you need to ensure compatibility atdguality values.)

The —progressve switch creates a "progregsi PEG" file. In this type of JPEG file, the data is stored in
multiple scans of increasing qualityf the file is being transmittedver a dow communications link, the
decoder can use the first scan to displaywadaality image ery quickly and can then impnee the display
with each subsequent scahfhe final image is»actly equvalent to a standard JPEG file of the same qual-
ity setting, and the total file size is about the same --- often a little sm@Hertion: progressie PEG is

not yet widely implemented, so madecoders will be unable to wiea progressre PEG file at all.

Switches for adanced users:

—dct int
Use intger DCT method (dedilt).

—dct fast
Use Bst intger DCT (less accurate).

—dct float
Use floating-point DCT methodThe float method isery slightly more accurate than the int
method, bt is much sleer unless your machine hasry fast floating-point hardare. Alsonote
that results of the floating-point method magry slightly across machines, while the gee
methods should gé the same resultsrerywhere. Thdast integger method is much less accurate
than the other to.

—-restartN
Emit a JPEG restart magkevery N MCU rows, or @ery N MCU blocks if "B" is attached to the
number —restart O (the deéult) means no restart mark.

—smoothN
Smooth the input image to eliminate dithering noidg. ranging from 1 to 100, indicates the
strength of smoothing0 (the de&ult) means no smoothing.

—maxmemory N
Set limit for amount of memory to use in processingddmages.Value is in thousands of bytes,
or millions of bytes if "M" is attached to the numbdtor example,—-max 4m selects 4000000
bytes. Ifmore space is needed, temporary files will be used.

—outfile name
Send output image to the named file, not to standard output.

-verbose
Enable debg printout. More -v’s give more output. Also, version information is printed at
startup.

—dehug
Same as-verbose

The —restart option inserts xra marlers that aller a PEG decoder to resynchronize after a transmission
error. Without restart marrs, ay damage to a compressed file will usually ruin the image from the point
of the error to the end of the image; with restart markthe damage is usually confined to the portion of
the image up to the rerestart mar&r. Of course, the restart magks occup extra space We recommend
—restart 1for images that will be transmitted across unreliable agtsvsuch as Usenet.

The —smooth option filters the input to eliminate fine-scale noidéis is often useful when ceerting
dithered images to JPEG: a moderate smootlEami of 10 to 50 gets rid of dithering patterns in the input
file, resulting in a smaller JPEG file and a beltbeking image. Too large a smoothingaictor will visibly
blur the image, hwever.

Switches for wizards:

—-baseline
Force baseline-compatible quantization tables to be generaites.clamps quantizatioralues to
8 hits even & low quality settings.(This switch is poorly named, since it does not ensure that the

20March 1998 93

CJPEG(1E) NFIReference Manual CJPEG(1E)

output is actually baseline JPEGor example, you can usebaselineand—progressve together

—qgtablesfile
Use the quantization tables/gn in the specified t« file.

—gslotsN[,...]
Select which quantization table to use for each color component.

—-sampleHxV[,...]
Set JPEG samplingétors for each color component.

—-scansfile
Use the scan script\gin in the specified td file.

The "wizard" switches are intended foperimentation with JPEGIf you dont know what you are doing,
don’t use them These switches are documented further in the file wizard.doc.

EXAMPLES
This exkample compresses the PPM file foo.ppm with a qualityof of 60 and s&s the output as foo.jpg:

cjpeg —quality 60 foo.ppmn foo.jpg

HINTS
Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color (24-bit)
images. Inparticular don't try to corvert cartoons, line dmgings, and other images thatveamly a fav
distinct colors. GIF works great on these, JPEG does nbtyou want to comert a GIF to JPEG, you
should eperiment withcjpeg's —quality and-smooth options to get a satesftory comersion. —smooth
10o0r so is often helpful.

Avoid running an image through a series of JPEG compression/decomprgssésn ¢magequality loss
will accumulate; after ten or sydes the image may be noticeablgrae than it \&s after oneycle. It's
best to use a lossless format while manipulating an image, theertctanJPEG format when you are ready
to file the image\aay.

The —optimize option tocjpeg is worth using when you are making a "fina&rsion for posting or archi
ing. It's dso a win when you are usingwajuality settings to makvery small JPEG files; the percentage
improvement is often a lot more than it is ondar files. (At present—~optimize mode is alays selected
when generating progressi PEG files.)

ENVIRONMENT
JPEGMEM
If this ervironment \ariable is set, itsalue is the defult memory limit. The \alue is specified as
described for the-maxmemory switch. JPEGMEM overides the defult value specified when
the program \as compiled, and itself isserridden by an xplicit -maxmemaory.

SEE ALSO
djpeg(1), jpegtran(1), rdjpgcom(1), wrjpgcom(1)

ppm(5), pgm(5)
Wallace, Grgory K. "The JPEG Sitill Picture Compression Standard”, Communications ofGM April
1991 (wl. 34, no. 4), pp. 30-44.

AUTHOR
Independent JPEG Group

BUGS
Arithmetic coding is not supported fowgia reasons.

GIF input files are no longer supported, oid the Unisys LZW patentUse a Unisys-licensed program if
you need to read a GIF fil¢Corversion of GIF files to JPEG is usually a bad ideaay.)

Not all variants of BMP anddrga fie formats are supported.

The—targaswitch is not a bg, it's a eature. (lwould be a g if the Targa format designers had not been
clueless.)

3G 20March 1998 94

CJPEG(1E) NFIReference Manual CJPEG(1E)

Still not as &st as wel like.

3G 20March 1998 95

CJPEGB(1D) NFIReference Manual CJPEGB(1D)

NAME
cjpegb — compresses a grayscale or color (RGB) image isssgBaseline JPEG (JPEGB).
SYNOPSIS
cjpegb <g=20=95> <outext> <image fle>
[-raw_in w,h,d,[ppi]
[-nonintriv]
[comment filp
DESCRIPTION
Cjpegb takes as input a file containing an uncompressed grayscale or color (RGB) ifem@ossible
input file formats are accepted, NIST IHead files amdpiamap files. If a rav pixmap file is to be com-
pressed, then its image attribs must be puided on the command line as weldnce read into memary
the grayscale or color pixmap is thisssycompressed to a specified/deof reconstruction quality using
the Independent JPEG Grosf§JG) library for Baseline JPEG (JPEGBJhe JPEGB results are then writ-
ten to an output file.
Note thatcjpegb calls the IJG library in a dafilt color mode where one of the compression steps includes
a mlorspace corersion from RGB to YCbGrand then the Cb & Cr component planes arermsampled
by a factor of 2 in both dimension®ue to this colorspace cearsion,cjpegb should only be used to com-
press RGB color images.
The color components of RGB pis in a rav pixmap file may be interle&d or non-interlezed. By
default, cjpegb assumes interlead color pixels. (SedNTERLEAVE OPTIONS belw.) Regading color
pixmaps, the NIST IHead file format only supports inteddeZRGB images.
OPTIONS
All switch names may be abhiated; for @ample,-raw_in may be writtenr.
<g=20-95>
specifies the kel of quality in the reconstructed image as a result of lossy compresEneninte-
ger quality \alue may range between 20 and 9he lover the quality alue, the more drastic the
compression.
<outext>
the etension of the compressed output filBo construct the output filenamejpegb takes the
input filename and replaces itg@nsion with the one specified here.
<image fle>
the input file, either an IHead file orwepixmap file, containing the grayscale or color (RGB)
image to be compressed.
-raw_in w,h,d,[ppi]
the attrilutes of the input imagerThis option must be included on the command line if the input is
a raw gxmap file.
w the pixel width of the pixmap
h the pixel height of the pixmap
d the pixel depth of the pixmap
ppi the optional scan resolution of the image ingeteunits of piels per inch.
-nonintrlv
specifies that the color components inimput raw pixmap file image are non-interkesl and
stored in separate component plan@ee INTERLEAE OPTIONS belw).
comment file
an optional usesupplied ASCIl comment file(See COMMENT OPTIONS belo)
NIST 02April 2001 96

CJPEGB(1D) NFIReference Manual CJPEGB(1D)

INTERLEA VE OPTIONS
The color components of RGB pis in a rav pixmap file may be interlead or non-interlexed. Color
components are interhkead when a piel's (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB.If the color components are non-intexled, then all (R)ed
components in the image are sequentially adjacent in the image byte streamgdfdiioall (G)reen com-
ponents, and then lastly foliled by all (B)lue componentd€ach complete sequence of color components
is called gplane The utilitiesintr2not andnot2intr corvert between interlaged and non-interleged color
components. Bydefault, cjpegb assumes interlead color components, and note that all color IHead
images must be interbeed.

COMMENT OPTIONS
Upon successful compression, this utility generates and inserts in the compressed output file a specially for
matted comment block, called a NISTCOM NISTCOM is a tet-based attribte list comprised of
(name, @alue) pairs, one pair pentdine. The first line of a NISTCOM alays has name = "NIST_COM"
and its walue is alvays the total number of attuibes included in the listThe utility rdjpgcom scans a
JPEG compressed file foryaand all comment blocksOnce found, the contents of each comment block is
printed to standard outputUsing this utility the NISTCOM preides easy access to naat image
attributes. Thdollowing is an @ample NISTCOM generated loypegb:

NIST_COM 12
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24

PPI -1

LOSSY 1

COLORSRCE YCDCr
NUM_COMPONENTS 3
HV_FACTORS 2,2:1,1:1,1
INTERLEAVE 1
COMPRESSION JPEGB
JPEGB_Q@ALITY 50

Cjpegb also accepts an optional comment file on the command lirrovided, the contents of this file

are also inserted into the compressed output filhe comment file is a NISTCOM attrke list, then its
contents are mged with the NISTCOM internally generated ¢gjpegb and a single NISTCOM is written

to the compressed output fildlote thatcjpegb gives precedence to internally generated attiénalues. If

the user praides a non-NISTCOM comment file, then the contents of file are stored to a separate comment
block in the output file.Using these comment options enables the user to store application-speckic infor
mation in a JPEG file.

EXAMPLES
Fromtest/imgtools/eecs/cjpgb/cjpab.sic:

% cjpegb 50 jpb face08.raw -r 768,1024,8
compresses a grayscageé image in a vapixmap file.

% cjpegb 50 jpb face24.raw -r 768,1024,24
compresses a coloade image in a vapixmap file.

SEE ALSO
cjpedg(1E), cjpegl(1D), djpegb(1D), dpyimage(1D), intr2not (1D), jpegtran(1E), not2intr (1D), rdjpg-
com(1E), wrjpgcom(1E)

NIST 02April 2001 97

CJPEGB(1D) NFIReference Manual CJPEGB(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 98

CJPEGL(1D) NFIReference Manual CJPEGL(1D)

NAME
cjpegl — compresses a grayscale or color image using Lossless JPEG (JPEGL).

SYNOPSIS
cjpegl <outext> <image fle>
[-raw_in w,h,d,[ppi]
[-nonintrlv]
[-YCbCr HO,VO:H1,V1:H2V2]
[comment filp

DESCRIPTION
Cjpegl takes as input a file containing an uncompressed grayscale or color imagg@ossible input file
formats are accepted, NIST IHead files anvd pexmap files. If a rav pixmap file is to be compressed, then
its image attribtes must be prided on the command line as welbnce read into memarihe grayscale
or color pixmap is then compressed using Lossless JPEG (JPEGE)JPEGL results are then written to
an output file.

The color components of RGB pis in a rav pixmap file may be interle&d or non-interlezed. By
default, cjpegl assumes interlead color pixels. Infact cjpegl's internal encoder requires non-intevliec
components planes; therefore, intevkeh pixmaps are automatically ceerted prior to encoding and
results are stored accordinglfSee INTERLEAE OPTIONS belar.)

Cjpegl also supports the compression of igixmap files containing YCbCr images with potentiallynte
sampled component planeBy default, this utility assumes no @asampling of component planetSee
YCbCr OPTIONS bele.) Regading color pixmaps, the NIST IHead file format only supports inteetba
RGB images.

OPTIONS
All switch names may be abhiated; for @ample,-raw_in may be writtenr.

<outext>
the etension of the compressed output filBo construct the output filenamejpegl takes the
input filename and replaces itg@nsion with the one specified here.

<image fle>
the input file, either an IHead file omrgixmap file, containing the grayscale or color image to be
compressed.

-raw_in w,h,d,[ppi]
the attrilutes of the input imagerThis option must be included on the command line if the input is
a raw gxmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image indeteunits of piels per inch.
-nonintrlv

specifies that the color components inimput raw pixmap file image are non-interkesl and
stored in separate component plangee INTERLEAE OPTIONS belar.)

-YCbCr HO,VO:H1,V1:H2,v2
denotes ainput raw pixmap file containing a YCbCr colorspace image and whethec@npo-
nent planes hee keenpreviously dovnsampled. H,\factors all set to 1 represent nowdsam-
pling. (SeeYCbCr Options belw.)

NIST 02April 2001 99

CJPEGL(1D) NFIReference Manual CJPEGL(1D)

comment file
an optional usesupplied ASCIl comment file(See COMMENT OPTIONS belo)

INTERLEA VE OPTIONS
The color components of RGB pis in a rav pixmap file may be interlead or non-interlexed. Color
components are interkead when a piel's (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB.If the color components are non-intexled, then all (R)ed
components in the image are sequentially adjacent in the image byte streamgdfdiioall (G)reen com-
ponents, and then lastly folied by all (B)lue componentd&ach complete sequence of color components
is called gplane The utilitiesintr2not andnot2intr corvert between interlaged and non-interleged color
components. Byefault, cjpegl assumes interl@ad color components, and all color IHead images must be
interleaved. Note that cjpegl's internal encoder requires non-inteved component planes; therefore,
interleaved pixmaps are automatically ceerted prior to encoding and results are stored accordingly

YCbCr OPTIONS
Cjpegl compresses color images with 3 components pel,gixcluding RGB and YCbCr colorspaces.
common compression technique for YCbCr images is tendample the Cb & Cr component planes.
Cjpegl supports a limited range of YCbCrwlasampling schemes that are represented by a list of compo-
nent plane dctors. Thesdactors together represent wlasampling ratios relate © each other The
comma-separated list ohdtor pairs correspond to the Gb, and Cr component planes respatyi The
first value in a &ctor pair represents thevdasampling of that particular component plane in the X-dimen-
sion, while the second represents thdiniension. Compressiomtios for a particular component plane
are calculated by diding the maximum componenadtors in the list by the current componsrigctors.
These intger factors are limited between 1 andH,V factors all set to 1 represent nonhsampling. Br
complete details;jpegl implements the densampling and interleing schemes described in the foliog
reference:

W.B. Pennebatr and J.L. Mitchell, "JPEG: Still Image Compression Standard,” Appendix A -
"ISO DIS 10918-1 Requirements and Guidelinegh Wostrand Reinhold, NY993, pp. A1-A4.

For example the option specification:
-YCbCr 4,4:2,2:1,1

represents a YCbCr image with nonathsampled Y component plane (4,4 are thgdsatr X and Y dctors
listed); the Cb component plane isndsampled in X and Y by aétor of 2 (maximumdctors 4 diided

by current &ctors 2); and the Cr component plane iwmkampled in X and Y by a€tor of 4 (maximum
factors 4 dvided by currentdctors 1).Note that dansampling component planes is a formasfsycom-
pression, sawhile cjpegl enables the image byte stream associated with an input YCbCr image to be
reconstructed perfectlif any of its component planes were ypiisly davnsampled, then image loss has
already takn place.The utility rgb2ycc corverts an RGB image to the YCbCr colorspace, and it will con-
duct component plane dosampling as specified\ote that IHead images can onlwhaRGB color com-
ponents, so YCbCr options only pertain tev ixmap files.

COMMENT OPTIONS
Upon successful compression, this utility generates and inserts in the compressed output file a specially for
matted comment block, called a NISTCOM NISTCOM is a te&t-based attribte list comprised of
(name, @alue) pairs, one pair pentdine. The first line of a NISTCOM alays has name = "NIST_COM"
and its walue is alvays the total number of attubes included in the listThe utility rdjpgcom scans a
JPEG compressed file foryaand all comment blocksOnce found, the contents of each comment block is
printed to standard outputUsing this utility the NISTCOM preides easy access to neat image
attributes. Thdollowing is an @ample NISTCOM generated loypegl:

NIST 02April 2001 100

CJPEGL(1D)

NFISReference Manual

NIST_COM 11
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24

PPI -1

LOSSY 0
NUM_COMPONENTS 3
HV_FACTORS 1,1:1,1:1,1
INTERLEAVE 0
COMPRESSION JPEGL
JPEGL_PREDICT 4

CJPEGL(1D)

Cjpegl also accepts an optional comment file on the command llipeovided, the contents of this file are

also inserted into the compressed output filehe comment file is a NISTCOM attrike list, then its con-

tents are mged with the NISTCOM internally generated ¢gjpegl and a single NISTCOM is written to

the compressed output fildote thatcjpegl gives precedence to internally generated attigh\alues. |If

the user praides a non-NISTCOM comment file, then the contents of file are stored to a separate comment
block in the output file.Using these comment options enables the user to store application-speckic infor
mation in a JPEG file.

EXAMPLES

Fromtest/imgtools/eecs/cjpgl/cjpeagl.src:

SEE ALSO

% cjpegl jpl face.raw -r 768,1024,24
compresses a coloade image in a vapixmap file.

cjpegh(1D), djpegl(1D), dpyimage(1D), intr2not(1D), not2intr(1D), rdjpgcom(1E), rgb2ycq1D),
wrjpgcom(1E)

AUTHOR

NIST/ITL/DIV894/Image Group

NIST

02April 2001

101

CMBMCS(1A) NFISReference Manual CMBMCS(1A)

NAME
cmbmcs — combines PCASYS meanmv@tance data file pairs.

SYNOPSIS
cmbmcs <meanfile_in[meanfile_in...]> <cdfile_in[co/file_in...]> <meanfile_out> <meanfile_out_desc>
<covfile_out> <corfile_out_desc> <ascii_outfiles>

DESCRIPTION
Cmbmcs combines pairs of PCASYS mearector and ceariance matrix data files, to produce a
mean/coariance pair that is approximately the same asld/hase resulted if all the gctors that were used
to male the input means and e@riances had beenwgin to the meance function in one lage set. So, if
the sample omriance matrix needs to be made from gdaset of ectors, and seral processors arevail-
able, it may be possible tovgarun time by first, running seeral simultaneous instances of meanamch
on a subset of theeetors, and second, running cmbmcs to combine the meansvandmzes made by the
meance instances. (Ean if only the cwariance is ultimately needed, i.e. not the mean, it is necessary for
the meance instances to compute the means and for cmbmcs to use them, to computeathewari-
ance.)

OPTIONS
<meanfile_in[meanfile_in...]>
Input files each containing a meamctor These files must be in PCASYS "matrix" format, each
with first dimension 1 and all kieng the same second dimension. (Usually the outpuhesn-
cov.)

<covfile_in[co/file_in...]>
Input files each containing avaiance matrix. These files must be in PCASYS Vedance” for
mat. Thei'th input caovariance file goes with theth input mean file.These cwariances must all
have the same ordewhich must be the second dimension of the input meatokfiles. (Usually
the output ofneancw.)

<meanfile_out>
Mean file to be written, in PCASYS "matrix" format.

<meanfile_out_desc>
A string to be written into the mean output files description strifibis string can be of gn
length, lut must not contain embeddedwili@e characters.If it contains spaces, tabs, or shell
metacharacters that are not to b@anded, then it should be quoteto leare the description
empty use ' (two dngle quotes, i.esingle—quoted empty string)lo let cmbmcs maka descrip-
tion (stating that this is a meaector made by cmbmcs and listing the names of the input files),
use - (lyphen).

<covfile_out>
Covariance file to be produced, in PCASYS Vapance" format. Its "number of ectors" field
will be set to the sum of thealues of that field across the inpuvagances.

<covfile_out_desc>
Description string for output @ariance file or - to let cmbmcs malhe description (as for output
mean file description).

<ascii_outfiles>
If y, makes ascii output files; if n, binanBinary is recommended, unless the output files must be
portable across ddrent byte orders or floating_point formats.

EXAMPLE(S)
Fromtest/pcasysiecs/cmbmcs/cmbmcs:sr

% cmbmcs ../meancwe/fvl.men ../meancwe/fv2.men ../meancw/fvl.cov ../meancw/fv2.cov
fv_tst.men - fv_tst.cow - n
Combines the mean/eariance files for fvl and fv2 into a meamnvedance set of files.

NIST 02April 2001 102

CMBMCS(1A)

SEE ALSO
meance (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST

NFISReference Manual

02April 2001

CMBMCS(1A)

103

CWSQ(1D) NFISReference Manual CWSQ(1D)

NAME
cwsq — WSQ compresses grayscale fingerprint images.

SYNOPSIS
CWSQ<r bitr ate> <outext> <image fle>
[-raw_in w,h,d,[ppi]] [comment filp

DESCRIPTION

Cwsqtakes as input a file containing an uncompressed grayscale fingerprint ifivegpossible input file
formats are accepted, NIST IHead files anvd pexmap files. If a rav pixmap file is to be compressed, then
its image attribtes must be preded on the command line as weldnce read into memarthe pixmap is
lossycompressed using &Vdet Scalar Quantization as described in the §Bliminal Justice Information
Services (CJIS) document, "WSQ Gray-scale Fingerprint Compressions Specification,” DecTli897.
results are then written to an output file in a format dictated by this docuit@stis the only fingerprint
compression format accepted by the FBI IAFIS system.

OPTIONS
All switch names may be abhiated; for @ample,-raw_in may be writtenr.

<r bitr ate>
determines the amount of lossy compression.
Suggested settings:
r bitrate= 2.25 yields around 5:1 compression
r bitrate= 0.75 yields around 15:1 compression

<outext>
the tension of the compressed output filea construct the output filenamewsqtakes the input
filename and replaces itstension with the one specified here.

<image fle>
the input file, either an IHead file orwgixmap file, containing the fingerprint image to be com-
pressed.

-raw_in w,h,d,[ppi]
the attrilutes of the input imagerThis option must be included on the command line if the input is
a raw gxmap file.

w the pixel width of the pixmap
h the pixel height of the pixmap
d the pixel depth of the pixmap
ppi the optional scan resolution of the image ingeteunits of piels per inch.

comment file
an optional usesupplied ASCIl comment file(See COMMENT OPTIONS belo)

COMMENT OPTIONS
Upon successful compression, this utility generates and inserts in the compressed output file a specially for
matted comment block, called a NISTCOM NISTCOM is a tet-based attribte list comprised of
(name, @alue) pairs, one pair pendtdine. The first line of a NISTCOM alays has name = "NIST_COM"
and its walue is alvays the total number of attuites included in the listThe utility rdwsgcomscans a
WSQ compressed file for piand all comment blocksOnce found, the contents of each comment block is
printed to standard outputUsing this utility the NISTCOM preides easy access to neat image
attributes. Thdollowing is an @ample NISTCOM generated loyvsg

NIST_COM 9

PIX_WIDTH 500
PIX_HEIGHT 500

NIST 02April 2001 104

CWSQ(1D) NFISReference Manual CWSQ(1D)

PIX_DEPTH 8

PPI1 500

LOSSY 1

COLORSRCE GRAY
COMPRESSION WSQ
WSQ_BITRAE 0.750000

Cwsq also accepts an optional comment file on the command llirovided, the contents of this file are

also inserted into the compressed output filehe comment file is a NISTCOM attrike list, then its con-

tents are megred with the NISTCOM internally generated dwsgand a single NISTCOM is written to the
compressed output fileNote thatcwsq gives precedence to internally generated atitéb\alues. Ifthe

user proides a non-NISTCOM comment file, then the contents of file are stored to a separate comment
block in the output file.Using these comment options enables the user to store application-speckic infor
mation in a WSQ file.

EXAMPLES

Fromtest/imgtools/eecs/cwsq/cwsqsr

% cws(q .75 wsq fingeraw -r 500,500,8,500
compresses awafingerprint pixmap.

SEE ALSO

dpyimage(1D), dwsq(1D), rdwsgcom(1D), wrwsgcom(1D)

AUTHOR

NIST

NIST/ITL/DIV894/Image Group

02April 2001 105

DATAINFO(1A) NFISReference Manual DATAINFO(1A)

NAME
datainfo — shavs the header information of a PCASYS data file.
SYNOPSIS
datainfo <datafile>
DESCRIPTION
Datainfo reads the header information from a PCASYS data file and writes a short report of this informa-
tion to the standard output.
The file must be in one of theficial PCASYS data file formats, which are "matrix" (matrix of floating
point numbers), "ogariance" (coariance matrix of floating point numbers, with only the nonstrietelo
triangle stored since a waiance matrix is symmetric), and "classes" (classes, represented as unsigned
characters, which are thought of as beinggeis in the range 0 through 25%)CASYS data files come in
these three types, and can be either "ascii" or "binary", so there are really 6 types in all.
Datainfo reports the description string of the data file, its type (matrix, etc.), whether it is ascii gr binary
and then some final information specific to the file type: if matrix, tieedmensions; if cvariance, the
order (of the symmetric sariance matrix, i.e. the number that both dimensions equal) and the number of
input vectors used to makhe cwariance; if classes, the number of elements.
OPTIONS
<datafile>
Data file whose header information is to be reported.
EXAMPLE(S)
Fromtest/pcasyskecs/datainfo/datainfo.sr
% datainfo ../../data/oas/fv1-9.cls >& fv1-9cls.dat
% datainfo ../../data/oas/fv1.oas >& fvloas.dat
% datainfo ../meancw/fv1-9.cos >& fv1-9cov.dat
Prints out the file header information for tharieus types of files, class (fv1-9.cls), orientation
arrays (fvl.oas), and eariance (fv1-9.cu).
SEE ALSO
chgdesc (1A)
AUTHOR

NIST/ITL/DIV894/image Group

NIST 02April 2001 106

DIFFBYTS(1D) NFISReference Manual DIFFBYTS(1D)

NAME
diffbyts — tales two binary data files and compares them byte for byte, compiling a cuveufesiogram of
differences.

SYNOPSIS
diffbyts <file1> <file2>

DESCRIPTION
Diffoyts takes as input te binary files of equal length and compares the contents between dHdetsv
byte for byte. The diferences between corresponding pairs of bytes are accumulated into a histogram,
where each bin in the histogram represents thgentdiference between the byte pairSherefore, the
first bin in the histogram contains the count of all those byte pairs thateanttyghe same (a dédrence of
0); the nat bin contains the count of all those byte pairs that aferdiit by actly 1; and so on.

Upon completion, this utility prints a formatted report of the accumulated histogram to standard output.
Each diference bin in the histogram is listed on separate line in the report and formattednat follo

dib]=c:p
where
b is the current birg byte pair diference.
c is the number of corresponding byte pairs witfiedénce equal tb.
p is the cumulatie percentage of corresponding pairs of bytes counted in all the bins up to
and including the current bin.
OPTIONS

<filel> a kinary file to be compared byte for bytefile2.
<file2> a hinary file to be compared byte for bytefilel.

EXAMPLES
Fromtest/imgtools/eecs/difoyts/difbyts.sc:

% diffbyts ../../data/finger/gray/raw/finger.raw ../dwsg/fingerraw > finger.hst
compiles and stores a bytefdifence histogram reporting the amount of imaggatiation due to
lossy WSQ compression.

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 107

DJPEG(1E) NFIReference Manual DJPEG(1E)

NAME

djpeg — decompress a JPEG file to an image file
SYNOPSIS

djpeg [options] [filename]
DESCRIPTION

djpeg decompresses the named JPEG file, or the standard input if no file is named, and produces an image

file on the standard outpuPBMPLUS (PPM/PGM), BMPGIF, Targa or RLE (Utah Raster dolkit) out-

put format can be selecte(RLE is supported only if the URlibrary is aailable.)

OPTIONS

All switch names may be ablviated; for &le,—grayscalemay be written-gray or —gr. Most of the

"basic" switches can be abbiated to as little as one letteUpper and laer case are equent (thus

-BMP is the same asbmp). British spellings are also accepted (e-tgreyscalg, though for breity

these are not mentioned belo

The basic switches are:

—colorsN
Reduce image to at most N colofBhis reduces the number of colors used in the output image, so
that it can be displayed on a colormapped display or stored in a colormapped file fleomat.
example, if you hae an 8-bit display you'd need to reduce to 256 omfer colors.

—quantize N
Same as-colors. —colorsis the recommended nameguantize is provided only for backwrds
compatibility.

—fast Select recommended processing optionsdet, flav quality output. (The de&ult options are cho-
sen for highest quality outputEurrently this is equidlent to —dct fast —-nosmooth —onepass
—dither ordered.

—grayscale
Force gray-scale outpuven if JPEG file is colar Useful for viaving on monochrome displays;
also,djpeg runs noticeablydster in this mode.

—-scaleM/N
Scale the output image by actor M/N. Currently the scaleattor must be 1/1, 1/2, 1/4, or 1/8.
Scaling is handy if the image is dg@r than your screen; alsdjpeg runs much dster when scaling
down the output.

-bmp Select BMP output format (iwdows flavor). 8-bit colormapped format is emitted +colors or
—grayscaleis specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color format is
emitted.

—gif Select GIF output formatSince GIF does not support more than 256 colecslors 256is
assumed (unless you specify a smaller number of colors).

-0s2 Select BMP output format (OS/2 1.x\fita). 8-bit colormapped format is emitted +colors or
—grayscaleis specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color format is
emitted.

-pnm Select PBMPLUS (PPM/PGM) output format (this is thead#fformat). PGM is emitted if the
JPEG file is gray-scale or-igrayscaleis specified; otherwise PPM is emitted.

-rle Select RLE output formatRequires UR library.)

—targa Select Bma aitput format. Gray-scale format is emitted if the JPEG file is gray-scale or if
—grayscaleis specified; otherwise, colormapped format is emitteecdlors is specified; other
wise, 24-bit full-color format is emitted.

Switches for adanced users:

JG 22August 1997 108

DJPEG(1E) NFIReference Manual DJPEG(1E)

—dct int
Use intger DCT method (dedilt).

—dct fast
Use Bst intger DCT (less accurate).

—dct float
Use floating-point DCT methodThe float method isery slightly more accurate than the int
method, bt is much slaer unless your machine hasry fast floating-point hardare. Alsonote
that results of the floating-point method magry slightly across machines, while the gee
methods should gé the same resultsrerywhere. Thdast integger method is much less accurate
than the other te.

—dither fs
Use Flyd-Steinbeg dithering in color quantization.

—dither ordered
Use ordered dithering in color quantization.

—dither none
Do not use dithering in color quantizatioBy default, Floyd-Steinbeg dithering is applied when
guantizing colors; this is slobut usually produces the best resul®tdered dither is a compro-
mise between speed and quality; no ditheringag fut usually looks w&ful. Note that these
switches hee ro efect unless color quantization is being do@edered dither is onlyvailable in
—onepassnode.

—map file
Quantize to the colors used in the specified image Titas is useful for producing multiple files
with identical color maps, or for forcing a predefined set of colors to be U$edile must be a
GIF or PPM file. This optionwerrides—colors and—onepass

—nosmooth
Use a &sterlower-quality upsampling routine.

—-onepass
Use one-pass instead ofdypass color quantizatiorThe one-pass method @ster and needs less
memory but it produces a lwer-quality image.—onepasds ignored unless you also sagolors
N. Also, the one-pass method isvays used for gray-scale output (theotwass method is no
improvement then).

—maxmemory N
Set limit for amount of memory to use in processingddmages.Value is in thousands of bytes,
or millions of bytes if "M" is attached to the numbdtor example,—-max 4m selects 4000000
bytes. Ifmore space is needed, temporary files will be used.

—outfile name
Send output image to the named file, not to standard output.

-verbose
Enable debg printout. More -v’s give more output. Also, version information is printed at
startup.

—dehug
Same as-verbose

EXAMPLES
This example decompresses the JPEG file foo.jpg, quantizes it to 256 colorsyesithsaoutput in 8-bit
BMP format in foo.bmp:

djpeg —colors 256 —-bmgoo.jpg> foo.bmp

3G 22August 1997 109

DJPEG(1E) NFIReference Manual DJPEG(1E)

HINTS

To get a quick preiew of an image, use thegrayscaleand/or—scaleswitches. —grayscale —scale 1/&
the fastest case.

Several options are\ailable that trade ¢fimage quality to gin speed.—fast turns on the recommended
settings.

—dct fast and/or-nosmoothgan speed at a small sacrifice in qualithen producing a coleguantized
image,—onepass —dither ordeed is fast lut much laver quality than the defilt behaior. —dither none
may give aceptable results in twwpass mode,ut is seldom tolerable in one-pass mode.

If you are fortunate enough toveavey fast floating point hardare,—dct float may be gen faster than
—dct fast. But on most machinesdct float is slaver than—dct int; in this case it is not arth using,
because its theoretical accwradvantage is too small to be significant in practice.

ENVIRONMENT
JPEGMEM
If this ervironment \ariable is set, itsalue is the defult memory limit. The \alue is specified as
described for the-maxmemory switch. JPEGMEM overides the defult value specified when
the program \as compiled, and itself isserridden by an xplicit -maxmemaory.
SEE ALSO
cjpeg(1), jpegtran(1), rdjpgcom(1), wrjpgcom(1)
ppm(S), pgm(S)
Wallace, Grgory K. "The JPEG Still Picture Compression Standard"”, Communications ofGM April
1991 (\ol. 34, no. 4), pp. 30-44.
AUTHOR
Independent JPEG Group

BUGS
Arithmetic coding is not supported fowgia reasons.

To avoid the Unisys LZW patentdjpeg produces uncompressed GIF fileEhese are lger than thg
should be, bt are readable by standard GIF decoders.

Still not as &st as wael like.

3G 22August 1997 110

DJPEGB(1D) NFIReference Manual DJPEGB(1D)

NAME

djpegb — decompresses a Baseline JPEG (JPEGB) grayscale or color image.

SYNOPSIS

djpegb <outext> <image fle>
[-raw_out [-nonintriv]]

DESCRIPTION

Djpegb takes as input a file containing a Baseline JPEG (JPEGB) compressed grayscale or color image.
Once read into memarthe lossy-compressed pixmap is decoded and reconstructed using the Independent
JPEG Grous (1JG) library for Baseline JPEG.

Upon completion, tw different output image file formats are possible, a NIST IHead file (tlaeltedr a
raw pixmap file (specified by theaw_out flag). Inaddition, a specially formattedxtefile, called a NIST
COM, is created with>@ension ".ncm".The NISTCOM file contains refent image attribtes associated
with the decoded and reconstructed output img§§ee NISTCOM OUTPUT bela)

OPTIONS

All switch names may be abhiated; for @ample,-raw_out may be writtenr.

<outext>
the etension of the decompressed output file. construct the output filenamdjpegb takes the
input filename and replaces itg@nsion with the one specified here.

<image fle>
the input JPEGB file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored pixenep file.

-nonintrlv
specifies that the color components in the reconstructed image shoulgatieent into separate
component planesThe -raw_out flag must be used with this option, because the IHead format
only supports interleed color pixels. (SedNTERLEAVE OPTIONS belwr.)

INTERLEA VE OPTIONS

For example, gien an RGB image, its color components may be inteddaor non-interleaed. Color
components are interhkead when a piel's (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB.If the color components are non-intexled, then all (R)ed
components in the image are sequentially adjacent in the image byte streamgdfdiioall (G)reen com-
ponents, and then lastly folied by all (B)lue componentd€ach complete sequence of color components
is called gplane The utilitiesintr2not andnot2intr corvert between interlaged and non-interleged color
components. Bydefault, djpegb uses interlezed color component pigls in the reconstructed output
image. Notehat all color IHead images must be intevieh

NISTCOM OUTPUT

NIST

Upon successful completiodjpegb, creates a specially formattedxtdile called a NISTCOM file.A
NISTCOM is a tet-based attribte list comprised of (namealue) pairs, one pair perdeline. The first
line of a NISTCOM alkays has name = "NIST_COM" and italue is alvays the total number of attuibes
included in the list. These attribtes are collected and nged from tvo different sources to represent the
history and condition of the resulting reconstructed imalgee first source is from an optional NISTCOM
comment block inside the JPEGB-encoded input flleis comment block can be used to hold tssgr-
plied attriutes. TheJPEGB encodecjpegb, by convention inserts one of these comment blocks in each
compressed output file it create@he utility rdjpgcom can be used to scan a JPEG file foy amd all
comment blocks.)The second source of attuiles comes from the decompression process itBelfien-
eral, attritute \alues from this second source aneegiprecedence\er those from the first.

02April 2001 111

DJPEGB(1D) NFIReference Manual DJPEGB(1D)

The NISTCOM output filename is constructed by combining the basename of the input JPEGB file with the
extension ".ncm". By creating the NISTCOM file, relent attritutes associated with the decoded and
reconstructed image are retained and easily accedded.is especially useful when dealing wittwra
pixmap files and creating image anas. Thefollowing is an &le NISTCOM generated loljpegb:

NIST_COM 10
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24

PPI -1

LOSSY 1

COLORSRCE RGB
NUM_COMPONENTS 3
HV_FACTORS 1,1:1,1:1,1
INTERLEAVE 1

EXAMPLES
Fromtest/imgtools/eecs/djpgb/djpah.src:
% djpegb raw face24.jpb -r
decompresses a JPEGB-encoded R&d: fimage and stores the reconstructed image tw a ra
pixmap file. Note the NISTCOM fileface24.ncmis dso created.

SEE ALSO
cjpegh(1D), dpyimage(1D), intr2not (1D), jpegtran(1E), not2intr (1D), rdjpgcom(1E), wrjpgcom(1E)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 112

DJPEGL(1D) NFIReference Manual DJPEGL(1D)

NAME

djpegl — decompresses a Lossless JPEG (JPEGL) grayscale or color image.

SYNOPSIS

djpegl <outext> <image fle>
[-raw_out [-nonintriv]]

DESCRIPTION

Djpegl takes as input a file containing a Lossless JPEG (JPEGL) compressed grayscale or color image.
Once read into memarthe compressed pixmap is decoded and reconstructed to its original condition prior
to compression.

Upon completion, tw different output image file formats are possible, a NIST IHead file (tlaeltedr a
raw pixmap file (specified by theaw_out flag). Inaddition, a specially formattedxtefile, called a NIST
COM, is created with>@ension ".ncm".The NISTCOM file contains refent image attribtes associated
with the decoded and reconstructed output img§§ee NISTCOM OUTPUT bela)

OPTIONS

All switch names may be abhiated; for @ample,-raw_out may be writtenr.

<outext>
the tension of the decompressed output file. construct the output filenamdjpegl takes the
input filename and replaces itg@nsion with the one specified here.

<image fle>
the input JPEGL file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored pixenep file.

-nonintrlv
specifies that the color components in the reconstructed image shoulgatieent into separate
component planesThe -raw_out flag must be used with this option, because the IHead format
only supports interleed color pixels. (SeéNTERLEAVE OPTIONS belwr.)

INTERLEA VE OPTIONS

For example, gien an RGB image, its color components may be inteddaor non-interleaed. Color
components are interhead when a piel's (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB.If the color components are non-intexled, then all (R)ed
components in the image are sequentially adjacent in the image byte streamgdfdiioall (G)reen com-
ponents, and then lastly folled by all (B)lue componentd€ach complete sequence of color components
is called gplane The utilitiesintr2not andnot2intr corvert between interlaged and non-interleged color
components. Byefault, djpegl uses interlezed color component pigls in the reconstructed output image.
Note that all color IHead images must be interda

NISTCOM OUTPUT

NIST

Upon successful completiodjpegl, creates a specially formattedxtefile called a NISTCOM file.A
NISTCOM is a tet-based attribte list comprised of (namealue) pairs, one pair perdeline. The first
line of a NISTCOM akays has name = "NIST_COM" and italue is alvays the total number of attuibes
included in the list. These attribtes are collected and nged from tvo different sources to represent the
history and condition of the resulting reconstructed imalgee first source is from an optional NISTCOM
comment block inside the JPEGL-encoded input filais comment block can be used to hold tsgr-
plied attriutes. TheJPEGL encodercjpegl, by convention inserts one of these comment blocks in each
compressed output file it create@he utility rdjpgcom can be used to scan a JPEG file foy amd all
comment blocks.)The second source of attuiles comes from the decompression process itBelfien-
eral, attritute \alues from this second source aneegiprecedence\er those from the first.

02April 2001 113

DJPEGL(1D) NFIReference Manual DJPEGL(1D)

The NISTCOM output filename is constructed by combining the basename of the input JPEGL file with the
extension ".ncm". By creating the NISTCOM file, relent attritutes associated with the decoded and
reconstructed image are retained and easily accedded.is especially useful when dealing wittwra
pixmap files and creating image anas. Thefollowing is an &le NISTCOM generated loljpegl:

NIST_COM 9
PIX_WIDTH 768
PIX_HEIGHT 1024
PIX_DEPTH 24

PPI -1

LOSSY 0
NUM_COMPONENTS 3
HV_FACTORS 1,1:1,1:1,1
INTERLEAVE 1

EXAMPLES

Fromtest/imgtools/eecs/djpgl/djpegl.src:

% djpegl raw finger.jpl -r
decompresses a JPEGL-encoded grayscale fingerprint image and stores the reconstructed image to
a raw gxmap file. Note the NISTCOM filefinger.ncm, is dso created.

% djpegl raw face.jpl -r
decompresses a JPEGL-encoded R@&efimage and stores the reconstructed image twv a ra
pixmap file. Note the NISTCOM fileface.ncm is dso created.

SEE ALSO

cjpegl(1D), dpyimage(1D), intr2not (1D), not2intr (1D), rdjpgcom(1E), wrjpgcom(1E)

AUTHOR

NIST

NIST/ITL/DIV894/Image Group

02April 2001 114

DJPEGLSD(1D) NFIReference Manual DJPEGLSD(1D)

NAME
djpeglsd — decompresses a grayscale image thatoempressed using the old Lossless JPEG compression
distributed with Special Databases 4, 9, 10, andCiBeg! should be used in the future to Lossless JPEG
(JPEGL) compress images.

SYNOPSIS
djpeglsd <outext> <image fle>
[-sd # [-raw_out]

DESCRIPTION
Djpeglsd takes as input a file containing a grayscale image tl@at @ompressed with the old Lossless
JPEG (JPEGLSD)Specifically the ®rsion that is included on the CDRIs with Special Databases 4, 9,
10, and 18.0Once read into memarshe compressed pixmap is decoded and reconstructed to its original
condition prior to compressionCjpegl should be used for gnfuture Lossless JPEG compression of
images.

Upon completion, tw different output image file formats are possible, a NIST IHead file (tla@ltedr a
raw pixmap file (specified by theaw_out flag). Inaddition, a specially formattedxtefile, called a NIST
COM, is created with>@ension ".ncm".The NISTCOM file contains refant image attribtes associated
with the decoded and reconstructed output imagevéha $ecial database numbelipeglsd will put all
the important class, seage, and file history information, that mayse for that database, in the NISTCOM
file. (SeeNISTCOM OUTPUT belu.)

OPTIONS
All switch names may be abhiated; for @ample,-raw_out may be writtenr.

<outext>
the etension of the decompressed output fil@ construct the output filenamdjpeglsd takes
the input filename and replaces ixtemsion with the one specified here.

<image fle>
the input JPEGLSD file to be decompressed.

-sd # Specify that the input image is from NIST Special Database #.

-raw_out
specifies that the decoded and reconstructed image should be stored pixenep file.

NISTCOM OUTPUT
Upon successful completiodjpeglsd, creates a specially formattedktdile called a NISTCOM file.A
NISTCOM is a tet-based attribte list comprised of (namealue) pairs, one pair perdeline. The first
line of a NISTCOM alkays has name = "NIST_COM" and italue is alvays the total number of attuibes
included in the list. These attuites are collected from information about the decompressed image. Detailed
attributes are collected if thed #flag is used.

The NISTCOM output filename is constructed by combining the basename of the input JPEGLSD file with
the tension ".ncm".By creating the NISTCOM file, relent attritutes associated with the decoded and
reconstructed image are retained and easily accedded.is especially useful when dealing wittwra
pixmap files and creating image anasi. Thefollowing are @ample NISTCOMs generated loypeglsd

for SD9 and SD18 images (The highlighted items are at&a#specific to that database.):

NIST_COM 12
SD_ID9

HISTORY f0000771.pct ac/dm_fpw:20 tape9.n1125012.01 4096x1536
FING_CLASS W

SEX f

NIST 02April 2001 115

DJPEGLSD(1D) NFIReference Manual DJPEGLSD(1D)

SCAN_TYPE i
PIX_WIDTH 832
PIX_HEIGHT 768
PIX_DEPTH 8

PPI1 500

LOSSY 0
COLORSRCE GRAY

NIST_COM 12
SD_ID 18

HISTORY f00117_1.pct
SEX m

AGE 26

FACE_POS f
PIX_WIDTH 592
PIX_HEIGHT 448
PIX_DEPTH 8

PPI 500

LOSSY 0
COLORSRCE GRAY

EXAMPLES
Fromtest/imgtools/eecs/djpglsd/djpglsd.sc:

% djpeglsd raw sd04.old -sd 4 -r

% djpeglsd raw sd09.old -sd 9 -r

% djpeglsd raw sd10.old -sd 10 -r

% djpeglsd raw sd18.old -sd 18 -r

decompresses JPEGLSD-encoded images from the Special Databases and stores the reconstructed
images to a ma pixmap files. Note the NISTCOM filessd04.ncm sd09.ncm sd10.ncm and

sd18.ncm are also created.

SEE ALSO
cjpegl(1D), djpegl(1D), dpyimage(1D),

AUTHOR
NIST/ITL/DIV894/iImage Group

NIST 02April 2001 116

DPYAN2K(1C) NFISReference Manual DPYAN2K(1C)

NAME
dpyan2k - display image and minutiae contents of an ANSI/NIST file.
SYNOPSIS
dpyan2k [optiong <ANSI_NIST ...>
-an
-V
-X
-bn
-i
-n
-p n
-Wn
-Hn
-Xn
-Yn
-T title
-d display
DESCRIPTION
Dpyan2k displays in a sequence of X11 windoall the image records andedays aty corresponding
minutiae from Vpe-9 records contained in an ANSI/NHIL 1-2000 file.
If multiple input files are specifiedpyan2kreads each ANSI/NIST file into memory and displays its con-
tents, one file at a timeMultiple image records within an ANSI/NIST file are displayed simultaneously by
forking background winde processes, one for each image record.
If an image is too lge to be displayed on the screen, the upper left hand corner will be displayed and the
rest of the image can be wedl into view by holding davn a mouse tiiton, maving in the direction desired,
and then releasing theitbon. Buttonpresses when anotheutton(s) is already den and lntton releases
when anotherdtton(s) is still davn are ignored.
Users may reme a dsplayed image windm by striking ary key within that windav. Once all windavs
associated with a particular ANSI/NIST filevieabeen remwaed, the utility proceeds to display the contents
of the net ANSI/NIST file listed on the command line.
OPTIONS
-an sets drag accelerator to— changes in pointer position will result mshifts in the displayed
image [1].
-V turns on erbose output.
-X turns on debg mode, causing a core dump when an X11 error occurs.
-bn sets border width to pixels [4].
-i directs the utility to use the FBI/IAFIS fields 13-23 inyp@&-9 record whenwerlaying minutiae
on an image.
-n directs the utility to use the NIST fields 5-12 inyp@-9 record whenwerlaying minutiae on an
image. Thids the dedult setting.
-p sets the pigl width of overlayed minutia points [3].
-Wn displays image in a windoof width n pixels.
-Hn displays image in a windoof heightn pixels.
-X'n positions image winde with top-left cornem pixels to the right of the displag/top-left corner
[0].
NIST 02April 2001 117

DPYAN2K(1C) NFISReference Manual DPYAN2K(1C)

-Y n positions image winde with top-left cornemn pixels belav the displays top-left corner [O].
-T title sets all image winde names tditle.
-d display

connects to an alternate X11 display

<ANSI_NIST ...>
one or more ANSI/NIST files with images and possbily minutiae to be displayed.

EXAMPLES

Fromtest/an2k/recs/dpyan2k/dpyan2kesr

% dpyan2k ../../data/nist.an2
displays image records andedays minutia using NISType-9 fields.

% dpyan2k -i ../../data/iafis.an2
displays image records andedays minutia using FBI/IAFIS yipe-9 fields.

SEE ALSO

an2ktool(1C), dpyimage(1D), mindtct (1B)

AUTHOR

NIST

NIST/ITL/DIV894/Image Group

02April 2001 118

DPYIMAGE(1D) NFISReference Manual DPYIMAGE(1D)

NAME
dpyimage - displays the image contents of Baseline JPEG, Lossless JPEG, WSQ, |Head pamdaa
files.
SYNOPSIS
dpyimage[optiong imagefile ...
-r w,h,d,wp
-A
-sn
-an
-v
-X
-bn
-Nn
-O
-k
-Wn
-Hn
-Xn
-Yn
-n
-T title
-t
-D dir
-d display
DESCRIPTION
Dpyimage reads warious image file formats, decompresses and reconstructs pixmaps as needed, and dis-
plays image contents in an X11 windoSupported file formats include Baseline JPEG (lossy), Lossless
JPEG, WSQ (lossy), NIST IHead, anavrgixmap files. Raw pixmaps containing either grayscale or inter
leaved RGB color piels are supportedThis utility automatically diierentiates between thesefdient for
mats.
If only one file (or then option) is specified on the command line, the image or images are simply read
from disk and then displayedf multiple files are specified)pyimage attempts to minimize the display
waiting time by forking a background process to pre-read images from Biskefault, the child transfers
images to the parent via a pip€his alvays allovs at least one image to be read in from disk while the
user is vigving the current imageSince a process writing on a pipe is bledkuntil a read on the other
end of the pipe) after transferring four kilobytes, the child will only be one image ahead of the parent
except when handling smaller images.
If the -t option appears on the command line, the processes use temporary files as the mehasgihg
image data. Therefore, the child is not constrained on the number of images it may pre-read for the parent.
However, the filesystem on which the directory for temporary files resides mustéaugh space for
copies of all images in uncompressed state or an error may ddaaris the suggested mode forwirg
compressed images for which decompressioastaknsiderably longer than disk 1/0.
If the image is too lge to be displayed on the screen, the upper lefthand corner will be displayed and the
rest of the image can be wedl into view by holding davn a mouse tiiton, maving in the direction desired,
and then releasing theitbon. Buttonpresses when anotheutton(s) is already den and lntton releases
when anotherditton(s) is still davn are ignored.
Users may xt from the program by strikinggys 'x’ or 'X’. Advancing to the nd image is accomplished
by ary other leystroke.
NIST 02April 2001 119

DPYIMAGE(1D) NFISReference Manual DPYIMAGE(1D)

OPTIONS
-r w,h,d,wp
raw pixmap attrilutes:
w - pixel width,
h - pixel height,
d - pixel depth,
wp - white pixel value
bi-level wp=0|1
grayscale wp=0|255
RGB wp=0(value ignored)
-A automatically adances through images.
-sn in automatic mode, sleepsseconds before admcing to the nd image [2].
-an sets drag accelerator to— changes in pointer position will result mshifts in the displayed
image [1].
-V turns on erbose output.
-X turns on debg mode, causing a core dump when an X11 error occurs.
-bn sets border width to pixels [4].
-Nn the child I/O process is niced tovékn.
-0 overrides the redirect on win#e (no windev manager).
-k informs utility that there is nodyboard input.
-Wn displays image in a windoof width n pixels.
-Hn displays image in a windoof heightn pixels.
-X'n positions image winde with top-left cornem pixels to the right of the displag/top-left corner
[0].
-Y n positions image winde with top-left cornemn pixels belov the displays top-left corner [O].
-n does not fork to display multiple images.
-T title sets windw name totitle [file]. -t uses temporary files to transfer multiple images to pant
[via pipe].
-D directory
creates temporary files directory[/tmp].
-d display
connects to alternate display
imagefile ...

ENVIRONMENT

one or more image files whose pixmaps are to be displayed.

If the ervironment \ariableTMPDIR is set and theD option is not set on the command liggyimage
uses this directory as the location for temporary files.

EXAMPLES
Fromtest/imgtools/eecs/dpyimge/dpyimayesrc:

NIST

% dpyimage -r 500,500,8,255 ../../datalfinger/gray/raw/fingeaw
displays a fingerprint image from angixmap file.

% dpyimage ../../data/finger/gray/jpegl/fingejpl
displays a reconstructed fingerprint image from a Lossless JPEG file.

02April 2001 120

DPYIMAGE(1D) NFISReference Manual DPYIMAGE(1D)

% dpyimage ../../data/finger/gray/wsg/fingewsq
displays a reconstructed fingerprint image from a WSQ file.

% dpyimage ../../data/face/gray/jpegb/face.jpb
displays a reconstructed grayscaled image from a Baseline JPEG file.

% dpyimage -r 768,1024,24,0 ../../data/facgf/raw/intrlv/face.raw
displays a colordce image from a vapixmap file.

% dpyimage ../../data/face/gb/jpegb/face.jpb
displays a reconstructed colack image from a Baseline JPEG file.

% dpyimage ../../data/face/gb/jpegl/face.jpl
displays a reconstructed colack image from a Lossless JPEG file.

SEE ALSO

an2ktool(1C), cjpeghb(1D), cjpegl(1D), cwsq1D), djpegh(1D), djpegl(1D), dpyan2k(1C), dwsqg(1D)

AUTHOR

NIST

NIST/ITL/DIV894/Image Group

02April 2001 121

DWSQ(1D) NFISReference Manual DWSQ(1D)

NAME
dwsq - decompresses a WSQ-encoded grayscale fingerprint image.

SYNOPSIS
dwsq <outext> <image fle> [-raw_out]

DESCRIPTION
Dwsq takes as input a file containing a WSQ-compressed grayscale fingerprint i@age. read into
memory the lossy-compressed pixmap is decoded and reconstructed usidgtVBcalar Quantization as
described in the FB$’ Criminal Justice Information Services (CJIS) document, "WSQ Gray-scale Finger
print Compressions Specification," Dec. 199his is the only fingerprint compression format accepted by
the FBI IAFIS system.

Upon completion, tw different output image file formats are possible, a NIST IHead file (tlaeltedr a
raw pixmap file (specified by theaw_out flag). Inaddition, a specially formattedxtefile, called a NIST
COM, is created with>@ension ".ncm".The NISTCOM file contains refant image attribtes associated
with the decoded and reconstructed output img§§ee NISTCOM OUTPUT bela)

OPTIONS
All switch names may be abhiated; for @ample,-raw_out may be writtenr.

<outext>
the etension of the decompressed output fil@ construct the output filenamdwsq takes the
input filename and replaces itg@nsion with the one specified here.

<image fle>
the input WSQ file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored pixenep file.

NISTCOM OUTPUT
Upon successful completiodwsg, creates a specially formattedtdile called a NISTCOM file A NIST-
COM is a tat-based attribte list comprised of (nameahlue) pairs, one pair perddine. The first line of a
NISTCOM alvays has name = "NIST_COM" and italue is alvays the total number of attules included
in the list. These attribtes are collected and nged from tvo different sources to represent the history and
condition of the resulting reconstructed imagée first source is from an optional NISTCOM comment
block inside the WSQ-encoded input filehis comment block can be used to hold sgplied attribites.
The WSQ encodecwsq by corvention inserts one of these comment blocks in each compressed output
file it creates.(The utility rdwsqcomcan be used to scan a WSQ file foy @and all comment blocks.)
The second source of atwifes comes from the decompression process itBelfieneral, attribte \alues
from this second source are/gi precedencee@r those from the first.

The NISTCOM output filename is constructed by combining the basename of the input WSQ file with the
extension ".ncm". By creating the NISTCOM file, relent attritutes associated with the decoded and
reconstructed image are retained and easily accedded.is especially useful when dealing wittwra
pixmap files and creating image anagsi. Thefollowing is an @ample NISTCOM generated lowsq:

NIST_COM 7
PIX_WIDTH 500
PIX_HEIGHT 500
PIX_DEPTH 8

PP1 500

LOSSY 1
COLORSRCE GRAY

NIST 02April 2001 122

DWSQ(1D) NFISReference Manual DWSQ(1D)

EXAMPLES
Fromtest/imgtools/eecs/dwsqg/dwsq sr

% dwsq raw fingerwsq -r
decompresses a WSQ-encoded fingerprint image and stores the reconstructed image to a ra
pixmap file. Note the NISTCOM filefinger.ncm, is dso created.

SEE ALSO
cwsq1D), dpyimage(1D), rdwsgcom(1D), wrwsgcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 123

DWSQ14(1D) NFIReference Manual DWSQ14(1D)

NAME

dwsqgl4 - decompresses a WSQ14-encoded grayscale fingerprint image from NIST Special Database 14.

SYNOPSIS

dwsqgl4<outext> <image fle> [-raw_out]

DESCRIPTION

Dwsql4takes as input a file containing a WSQ214-compressed grayscale fingerprint image from NIST Spe-
cial Database 14The \ersion of WSQ14 used to compress the images on this database is not certified and
produces loss that may be more than permitted by a certified WSQ compression algorittenread into
memory the lossy-compressed pixmap is decoded and reconstructed usidgtVBcalar Quantization as
described in the FBY’ Criminal Justice Information Services (CJIS) document, "WSQ Gray-scale Finger
print Compressions Specification," Dec. 199his is the only fingerprint compression format accepted by
the FBI IAFIS system.

Upon completion, tw different output image file formats are possible, a NIST IHead file (tla@ltedr a
raw pixmap file (specified by theaw_out flag). Inaddition, a specially formattedxtefile, called a NIST
COM, is created with>@ension ".ncm".The NISTCOM file contains refant image attribtes associated
with the decoded and reconstructed output img§§ee NISTCOM OUTPUT bela)

OPTIONS

All switch names may be abhiated; for @ample,-raw_out may be writtenr.

<outext>
the extension of the decompressed output fife. construct the output filenameéwsqgl4takes the
input filename and replaces itg@nsion with the one specified here.

<image fle>
the input WSQ14 file to be decompressed.

-raw_out
specifies that the decoded and reconstructed image should be stored pixenep file.

NISTCOM OUTPUT

NIST

Upon successful completiodwsql4 creates a specially formattedktdile called a NISTCOM file.A
NISTCOM is a tet-based attribte list comprised of (namealue) pairs, one pair perdeline. The first

line of a NISTCOM akays has name = "NIST_COM" and italue is alvays the total number of attuibes

included in the list. These attribtes are collected from twsources and mged to represent the history and
condition of the resulting reconstructed imadéwe two sources for the attriltes are the IHEAD header of

the compressed image (specific information about the fingerprint itself is contained here) and the decom-
pression procesdn general, attribte \alues from the second source aneegiprecedence\ar those from

the first.

The NISTCOM output filename is constructed by combining the basename of the input WSQ14 file with
the tension ".ncm".By creating the NISTCOM file, relent attritutes associated with the decoded and
reconstructed image are retained and easily accedded.is especially useful when dealing wittwra
pixmap files and creating image angds. Thefollowing is an @ample NISTCOM generated lbwsgl4
(highlighted items specific to SD14):

NIST_COM 12
PPI 500

SD_ID 14

HISTORY f0000001.wsq 20 tape3.t1116010.01 4096x1536
FING_CLASS R

SEX m

SCAN_TYPE i

02April 2001 124

DWSQ14(1D) NFIReference Manual DWSQ14(1D)

PIX_WIDTH 832
PIX_HEIGHT 768
PIX_DEPTH 8
LOSSY 1
COLORSRCE GRAY

EXAMPLES
Fromtest/imgtools/eecs/dwsqgl4/dwsqlacsr

% dwsql4 raw sd14.old -r
decompresses a WSQ14-encoded fingerprint image and stores the reconstructed image to a ra
pixmap file. Note the NISTCOM filesd14.ncm is dso created.

SEE ALSO
cwsq1D), dwsq(1D), dpyimage(1D),

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 125

EVA_EVT(1) NFISReference Manual EVA_EVT(1)

NAME
eva evt — finds a desired number of eigalues and eigerectors.
SYNOPSIS
eva evt <covfile_in> <num_e&a_est wanted> <eafile> <eva_desc> <gtfile> <evt_desc> <ascii_out-
files>
DESCRIPTION
eva evt finds a desired number of eiglues, and corresponding eigentors, of a ceariance matrix (or
really, of any symmetric positie cefinite real matrix). Uses CLA¥EK routines, which were originally in
Fortran hut were cowerted into C using f2c.
ARGUMENTS
<covfile_in>
The cwariance matrix (reallysymmetric positie cefinite real matrix) some of whose eigdnes
and corresponding anvectors are to be foundMust be a PCASYS "a@riance” file. (Usually
the output ofneancw.)
<num_e/a_est wanted>
Specifies hav mary eigervalues and eigerectors to return for the gén covariance matrix.
<evafile>
File to be written containing the eigatues that are found; will be a PCASYS "matrix" file, with
first dimension equal to 1 and second dimension equal to the number ofkigeriound. The
eigervalues will be stored in decreasing order
<eva_desc>
A string to be written into the eigealues output file as its description stringhis string can be of
ary length, lut must not contain embeddednti@e characterslf it contains spaces, tabs, or shell
metacharacters that are not to b@anded, then it should be quoteto leare the description
empty use ’ (two dngle quotes, i.esingle-quoted empty string)lo let eva_evt make a escrip-
tion (stating that this is an eigeafues file made byva evt, and shwing the cwariance file and
number of eigevalues), use - §phen).
<evtfile>
File to be written containing the eigaators that are found; will be a PCASYS "matrix" filehe
i"th row of this matrix will be the eigesector corresponding to thetlii entry in the eigar@ues
output file.
<evt_desc>
Description string for eigesectors output file, or - to letva_evt male the description. As per the
eva_desc
<ascii_outfiles>
If y, makes ascii output files; if n, binanBinary is recommended, unless the output files must be
portable across ddrent byte orders or floating—point formats.
EXAMPLE(S)
Fromtest/pcasyskecs/ga_evt/eva_evt.sic:
% eva_evt ../meancw/fvl-9.cor 128 fvl-9.eva - fvl-Q.evt - n
Computes the eigeralues and eigenectors for fv1-9.ce and sorts in decreasing ordénen
returns the top 128 from that list.
SEE ALSO
asczbin (1A), bin2asc (1A), lintran (1A), mean¢tA)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 126

FIXWTS(1A) NFISReference Manual FIXWTS(1A)

NAME
fixwts — M-weighted robst weight filter from netark actvations.

SYNOPSIS
fixwts <long_error_file> <output_pat_wts>

DESCRIPTION
Fixwts creates a set of unequal pattern weights. The unequal pattern weightthenlast squares func-
tion more dficient for non-standard distutions of the output errors byvijiig less weight to outliers in the
distribution.
[ref. D.FANndrews, Technometrics 16 (1974) 523.]

OPTIONS
<long_error_file>
The long error output file from an MLP training run. (Usually the output of a training run for
mip.)
<output_pat_wts>
The pattern weights to be used in th&trdLP training run. It veuld replace "fg_pat_wts" in the
example directory test/pcasyzées/mlp/mip_dir

EXAMPLE(S)
Fromtest/pcasyskecs/fixwts/fixwts.er

% fi xwts ../mlp/mlp_dir/tr nO1l.err fixwts.out
Takes the long error file (trn01l.err) from a mlp training run and computes a set ustroights
(fixwts.out) to use in the metraining run.

SEE ALSO
mip (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 127

IAF2AN2K(1C) NFISReference Manual IAF2AN2K(1C)

NAME
iaf2an2k — Bkes an ANSI/NIST file conforming to FBI/IAFIS specifications and modifies minutiae and
fingerprint image records in support of thevr#00 standard.

SYNOPSIS
iaf2an2k <file in> <file out>

DESCRIPTION
laf2an2k parses an ANSI/NIST file conforming to the FBI/IAFIS (EFTS V7) specifications and, if neces-
sary cornverts specific records and fields to eaédvantage of the ANSI/NISTTL 1-2000 standard.This
utility focuses on the format of minutiae and image records.

Minutiae fields:

When a Vpe-9 record is encountered in the input file, this utility checks to see which fields are populated.
If the NIST-assigned fields 5-12 are empyt the FBI/IAFIS-assigned fields 13-23 are populated, then the
NIST fields are populated by translating the data recorded in the FBI/IAFIS fields, and the FBI/IAFIS fields
are remuoed.

Image records:

FBI/IAFIS specifications (EFTS V7) require binary field images,the ANSI/NIST 2000 standard intro-
duces tagged field image record® support these neimage records, this utility looks for binary field fin-
gerprint records and ceerts them appropriatelylf a Type-4 or Ype-6 record is encountered, it is
inspected to determine the impression type of the fingerpratent fingerprints are ceated to ype-13
records, while all others are a@nted to ype-14 records.

OPTIONS
<file in>
the ANSI/NIST file to be corerted

<file out>
the resulting ANSI/NIST file

EXAMPLES
Fromtest/an2k/kecs/iafan2k/iafan2k.sr

% iafan2k ../../data/iafis.an2 nist.an2

SEE ALSO
an2k2iaf(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 128

INTR2NOT(1D) NFISReference Manual INTR2NOT(1D)

NAME

intr2not — comerts an image comprised of jgis with interleged color components to an image with non-
interleaved component planes.

SYNOPSIS
intr2not <outext> <image fle>
[-raw_in w,h,d,[ppi]
[-YCbCr HO,VO:H1,V1:H2, V2]

DESCRIPTION
Intr2not takes as input an uncompressed image oélpiwith interleged color components and ceerts
the image into non-interleed component planesThis utility requires there be three color components in
the input image.Two input file formats are possible, a NIST IHead file (theadkf or a rav pixmap file
(specified by theraw_in option). Thenon-interleaed results are stored to awagixmap file rgadless of
the input file format, because the IHead format only supports intedl@eels.

For example, the pigls of an RGB color image are intetted when a piel's R G, and B components are
sequentially adjacent in the image byte stream, ie. RGBRGBRGH.the color components are non-
interleaved, then all (R)ed components in the image are sequentially adjacent in the image byte stream, fol-
lowed by all (G)reen components, and then lastly fedid by all (B)lue componentsEach complete
sequence of color components is calledlane The utility not2intr corverts non-interleaed to inter

leaved color components.

It is possible that the component planes of an input YCbCr imagelkan prgiously davnsampled. If
so, the-YCbCr flag must be included on the command line, listing the appropriate component plame do
sampling &ctors. Bydefault, this utility assumes no wasampling. (Se¥ CbCr OPTIONS belw.)

OPTIONS
All switch names may be abhiated; for @ample,-raw_in may be writtenr.

<outext>
the tension of the output fileTo construct the output filenam@tr2not takes the input file-
name and replaces itstension with the one specified here.

<image fle>
the input file, either an IHead file omrgixmap file, containing the color image to be wated.
-raw_in w,h,d,[ppi]

the attrilutes of the input imagerThis option must be included on the command line if the input is
a raw gxmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image ingeteunits of piels per inch.

-YCbCr HO,VO:H1,V1:H2,v2
indicates that a YCDbCr color image is being input whose component plareekeka preiously
downsampled. (Se¥CbCr Options bela.)

YCbCr OPTIONS
A common compression technique for YCbCr images is tondample the Cb & Cr component planes.
Intr2not can handle a limited range of YCbCrwdwsampling schemes that are represented by a list of
component planeattors. Theséactors together representwiosampling ratios relate © each other The
comma-separated list ohdtor pairs correspond to the @b, and Cr component planes respatyi The

NIST 02April 2001 129

INTR2NOT(1D) NFISReference Manual INTR2NOT(1D)

first value in a &ctor pair represents thevdasampling of that particular component plane in the X-dimen-
sion, while the second represents thdiniension. Compressiomtios for a particular component plane
are calculated by diding the maximum componenadtors in the list by the current componsrigctors.
These intger factors are limited between 1 andH,V factors all set to 1 represent nonhsampling. Br
complete detaildntr2not implements the densampling and interleang schemes described in the falto

ing reference:

W.B. Pennebatr and J.L. Mitchell, "JPEG: Still Image Compression Standard,” Appendix A -
"ISO DIS 10918-1 Requirements and Guidelinegh Wostrand Reinhold, NY993, pp. A1-A4.

For example the option specification:
-YCbCr 4,4:2,2:1,1

indicates that there has been navdsampling of the Y component plane (4,4 are thgelsirX and Y dc-
tors listed); the Cb component plane has beemdampled in X and Y by ad¢tor of 2 (maximumeéictors

4 divided by currentdctors 2); and the Cr component plane has beengimpled in X and Y by aétor

of 4 (maximum &ctors 4 diided by currentdctors 1). Note that dansampling component planes is a
form of lossycompression. Thetility rgb2ycc corverts RGB pixmaps to the YCbCr colorspace, and it
conducts dansampling of the resulting YCbCr component planes upon request.

EXAMPLES

Fromtest/imgtools/eecs/intr2not/intr2not.sx

% intr2not nin face.raw -r 768,1024,24
converts the interleeed RGB pixels of a &ce image in a vapixmap file into separate color com-
ponent planes.

SEE ALSO

not2intr (1D), rgb2ycq1D)

AUTHOR

NIST

NIST/ITL/DIV894/Image Group

02April 2001 130

JPEGTRAN(1E) NFIReference Manual JPEGTRAN(1E)

NAME
jpegtran — lossless transformation of JPEG files

SYNOPSIS
jpegtran [options] [filename]

DESCRIPTION
jpegtran performs arious useful transformations of JPEG filéscan translate the coded representation
from one ariant of JPEG to anothdor example from baseline JPEG to progreesPEG or vice ersa. It
can also perform some rearrangements of the image datxafaplke turning an image from landscape to
portrait format by rotation.

jpegtran works by rearranging the compressed data (DCTficgsits), without eer fully decoding the
image. Therefordts transformations are lossless: there is no imageadation at all, which @uld not be
true if you usedljpeg followed bycjpegto accomplish the same a@nsion. Butby the same tan,jpeg-
tran cannot perform lossy operations such as changing the image .quality

jpegtran reads the named JPEG/JFIF file, or the standard input if no file is named, and produces a
JPEG/JFIF file on the standard output.

OPTIONS
All switch names may be ablwiated; for &le,—optimize may be written—opt or —o. Upper and
lower case are equalent. Britishspellings are also accepted (e-gpptimise), though for breity these are
not mentioned bele.

To gecify the coded JPEG representation used in the outpypéitgiran accepts a subset of the switches
recognized bgjpeg:
—optimize
Perform optimization of entrgpencoding parameters.
—progressve
Create progresgt PEG file.

—restartN
Emit a JPEG restart magkevery N MCU rows, or @ery N MCU blocks if "B" is attached to the
number

—-scansfile
Use the scan script\gin in the specified td file.

Seecjpeg(1l) for more details about these switchéfsyou specify none of these switches, you get a plain
baseline-JPEG output filehe quality setting and so forth are determined by the input file.

The image can be losslessly transformed Bingione of these switches:

—flip horizontal
Mirror image horizontally (left-right).

—flip vertical
Mirror image \ertically (top-bottom).

—rotate 90
Rotate image 90 dgees clockwise.

—rotate 180
Rotate image 180 deces.

—rotate 270
Rotate image 270 deees clockwise (or 90 ccw).

—transpose
Transpose image (across UL-to-LR axis).

3G 3August 1997 131

JPEGTRAN(1E) NFIReference Manual JPEGTRAN(1E)

—transverse
Trans\erse transpose (across UR-to-LL axis).

The transpose transformation has no restrictiogardang image dimensionsThe other transformations
operate rather oddly if the image dimensions are not a multiple of the iIMCU size (usually 8 ogld&)f pix
because thecan only transform complete blocks of DCT damént data in the desireday

jpegtran’s default behaior when transforming an odd-size image is designed to peesatet reversibility

and mathematical consistgnaf the transformation setds stated, transpose is able to flip the entire image
area. Horizontainirroring leares any partial iIMCU column at the right edge untouchedt is able to flip

all rows of the image.Similarly, vertical mirroring leaes any partial IMCU row at the bottom edge
untouched, bt is able to flip all columnsThe other transforms can bailb up as sequences of transpose
and flip operations; for consistgntheir actions on edge ks are defined to be the same as the end result
of the corresponding transpose-and-flip sequence.

For practical use, you may prefer to discarg antransformable edge s rather than wéng a strange-
looking strip along the right and/or bottom edges of a transformed inTagdo this, add the-trim switch:

—trim Drop non-transformable edge blocks.

Obviously, a ransformation with-trim is not reversible, so strictly speakingegtran with this switch is

not lossless.Also, the @pected mathematical egalences between the transformations no longer hold.
For example,-rot 270 -trim trims only the bottom edgeub-rot 90 -trim followed by-rot 180 -trim
trims both edges.

Another not-strictly-lossless transformation switch is:

—grayscale
Force grayscale output.

This option discards the chrominance channels if the input image is YCbCr (ie, a standard color JPEG),
resulting in a grayscale JPEG fil€he luminance channel is presedvexactly, so this is a better method of
reducing to grayscale than decompressionyasion, and recompressiorlhis switch is particularly

handy for fixing a monochrome picture thaasumistaknly encoded as a color JPE@n such a case, the

space sangs from getting rid of the ne@mpty chroma channelson't be large; lut the decoding time for

a gayscale JPEG is substantially less than that for a color JPEG.)

jpegtran also recognizes these switches that control what to do witha"emarlers, such as comment
blocks:

—copy none
Copy no extra marlers from source fileThis setting suppresses all comments and otkezss
bagagge present in the source file.

—copy comments
Copy only comment marirs. Thissetting copies comments from the source filg,discards an
other inessential data.

—copy all
Copy dl extra marlers. Thissetting presems miscellaneous magks found in the source file,
such as JFIF thumbnails and Photoshop settilgsome files thesexera marlers can be sizable.

The deéult behaior is —copy comments (Note: in 1JG releases v6 and vgpegtran always did the
equialent of —copy none)

Additional switches recognized by ppean are:

—maxmemory N
Set limit for amount of memory to use in processingddmages.Value is in thousands of bytes,
or millions of bytes if "M" is attached to the numbdtor example,—-max 4m selects 4000000
bytes. Ifmore space is needed, temporary files will be used.

3G 3August 1997 132

JPEGTRAN(1E) NFIReference Manual JPEGTRAN(1E)

—outfile name
Send output image to the named file, not to standard output.

-verbose
Enable debg printout. More -v’s give more output. Also, version information is printed at
startup.

—dehug
Same asverbose

EXAMPLES

This example comerts a baseline JPEG file to progresesorm:
jpegtran —progressve foo.jpg> fooprg.jpg

This example rotates an image 90gdees clockwise, discardingyaunrotatable edge peéts:
jpegtran —rot 90 -trim foo.jpg> f0090.jpg

ENVIRONMENT
JPEGMEM
If this ervironment \ariable is set, itsalue is the defult memory limit. The \alue is specified as
described for thee-maxmemory switch. JPEGMEM overides the defult value specified when
the program \as compiled, and itself isserridden by an xplicit -maxmemory.

SEE ALSO

cjpeg(1), djpeg(1), rdjpgcom(1), wrjpgcom(1)
Wallace, Grgory K. "The JPEG Still Picture Compression Standard"”, Communications ofGM April
1991 (wl. 34, no. 4), pp. 30-44.

AUTHOR
Independent JPEG Group

BUGS
Arithmetic coding is not supported fowgla reasons.

The transform options cantransform odd-size images perfectlyse —trim if you dont like the results
without it.

The entire image is read into memory and then written aihagen in cases where this igrreally nec-
essary Expect svapping on lage images, especially when using the more coxrtpd@sform options.

3G 3August 1997 133

KLTRAN(1A) NFIS Reference Manual KLTRAN(1A)

NAME
kltran — runs a Karhunen-Lwee ransform on a set ofectors.

SYNOPSIS
kitran <vecsfile_in[vecsfile_in...]> <mean file> <émmat_file> <npws_use> <vecsfile_out> <vecs-
file_out_desc> <ascii_outfile> <mesga freq>

DESCRIPTION
Kltran runs a Karhunen-Lae transform on a set ofeetors and reduces the dimensionality of the feature
vectors using the gén basis setranmat_file

If several processors arevalable, it may be possible toveime, when transforming a Ige set of ectors.
First, run seeral simultaneous instances of kltran, each instance transforming a subset ettirs.v
Then, use stackms to combine the resulting output files, in the sense of stacking together the Bexdrices.
the stackms man page.

OPTIONS
<vecsfile_in[vecsfile_in...]>
Input data file(s) in PCASYS "matrix" format, each consisting of a block ofebins that are to
be transformed.The input ectors are the wes. All input vectors must hae the same number of
elements, so the second dimensions of these files (if more than one file) must all be equal. (Usually
the output of thenkoascommand.)

<mean file>
Input mean gctor that gets subtracted from all the input featertors before using the transform
matrix. (Usually the output oheancor command.)

<tranmat_file>
A PCASYS "matrix" file containing a transform matrix, some of whosesrare to be used (see
next agument). Thesecond dimension of the transform matrix must equal the second dimension
of the file(s) of input gctors. (Usually the output of tleea evt or mktran commands.)

<nrows_use>
How mary (first) rons of the transform matrix are to be usédis is hav mary elements each
output \ector will have.

<vecsfile_out>
The output ectors, stackd together as a PCASYS "matrix" file, eaelctor being one m of the
matrix.

<vecsfile_out_desc>
A string to be written into the output file as its description strifis string can be of grength,
but must not contain embeddedwlae characterslf it contains spaces, tabs, or shell metachar
acters that are not to bepanded, then it should be quoterb leave the description emptyse ’
(two gngle quotes, i.esingle—quoted empty string)To let kltran mak a description (indicating
that kitran vas used, and listing the names of the file(s) of ingators and of the transform
matrix file), use — (fphen).

<ascii_outfile>
If y, makes an ascii output file; if n, binarBinary is recommended, unless the output file must be
portable across ddrent byte orders or floating—point formats.

<message freq>
If a positve integer, then @ery this mawy vectors through each input file kltran writes a progress
message to the standard outpifizero, no messages.

EXAMPLE(S)
Fromtest/pcasysiecs/kitan/kltran.sic:

% kltran ../mkoas/sv10.0as ../meanefivl-9.men ../@a evt/fv1-9.evt 128 sv10.kls - n 100
Does transformation using a eigeaetor set made by tleva evt command.

NIST 02April 2001 134

KLTRAN(1A) NFIS Reference Manual KLTRAN(1A)

SEE ALSO
lintran (1A), asc2bin (1A), bin2asc (1ANa& evt (1A), mkoas (1A), mktran (1A), stackms (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 135

LINTRAN(1A) NFIS Reference Manual LINTRAN(1A)

NAME
lintran — runs a linear transform on a set etors.
SYNOPSIS
lintran <vecsfile_in[vecsfile_in...]> <@nmat_file> <nows_use> <vecsfile_out> <vecsfile_out_desc>
<ascii_outfile> <messge freq>
DESCRIPTION
Lintran runs a linear transform on a set @ctors and reduces the dimensionality of the feateotovs
using the gien basis setranmat_file
If several processors arevalable, it may be possible toveime, when transforming a Ige set of ectors.
First, run seeral simultaneous instances of lintran, each instance transforming a subset ettirs.v
Then, use stackms to combine the resulting output files, in the sense of stacking together the Bexdrices.
the stackms man page.
OPTIONS
<vecsfile_in[vecsfile_in...]>
Input data file(s) in PCASYS "matrix" format, each consisting of a block ofebins that are to
be transformed.The input ectors are the wes. All input vectors must hae the same number of
elements, so the second dimensions of these files (if more than one file) must all be equal. (Usually
the output of thenkoascommand.)
<tranmat_file>
A PCASYS "matrix" file containing a transform matrix, some of whosesrare to be used (see
next agument). Thesecond dimension of the transform matrix must equal the second dimension
of the file(s) of input gctors. (Usually the output of tleea evt or mktran commands.)
<nrows_use>
How mary (first) rons of the transform matrix are to be usédis is hav mary elements each
output \ector will have.
<vecsfile_out>
The output ectors, stackd together as a PCASYS "matrix" file, eaeletor being one m of the
matrix.
<vecsfile_out_desc>
A string to be written into the output file as its description strifgis string can be of grength,
but must not contain embeddedwlae characterslf it contains spaces, tabs, or shell metachar
acters that are not to bepanded, then it should be quotelb leave the description emptyse ’
(two dngle quotes, i.esingle-quoted empty string)lo let lintran mak a dscription (indicating
that lintran vas used, and listing the names of the file(s) of inpators and of the transform
matrix file), use — (fphen).
<ascii_outfile>
If y, makes an ascii output file; if n, binarBinary is recommended, unless the output file must be
portable across ddrent byte orders or floating—point formats.
<message freq>
If a positve integer, then aery this mary vectors through each input file lintran writes a progress
message to the standard outpifizero, no messages.
EXAMPLE(S)
Fromtest/pcasyskecs/lintan/lintran.sic:
% lintran ../mkoas/sv10.0as .¥@&_evt/fv1-9.evt 128 sv10mip.kls - n 100
Does transformation using a eigeector set made by theva evt command. UsebBy MLP clas-
sifier.
% lintran ../mkoas/sv10.0as ../mktran/fv1-9.opt 64 sv10pnn.kis - n 100
Does transformation using a set of eigewetors that were adjusted using tpgrws andmktran
commands. Useby the PNN classifier
NIST 02April 2001 136

LINTRAN(1A) NFIS Reference Manual LINTRAN(1A)

SEE ALSO
asc2bin (1A), bin2asc (1A)va evt (1A), mkoas (1A), mktran (1A), stackms (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 137

MEANCOV(1A) NFIS Reference Manual MEANCOV(1A)

NAME
meance — computes meanector and ceeriance matrix for a set of featureators.

SYNOPSIS
meancwy <vecsfile_in[vecsfile_in...]> <meanfile_out> <meanfile_out desc> wite out> <cos-
file_out_desc> <ascii_outfiles> <megga freq>

DESCRIPTION
Meancov computes sample meagaator and sample gariance matrix of a set of featureators.

If several processors arevalable, it may be possible toveatime, when computing the mean andac

ance of a lage set of featureectors. Firstyun several simultaneous instances of meanaach instance
computing the mean andwaiance of a subset of theetors. Thenuse cmbmcs to combine the resulting
output files. See the cmbmcs man pagdote: If using cmbmcs, the subset meagctors made by the
meance instances must beal for later use by cmbmcwen if, ultimately, dl that is wanted is the zer-

all covariance matrix. Construction of theewall covariance requires the subset means, as well as the sub-
set cwariances.

OPTIONS
<vecsfile_in[vecsfile_in...]>
Input data file(s) in PCASYS "matrix" format, each consisting of a block ofebins that are to
be used, i.e. theeetors are the ves of the matrix (matrices)Of course, all input matrices must
have the same second dimension, which is the dimension of the constieeotsvy (Usually the
output ofmkoas)

<meanfile_out>
Mean file to be written, in PCASYS "matrix" format, with first dimension set to 1 and with second
dimension set to the dimension of the inpettors.

<meanfile_out_desc>
A string to be written into the mean output file as its description stflils string can be of gn
length, lut must not contain embeddedwili@e characters.If it contains spaces, tabs, or shell
metacharacters that are not to b@anded, then it should be quoteto leare the description
empty use ' (two dngle quotes, i.e.single-quoted empty string)To let meance make a
description (stating that this is a meattor made by meane@nd listing the names of the input
files), use — (phen).

<covfile_out>
Covariance file to be writtenMeancw saves memory and ygcles by allocating auffer only lage
enough for the nonstrict Wer triangle of the symmetric eariance matrix and computing only
those elements, and itv&s dsk space by storing the wiance in PCASYS "omariance” format,
which stores only the nonstrictier triangle. The order of the a@riance is the dimension of the
input vectors.

<covfile_out_desc>
Description string for ogariance file or — to let meaneamake the description, same as for the
mean file description gument.

<ascii_outfiles>
If y, makes ascii output files; if n, binanBinary is recommended, unless the output files must be
portable across ddrent byte orders or floating—point formats.

<message freq>
If a positve integer, then eery this maty vectors through each input file, during the accumulation
phase, meaneowrites a progress message to the standard output, and it also writestade
progress messageH.0, no messages.

EXAMPLE(S)

NIST 02April 2001 138

MEANCOV(1A) NFIS Reference Manual MEANCOV(1A)

Fromtest/pcasysiecs/meancgmeancu.sic:

% meancw ../../data/oas/fv[1-9].0as fv1-9.men - fv1-9.ue n 100
Compute the mean andv@niance matrices for a set of featurctors.

SEE ALSO
cmbmcs (1), méas (1)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 139

MINDTCT(1B) NFIS Reference Manual MINDTCT(1B)

NAME
mindtct — detects minutiae from a fingerprint image contained in an ANSI/NIST 2000 file.

SYNOPSIS
mindtct <an2k file in> <an2k file out>

DESCRIPTION
Mindtct parses a standardompliant ANSI/NISTITL 1-2000 file searching for the first occurrence of a
grayscale fingerprint image recortf.found, the fingerprint image is processed and minutiae are automati-
cally detected.Minutiae results are formatted and stored using the NIST fields 5-12 ypea9Trecord.
Upon successful completion, the input ANSI/NIST record sequence is augmented avilawiviecords,
the Type-9 minutiae record and a tagged field image record containing the results of image binarization.
This augmented record sequence is then written to the specified output filename.
Mindtct also generates the folling text files in the current arking directory:dmap.txt hcmap.txt
Icmap.txt Ifmap.txt gmap.txt and min.txt These files are described belo

OPTIONS

<anzk file in>
the ANSI/NIST file to be processed

<anZ2k file out>
the resulting ANSI/NIST file

TEXT OUTPUT FILES
dmap.txt

The Direction Maprepresents the direction of ridgevflavithin the fingerprint imageThe map
contains a grid of ingger directions, where each cell in the grid represents an 8&Brgighbor
hood in the imageRidge flav angles are quantized into 16 iger bi-directional units equally
spaced on a semicircleéStarting with ‘ertical direction 0, direction units increase clockwise and
represent incremental jumps of 11.2%9@es, stopping at direction 15 which is 11.28rdes sh
of vertical. Usingthis scheme, direction 8 is horizonta value of -1 in this map represents a
neighborhood where naiid ridge flav was determined.

hcmap.txt
The High-Curvatue Map represents areas in the imageihg high-cunature ridge flav. This is
especially true of core and deltagiens in the fingerprint imageubhigh-cunature is not limited
to just these casedhis is a bi-leel map with same dimension as the Direction M&gll values
of 1 represent 8x8 pet neighborhoods in the fingerprint image that are located within a high-cur
vature rgjion, otherwise cellalues are set to 0.

Icmap.txt
The Low-Contiast Maprepresents areas in the imageihg low-contrast. Theegions of lav
contrast most commonly represent the background in the fingerprint ifihgeis a bi-leel map
with same dimension as the Direction Mdpell values of 1 represent 8x8 pbneighborhoods in
the fingerprint image that are located within w-lontrast rgion, otherwise cellalues are set to
0.

[fmap.txt

The Low-Flow Maprepresents areas in the imageihg non-determinable ridge o Ridge flav

is determined using a set of discrete cosia@eforms computed for a predetermined range of
frequencies. Theseave forms are applied at 16 incremental orientatioAstimes none of the
wave forms at none of the orientations resonatéicsently high within the rgion in the image to
satishctorily determine a dominant directional frequendhis is a bi-leel map with same
dimension as the Direction MajtCell values of 1 represent 8x8 phneighborhoods in the finger
print image that are located within ayien where a dominant directional frequgrmould not be
determined, otherwise celbles are set to OThe Direction Map also records cells with non-

NIST 02April 2001 140

MINDTCT(1B)

NFIS Reference Manual MINDTCT(1B)

determinable ridge fla The diference is that the woFlow Map recordsall cells with non-
determinable ridge fig, while the Direction Map records only those that remain non-determinable
after extensie interpolationandsmoothingof neighboring ridge flw directions.

gmap.txt

min.txt

MN : MX, MY :

NIST

The Quality Map represents ggons in the image king varying levels of quality The maps
abore ae combined heuristically to form 5 discreteds of quality This map has the same
dimension as the Direction Map, with eactue in the map representing an 8x8epimeighbor
hood in the fingerprint imageA cell value of 4 represents highest qualitiile a cell alue of 0
represent lavest possible quality

This text file reports the minutiae detection resulithe majority of the results listed in thiscte

file are also encoded and stored inypéF9 record in the output ANSI/NIST filelhe first non-
empty line in the tet file lists the number of minutiae that were detected in the fingerprint image.
Falowing this, the attribtes associated with each detected minutia are recorded, one liné of te
per minutia. Each minutia line has the same form&telds are separated by a ', subfields are
separated by a ’;’, and items within subfields are separated byfarinutia line may be repre-
sented as:

DIR:REL: TYP: FTYP: FN: NX1, NY2 RC1: ...

where:

MN is the intger identifier of the detected minutia.
MX is the x-pixel coordinate of the detected minutia.
MY is the y-pixel coordinate of the detected minutia.

DIR is the direction of the detected minutillinutia direction is represented similar to ridge
flow direction, only minutia direction is uni-directional starting a&ttical pointing up
with unit 0 and increasing clockwise in increments of 11.2fekes completing a full eir
cle. Usingthis scheme, the angle of a detected minutia is quantized into the range 0 to 31
with 8 representing horizontal to the right, 16 representémtical pointing dan, and 24
representing horizontal to the left.

REL is the reliability measure assigned to the detected mintitise measure is computed by
looking up the quality kel associated with the position of the minutia from the Quality
Map. Thequality level is then heuristically combined with simple neighborhoodepix
statistics surrounding the minutia poirfhe results is a floating poinailue in the range
0.0 to 1.0, with 0.0 representingwlest minutia quality and 1.0 representing highest
minutia quality

TYP s the type of the detected minutia.
bifurcation ="BIF"
ridge ending = "RIG"

FTYP is the type of feature detected.
appearing =APP"
disappearing = "DIS"
(This attritute is primarily useful for purposes internal to the minutia detection algo-
rithm.)

FN is the intger identifier of the type of feature detectédhis attritute is primarily useful
for purposes internal to the minutia detection algorithm.)

NX1 s the x-piel coordinate of the first neighboring minutia.
NY1 s the y-piel coordinate of the first neighboring minutia.

RC1 s the ridge count calculated between the detected minutia and its first neighbor

02April 2001 141

MINDTCT(1B) NFIS Reference Manual MINDTCT(1B)

for each additional neighbor ridge count computed, thel migordinate of the neighbor
and the ridge count to that neighbor are reported.

EXAMPLES
Fromtest/mindtct/eecs/mindtct/mindtct.sr

% mindtct ../../data/t14wsg08.an2 mindtct.an2

SEE ALSO
an2k2txt(1C), an2ktool(1C), dpyan2k.1(1C)

AUTHOR
NIST/ITL/DIV894/image Group

NIST 02April 2001 142

MKOAS(1A) NFISReference Manual MKOAS(1A)

NAME
mkoas — maks orientation arrays from fingerprint images.

SYNOPSIS
mkoas<prsfile>

DESCRIPTION
Mk oasmalkes orientation arrays (oas), for a set of fingerprint image esoa can be thought of as a 28
(height) by 30 (width) array of real badimensional orientationectors, each of which represents the local
avaage ridge/alley orientation at one point of an equally-spaced rectangular guigl;sbmetimes it is
more conenient to think of an oa as a single 1680-dimensional &by (1680 = 28 x 30 x 2)To make
an oa from a fingerprint, nolas uses the same sequence of preprocessing/fesiitaetien routines that is
used by the classifier demos pcasys and pcadvikoas causes each oa to be one obthe PCASYS
"matrix" file that is its output.

Mkoas sets thealues of its parameters as foll® First,it reads the deiult oas-production parms file
pcasys/parms/oas.gr then, it reads the file of dmilt values of additional ndas parms,
pcasys/parms/nuas.ps, finally, it reads the required user parms file, which is tharaent prsfile). Each
time a parms file is read, itelues oerride those set by pvusly read parms file(s), if gn See ARAM-
ETER FILES, belw, for a description of the dérence betweeoas.ps andmkoas.ps.

Since the oas of a Ige set of fingerprints can turn out to be quite gdamount of data, it may be that the
entire set of oas that are to be produced cantisitas a single file, because of disk space limitatidinso,

one should run seral instances of ndas, each producing a matrix file that is a subset of the required oas.
To estimate output file size as a function of number of oas, note that each oa consists of 1680 single-preci-
sion floating-point numbers, and therefore ite®l 680 x 4 = 6720 bytedllow dlightly more space, for

header data contained in a matrix file.

OPTIONS
<prsfile>
A file containing parameterdlo find out what the\ailable parameters are, and aamples of
the format of parameters files, consult the ad#f files pcasys/parms/oas.pr and
pcasys/parms/naas.ps. Each parameter is specified byvhey its name andalue on a line; a
pound sign indicates that the rest of its line is a comment.

PARAMETER FILES
pcasys/parms/oas.pr
Contains dedult values of the parameters thateaf the making of orientation arrays (oas): these
are the parms of the gmentor (sgmnt), the image enhancer (enhnc), the ridigrworientation
finder (rors), the mgistration program (r92a), and thejigration-implementing pedwise orienta-
tions reaerager (gar). Thevalues used for these parms when making the oas used in optimizing
the classifier should also be used when running the finished classifier

Default settings inpcasys/parms/oas.pr
Used in the ggmentation outine:

sgmnt_fac_n5
How mary threshold-makingdctors to try

sgmnt_min_fg2000
Minimum alloved number of forground (true) pigls.

sgmnt_max_fg8000
Maximum allaved number of forground (true) pigls.

sgmnt_neiode3
Do this mawy erosions in forground cleanup.

NIST 02April 2001 143

MKOAS(1A)

NIST

NFISReference Manual MKOAS(1A)

sgmnt_rsblobs1
If 1, remove gnall blobs in forground cleanup.

sgmnt_fill 1
If 1, fill holes in ravs, columns in forground cleanup.
sgmnt_min_n25
Cutting angle becomes zero ifyafforeground edge hasvier than this manpixels.

sgmnt_hist_thresh20
Threshold that tilted-mus-histogram must meet to find top-location for cutting.

sgmnt_origras_wmax2000
Maximum allaved width of original raster

sgmnt_origras_hmax2000
Maximum allaved height of original raster

sgmnt_fac_min0.75
Minimum threshold-makingafctor \alue.

sgmnt_fac_del0.05
Delta of threshold-makingattor \alue.

sgmnt_slope_thesh0.90
If any of the three edges has slopefalihg by more than this from thereiage of the
slopes, then cutting angle is set to zero.

Used in the FFT imge enhancer:

enhnc_rrl1 150
High-frequeng elements of FFT whose filter planalue is less than thisalue are dis-
carded.

enhnc_rr2 449
Low-frequeng elements of FFT whose filter plane number is greater than dhie \are
discarded.

enhnc_pav 0.3
Pawver spectrum is raised to thisvper before it is multiplied by the FFT output.

Used in the ridg-valley orientation finder:

rors_slit_range_thresh10
If the difference between the maximum and minimum slit-sums atehipiless than this,
then this piel males no contribtion to the histogram used to neatke local &erage ori-
entation.

Used in the r92a vapper for r92 egstration piogram:

r92a_discard_thresh0.01
If squared-length of a localrerage orientation ector is less than this, then eersion of
this vector to an angle for use by r92 just produces the speatia¢ \100., which means
an undefined angle.

Used in the egstering pixelwise-orientationseavenge:

rgar_std_corepixel_x245
X coordinate of standard (median) core position.

02April 2001 144

MKOAS(1A) NFISReference Manual MKOAS(1A)

rgar_std_corepixel_y189
Y coordinate of standard (median) core positidiis is the standard gestration point,
to which the particular core point gets translated to implemgistration.

pcasys/parms/naas.ps
Contains dedult values of additional parameters needed rhioas, besides those appearing in
pcasys/parms/oas.@rParameters without detilts \alues must appear in the usprsfile

Default settings inpcasys/parms/nalas.ps

ascii_oas
Ascii (y) or binary (n) output?

update_freql
Frequeng of progress messages.

clobber_oas_filen
Overwrite an oas_file if it alreadyists?

proc_images_lis{no default, user must set)
The list of fingerprint images to makrientation arrays from.

oas_file(no default, user must set)
The output file that is to be produced containing orientation arrays.

EXAMPLE(S)
Fromtest/pcasyskecs/miias/mbas.sc:

% mkoas sv10.prs
Creates a set of orientation arrays based on the filevast igi the parameters filev10.ps.

SEE ALSO
bin2asc (1A), asc2bin (1A), chgdesc (1A), stackms (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 145

MKTRAN(1A) NFIS Reference Manual MKTRAN(1A)

NAME
mktran — maks transform matrix from géonal weights and eigeectors.
SYNOPSIS
mktran <regwts_file> <eigvecs_file> <n_eigvecs_use> atrmat_file> <tanmat_file_desc> <ascii_out-
file>
DESCRIPTION
Mktran takes a matrix of rgional weights, and a set of eigeators, and mads a transform matrix from
the regyional weights and the specified number of (first) eigetors. Theresulting matrix is suitable for
transforming an orientation array into avtedimensional featureector
OPTIONS
<regwts_file>
Regional weights file in PCASYS "matrix" formafhe dimensions must be 14x15, because that
is the pattern of 2x2-actor blocks of orientationectors. (Usually the output optrws.)
<eigvecs_file>
Eigervectors file in PCASYS "matrix" formatThe first dimension is the number of eigestors
contained in the file; the second dimension must be 1680, which is the dimension of an orientation
array when it is thought of as a singksctor (Usually the output oéva evt.)
<n_eigvecs_use>
The number (first) eigemctors to be usedThis will be the first dimension of the resulting trans-
form matrix.
<tranmat_file>
Transform file to be made, in PCASYS "matrix" form&irst dimension will ben_eigvecs_use
and second dimension will be 1680.
<tranmat_file_desc>
A string to be written into the transform matrix output file as its description stfihgs string can
be of aly length, it must not contain embeddednti@e characterslf it contains spaces, tabs, or
shell metacharacters that are not toxjgaaded, then it should be quotenh leave the description
empty use ' (two sngle quotes, i.esingle—quoted empty string)lo let mktran ma& a scrip-
tion, use — (kiphen).
<ascii_outfile>
If y, makes an ascii output file; if n, binarBinary is recommended, unless the output file must be
portable across ddrent byte orders or floating—point formats.
EXAMPLE(S)
Fromtest/pcasysiecs/mkian/mktan.sc:
% mktran ../optrws/optrws.bin ../eva_evt/fv1-9.evt 64 fv1-9.0pt - n
Uses a set of optimizedgienal weights ¢ptrws.bin) to adjust a eigen-ector basis sefy1-9.e)
and create a metransformation matrixf¢1-9.opj that is used to reduce the dimensionality of the
feature \ectors.
SEE ALSO
eva evt (1A), lintran (1A), optrws (1A)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 146

MLP(1A) NFIS Reference Manual MLP(1A)

NAME

mlp — Does training and testing runs using a 3-layer feedafmhlinear perceptron Neural Neduk.

SYNOPSIS

mlp [-c] [specfile]

DESCRIPTION

NIST

Mlp trains a 3-layer feed-foravd linear perceptron usingveb methods of machine learning that help con-
trol the learning dynamics of the netik. As a result, the derd minima are superigithe decision sur

faces of the trained netwk are well-formed, the information content of confideralees is increased, and
generalization is enhance@he theory behind the machine learning techniques used in this program is dis-
cussed in the folleing reference:

[C. L. Wilson, J. L. Blue, O. M. Omidx, "The Efect of Training Dynamics on Neural Nebrk Perfor
mance," NIST Internal Report 5696, August 1995.]

Machine learning is controlled through a batch-oriented iteratiocess of training the MLP on a set of
prototype featureeactors, and thenvaluating the progress made by running the MLP (in its current state)
on a separate set of testing featusetors. Taining on the first set of patterns then resumes for a predeter
mined number of passes through the training data, and then the MLP is testedratihe eauation set.
This process of training and then testing continues until the MLP has been determinedsatistactorily
converged.

The MLP neural netark is suitable for use as a classifier or as a function-approxim&@metvork has

an input layera Hdden layerand an output layerach layer comprising a set of nodes. The input nodes

are feed-fonardly connected to the hidden nodes, and the hidden nodes to the output nodes, by connec-
tions whose weights (strengths) are trainable. Theatioih function used for the hidden nodes can be cho-

sen to be sinusoid, sigmoid (logistic), or linemrcan the actiation function for the output nodestaining
(optimization) of the weights is done using either a Scaled Catgu@radient (SCG) algorithm [1], or by
starting out with SCG and then switching to a Limited MemoryyBea Fletcher Goldffb Shanno
(LBFGS) algorithm [2]. Boltzmann pruning [3], i.e. dynamic remd@f connections, can be performed
during training if desiredPrior weights can be attached to the patterns (feaaatens) in arious vays.

[1] J. L. Blue and RJ. Grother "Training Feed &rward Networks Using Conjugte Gradients," NIST Inter
nal Report 4776, February 1992, and in Conference on Character Recognition and Digitirerdgies,
Vol. 1661, pp.179-190, SPIE, San Jose, February 1992.

[2] D. Liu and J. Nocedal, "On the Limited Memory BFGS Method fogkgscale Optimization," IMathe-
matical Programming B,d}. 45, 503-528, 1989.

[3] O. M. Omidwar and C. L. Wson, "Information Content in Neural Net Optimization," NIST Internal
Report 4766, February 1992, andlournal of Connection Scienc&91-103, 1993.

Training and Testing Runs
When mlp is imoked, it performs a sequence of runs. Each run does either training, or testing:

training run: A set of patterns is used to train (optimize) the weights of theanktwach pattern consists
of a feature gctor dong with either a class or a ¢t \ector A feature ector is a tuple of floating-point
numbers, which typically has beextracted from some natural object such as a handwritten character
class denotes the actual class to which the object belongxafopke the character which a handwritten
mark is an instance of. The nefk can be trained to become a classifier: it trains using a set of featdre v
tors etracted from objects of kmm classesOr, more generallythe netvork can be trained to learn,ag
from example input-output pairs, a function whose output is@or of floating-point numbers, rather than
a dass; if this is done, the netwk is a sort of interpolator or function-fitté training run finishes by writ-
ing the final alues of the netark weights as a file. It also produces a summary filevistgpvarious infor
mation about the run, and optionally produces a longer file thatssihe results the final (trained) netk
produced for each inddual pattern.

02April 2001 147

MLP(1A)

OPTIONS

NIST

NFIS Reference Manual MLP(1A)

testing run: A set of patterns is sent through a netly after the netark weights are read from a file. The
output \alues, i.e. theypothetical classes (for a classifier neti) or the produced outpuestors (for a fit-

ter netvork), are compared with et classes orectors, and the resulting error rate is computed. The pro-
gram can produce a table shing the correct classification rate as a function of the rejection rate.

Only do error checking on the specfile parameters and prynivamings or errors that occur in
the specfile format.

[specfile]

Specfile to be used by mip. The @it is a specfile named "spec” located in the currenking
directory

This is a file produced by the userich sets the parameters (henceforth "parms") of the run(s)
that mlp is to perform. It consists of one or more blocks, each of which sets the parms for one run.
Each block is separated from thexhene by the wrd "nevrun” or "NEWRJN". Parms are set

using name-&lue pairs, with the name andlve separated by nonwiéne white space characters
(blanks or tabs). Each namelwe pair is separated from thexh@air by nevline(s) or semi-
colon(s). Sinceeach parm &lue is labeled by its parm name, the namlee pairs can occur in

ary order Comments are allwed; theg are delimited the sameay as in C language programs,

with /* and */. Extraneous white space characters are ignored.

When mlp is run, it first scans the entire specfile, to find and repo(fatal) errors (e.g. omitting

to set a necessary parm, or using amgdl@arm name or aue) and also gnconditions in the
specfile which, although noatllly erroneous, areasthy of warnings (e.g. setting a superfluous
parm). MIp writes ay applicable warning or error messages; then, if there are no errors in the
specfile, it starts to perform the first runaidvings do not prent mlp from starting to run. The
motivation for hasing mlp check the entire specfile before it starts to perfmen te first run, is
that this will preeent an mlp instance that runs a multi-run specfile fraiting, perhaps man
hours, or days, after itag started, because of an error in a blackrfto the specfile: such errors
will be detected up front and presumablyefixby the useibecause that is the onlyay to cause
mlp to get past its checking phase.ciuse mip only to check the specfile without running it, use
the -c option.

The following listing describes all the parms that can be set in a specfile. There are four types of
parms: string (®lue is a filename), inger, floating-point, and switch &lue must be one of a set

of defined names, or may be specified as a code number). A block of the specfile, which sets the
parms for one run, often can omit to set thkigs of seeral of the parms, either because the parm

is unneeded (e.g., a training "stopping condition" when the run is a test,n@amperature when
boltzmann isno_prung, or because it is an architecture pamarpose, ninps, nhids, nouts,
acfunc_hids, or acfunc_outy whose alue will be read fromvts_infile. The descriptions belo
indicate which of the parms are needed only for training runs (in parfithtese described as
stopping conditions) Architecture parms should be set in a specfile block only if its run is to be a
training run that generates random initial nateweights: a training run that reads initial weights
from a file (typically final weights produced by a preus training session), or a test run (must
read the netark weights from a file), does not need to set ainthe architecture parms in its
specfile block, because theialues are stored in the weights file that it will read. (Architecture
parms are ones whoselues it vould not mak snse to change between training runs of a single
network that together comprise a training "meta-run", nor between a training run forakatw

a test run of the finished nebnk.) Setting unneeded parms in a specfile block will resultimw

ing messages when mip is runit mot fatal errors; the unneededlves will be ignored.

If a parm-name/parmalue pair occurring in a specfile has just atue deleted, i.e. lgang just a

parm name, then the name is ignored by mip; this iayatevtemporarily unset a parm whilevea
ing its name visible for possible future use.

02April 2001 148

MLP(1A) NFIS Reference Manual MLP(1A)

String Parms (Filename)

short_outfile
This file will contain summary information about the run, including a history of the train-
ing process if a training run. The set of information to be written is controlled, to some
extent, by the switch parmdo_confuseanddo_cvr.

long_oultfile
This optionally produced file will h& two lines of header information folieed by a line
for each pattern. The line will slvothe sequence number of the pattern; the correct class
of the pattern (as a number in the range 1 throwgghs); whether the ypothetical class
the netvark produced for this patternas right (R) or wrong (W); theypothetical class
(number); and theouts output-node actetions the netwrk produced for the pattern.
(See the switch parshon_acs_times_1000@elov, which controls the formatting of the
activations.) In a testing run, mlp produces this file for the result of running the patterns
through the netark whose weights are read fromts_infile; in a raining run, mlp pro-
duces this file only for the final netwk weights resulting from the training session. This
is often a lage file; to sae dsk space by not producing it, just Weahe parm unset.

patterns_infile
This file contains patterns upon which mlp is to train or test aanktwA pattern is either
a feature-ector and an associated class, or a featecty and an associatedger-\ec-
tor. The file must be in one of the awsupported patterns-file formats, i.e. ASCII and
(FORTRANS-style) binary; the switch parmatsfile_ascii_or_binarymust be set to tell
mlp which of these formats is being used.

wts_infile
This optional file contains a set of neik weights. Mlp can read such a file at the start
of a training run - e.g., final weights from a preceding training run, if one is training a net-
work using a sequence of runs withfdient parameter settings (e.g., decreasaiges
of regfac) - or, in a esting run, it can read the final weights resulting from a training run.
This parm should be left unset if random initial weights are to be generated for a training
run (see the intger parnseed.

wts_outfile
This file is produced only for a training run; it contains the final agtwveights result-
ing from the run.

Icn_scn_infile
Each line of this optional file should consist of a long class-name (as stidhe top of
patterns_infile) and a corresponding short class-name (1 or 2 characters), withdhe tw
names separated by white space; the lines can bey ior@der. This file is required only
for a run that requires short class-names, i.e. odyriposeis classifierand (1)priors is
class or both (these settings ofpriors require class-weights to be read from
class_wts_infile and that type of file can be read only if the short class-names are
known) or (2)do_confuseis true (proper output of confusion matrices requires the short
class-names, which are used as labels).

class_wts_infile
This optional file contains class-weights, i.e. a "prior weight" for each class. (See switch
parm priors to find out hev mlp can use these weights.) Each line should consist of a
short class-name (as sto in Icn_scn_infilg and the weight for the class, separated by

NIST 02April 2001 149

MLP(1A)

NIST

NFIS Reference Manual MLP(1A)

white space; the order of the lines does not matter

pattern_wts_infile

This optional file contains pattern-weights, i.e. a "prior weight" for each pattern. (See
switch parmpriors to find out hav mlp can use these weights.) The file should be just a
sequence of floating-point numbers (ascii) separated from each other by white space, with
the numbers in the same order as the pattergsatbedo be associated with.

Integer Parms

npats

Number of (first) patterns fropatterns_infileto use.

ninps, nhids, nouts

seed

Specify the number of input, hidden, and output nodes in theorletwf ninps is smaller

than the number of components in the feat@etars of the patterns, then the fingips
components of each featureetor are used. If the netvk is aclassifier(seepurposs,
thennouts is the number of classes, since there is one output node for each class. If the
network is afitter, thenninps andnouts are the dimensionalities of the input and output
real \ector spaces. These are architecture parms, yahibeld be left unset for a run that

is to read a netark weights file.

For the UNI random number generatdrinitial weights for a training run are to be ran-
domly generated. Itsalues must be posit. Random weights are generated only if
wts_infile is not set. (Of course, tleeedvalue can be reused to generate identical initial
weights in diferent training runs; oiit can be waried in order to do seral training runs
using the samealues for the other parameters. It is often advisable to veyadeseeds,
since ag particularseedmay produce atypically bad results (training meail) f However,

the efect of varying theseedis minimal if Boltzmann pruning is used.)

niter_max

nfreq

nokdel

A stopping condition: maximum number of iterations a training run will be akal to
use.

At every nfreqth iteration during a training run, tleerdel andnokdel stopping condi-
tions are chead and a pair of status lines is written to the standard error output and to
short_oultfile.

A stopping condition: stop if the number of iterations used so i at least kmin and,
for each of the most recent NN(defined insrc/lib/mlip/opttk. sequences ohfreq
iterations, the number right and the number right minus number wrerdibth failed to
increase by at leasbkdel during the sequence.

Ibfgs_mem

This wvalue is used for the mgument of the LBFGS optimizer (if that optimizer is used,
i.e. only if there is no Boltzmann pruning). This is the number of corrections used in the
bfgs update. &ues less than 3 are not recommendedelsalues will result in xcessie

02April 2001 150

MLP(1A)

NIST

NFIS Reference Manual MLP(1A)

computing time, as well as increased memory usagkies in the range 3 through 7 are
recommended;alue must be posite.

Floating-Point Parms

regfac
Regularization &ctor The error walue that a training run attempts to minimize, contains a
term consisting of gfac times half theverage of the squares of the netlw weights.
(The use of a ularization &ctor often imprees the generalization performance of a
neural netwrk, by keeping the size of the weights under control.) This parm muaysl
be set, een for test runs (since thglso compute the erromlue, which alvays useseg-
fac); however, its efect can be nullified by just setting it to 0.

alpha
A parm required by thgype_1error function.

temperature
For Boltzmann pruning: see the switch pabmoltzmann. A higher temperature causes
more sgere pruning.

egoal
A stopping condition: stop when error becomes less than or equadjtal

gwgoal
A stopping condition: stop when § | / |w | becomes less than or equalgwgoal where
w is the \ector of netwrk weights andy is the gradientector of the error with respect to
w.

errdel
A stopping condition: stop if the number of iterations used aoif at least kmin and the
error has not decreased by at leasicidr oferrdel over the most recent block offr eq
iterations.

oklvl
The walue of the highest netwk output actiation produced when the netwk is run on a
pattern (the position of this highest &ation among the output nodes is thgbthetical
class) can be thought of as a measure of confidence. This configduneasvcompared
with the thresholaklvl, in order to decide whether to classify the pattern as belonging to
the typothetical class, or to reject it, i.e. to consider its class to be wnkbecause of
insufficient confidence that theypothetical class is the correct class. The numbers and
percentages of the patterns thdp reports acorrect wrong, and unknown are afected
by oklivl: a high value ofoklvl generally increases the number of unkns (a bad thing)
but also increases the percentage of the accepted patterns that are classified correctly (a
good thing). If no rejection is desired, vl to 0. MIp uses the singleklvl vaue
specified for a run; if the switch parndo_cvr is set tatrue, thenmlp also males a full
correct vs. ejectedtable for the netark (for the finished neterk if a training run). This
table shavs the (number correct) / (number accepted) and (humber wnirio(total
number) percentages for each ofesal standaraklvl values.)

tr goff
This number sets ko mildly the taget \alues for netwrk output actiations \ary

02April 2001 151

MLP(1A)

NIST

NFIS Reference Manual MLP(1A)

between their "lo" and "high" \alues. Iftr goff is O (least mild, i.e. mosk&eme, efiect),
then the lav target \alue is 0 and the high, 1;tifgoff is 1 (most mild €&ct), then lav
and high tagets are both (1routs); if tr goff has an intermediatealue between 0 and 1,
then the lav and high tagets hae intermediately mild &lues accordingly

scg_earlystop_pct

This is a percentage that controlsshsoon a lybrid SCG/LBFGS training run rid
training can be used only if there is to be no Boltzmann pruning) switches from SCG to
LBFGS. The switch is done the first time a check (checkitegyenfreqth iteration) of

the netvork results finds that very class-subset of the patterns has at least
scg_earlystop_pcipercent of its patterns classified correcly suggestedalue for this

parm is 60.0.

Ibfgs_gtol

This value is used for the gtolgument of the LBFGS optimizdt controls the accurgc

of the line search routine mcsrch. If the function and gradightaions are ingpensve
with respect to the cost of the iteration (which is sometimes the case when selying v
large problems) it may be aalntageous to séifgs_gtolto a small alue. A typical small
value is 0.1L bfgs_gtol must be greater than 1.e-04.

Switch Parms

Each of these parms has a small set ofvatbwalues; the &lue is specified as a string, or less v
bosely as a @de number (stvan in parentheses after string form):

train_or_test

train O
Train a netwrk, i.e. optimize its weights in the sense of minimizing an error
function, using a training set of patterns.
testl
Test a netwrk, i.e. read in its weights and other parms from a file, run it on a
test set of patterns, and measure the quality of the resulting performance.
purpose

errfunc

Which of two possible kinds of engine the netil is to be. This is an architecture parm,
so it should be left unset for a run that is to read aorktweights file. The allwed \al-
ues are:

classifier0
The netvork is to be trained to map yafeature ector to one of a small number
of classes. It is to be trained using a set of feataotovs and their associated
correct classes.

fitter 1
The netvork is to be trained to approximate an unkndunction that maps gn
input real ector to an output reaketor It is to be trained using a set of input-
vector/output-ector pairs of the functioNOTE: this is not currently sup-
ported.

Type of error function to use (@dys with the addition of a gailarization term, consist-
ing of regfactimes half the @erage of the squares of the netk weights).

02April 2001 152

MLP(1A) NFIS Reference Manual MLP(1A)

mse0
Mean-squared-error between output\atidns and taget \alues, or its equi
alent computed using classes instead @fetavectors. This is the recommended
error function.

type 11
Type 1 error function; requires floating-point paafpha be set. (Not recom-
mended.)

pos_sum2
Positive aim error function. (Not recommended.)

boltzmann

Controls whether Boltzmann pruning of netlk weights is to be done and, if so, the type
of threshold to use:

no_prune0
Do no Boltzmann pruning.

abs_prune2
Do Boltzmann pruning using thresholapé¢ | / T), wherew is a netvork
weight being considered for possible pruning @&nd the Boltzmanrnempera-
ture.

square_prune3
Do Boltzmann pruning using thresholgpé w2 / T), wherew and T are as
above.

acfunc_hids, acfunc_outs

The types ofctivation functiongo be used on the hidden nodes and on the output nodes

(separately settable for each layer). These are architecture parmsy sootlld be left
unset for a run that is to read a netlvweights file. The allwed \alues are:

sinusoid0

f(x) = 0.5 * (1 + sin(0.5 * x))
sigmoid 1

f(x) =1/ (1 + &p(-x)) (Also called logistic function.)
linear 2

f(x) = 0.25 * x

priors

What kind of prior weighting to use to set the final pattern-weights, which control the rel-

ative anounts of impact thearious patterns e when doing the computations. These
final pattern-weights remain &x for the duration of a training ruryttof course thgcan
be changed between training runs.

allsameO
Set each final pattern-weight to (hgats). (The simplest thing to do; appropri-
ate if the set of patterns has a natural digtigim.)

NIST 02April 2001 153

MLP(1A) NFIS Reference Manual MLP(1A)

classl
Set each final pattern-weight to the class-weight of the class of the pattern con-
cerned drided bynpats. The class-weights are desdl by dividing the gven-
class-weights, read from thelass_wts_infile by the denved-class-weights,
computed for the current data set and the normalize them to sum (@& p@o-
priate if the frequencies of theveeal classes, in the set of patterns, are not
approximately equal to the natural frequencies (prior probabilities), so as to
compensate for that situation.)

pattern 2
Set the final pattern-weights talues read fronpattern_wts_infile divided by
npats. (Appropriate if none of the other settings of priors does satisfy cal-
culations (one can do whate calculations one desires), or if oneamts to
dynamically change these weights between sessions of training.)

both 3
Set each final pattern-weight to the class-weight of the class of the pattern con-
cerned, times the pvaed pattern-weight, andwdded bynpats;, compute the
class-weights as prmusly described irtlass priors and read pattern-weights
from file pattern_wts_infile. (Appropriate if one \&nts to both adjust for unnat-
ural frequencies, and dynamically change the pattern weights.)

patsfile_ascii_or_binary

Tells mip which of two supported formats toxpect for the patterns file that it will read at
the start of a run(If much compute time is being spent reading ascii patsfiles, it may be
worthwhile to cowert them to binary format: that causester reading, and the binary-
format files are considerably smaljer
asciio

patterns_infileis in ascii format.
binary 1

patterns_infileis in binary (FORRAN-style binary) format.

do_confuse

true 1
Compute the confusion matrices and miscellaneous information and include
them inshort_outfile.

false0
Do not compute the confusion matrices and miscellaneous information.

showv_acs_times_1000
This parm need be set only if the run is to producm@_outfile.

true 1
Before recording the netwk output actiations inlong_outfile, multiply them
by 1000 and round to irgers.

false0
Record the aotgtions as their original floating-poinaiues.

do_cvr (See the notes aklvl.)

true 1
Produce a correct-vs.-rejected table and includesihant_outfile.

NIST 02April 2001 154

MLP(1A) NFIS Reference Manual MLP(1A)

false0
Do not produce a correct-vs.-rejected table.

EXAMPLE(S)
Fromtest/pcasysiecs/mip/mip.sx

% mlp
Runs mlp assuming the @eft specfile ("spec”) in the local directory

% mlp myspecfile
Runs mlp using the specfile "myspecfile”.

SEE ALSO
fixwts (1A), mipfeats (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 155

MLPFEATS(1A) NFISReference Manual MLPFEATS(1A)

NAME
mipfeats — cowerts PCASYS formatted feature files into the format compatible with the mlp command line
function.
SYNOPSIS
mipfeats <feats_file> <class_file> <mlp_feats_file>
DESCRIPTION
Mipfeats is used to corert a PCASYS formatted feature file from the lintran function into the format used
by the mlp command. PCASY &éps the feature file and class file in separate files and mlp stores them in
a dngle file with diferent header information format. At this point iasvdecided to just ceert the format
from PCASYS features to mip features file formay future release may try and resoliais problem into
a sngle format.
OPTIONS
<feats_file>
The PCASYS formatted features file. (Usually the outplintfn .)
<class_file>
The PCASYS formatted class file.
<mlp_feats_file>
The MLP features file to be written, containing the PCASYS formatted feature and class files
merged into a single MLP formatted file.
EXAMPLE(S)
Fromtest/pcasysiecs/mipfeats/mipfeatscsr
% mlpfeats ../lintran/fv1-9mlp.kls ../../data/oas/fv1-9.cls fv1-9mlp.kis
Corverts the feature file from the PCASYS file format to the mlp data file format (combines class
and features into a single filel) is unfortunate that tefile formats ®ist but for now it is easier
to keep both formats around.
SEE ALSO
lintran (1A), mip (1A)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 156

NOT2INTR(1D) NFISReference Manual NOT2INTR(1D)

NAME
not2intr — conerts an image comprised of non-inteslea color component planes to an image with inter
leaved color component pigls.

SYNOPSIS
not2intr <outext> <image fle> <w,h,d,[ppi]>
[-raw_out]
[-YCbCr HO,VO:H1,V1:H2 V2]

DESCRIPTION
Not2intr takes as input a vapixmap file containing an uncompressed image comprised of non-iveetlea
color component planes and werts the image to interlead color component pils. Thisutility requires
there be three color components in the input imd8geo output file formats are possible, a NIST IHead file
(the dedult) or a rav pixmap file (specified by theaw_out option).

For example, the pigls of an RGB color image are interted when a piel's R G, and B components are
sequentially adjacent in the image byte stream, ie. RGBRGBRGH.the color components are non-
interleaved, then all (R)ed components in the image are sequentially adjacent in the image byte stream, fol-
lowed by all (G)reen components, and then lastly fedid by all (B)lue componentsEach complete
sequence of color components is calledlane The utility intr2not corverts interleaed to non-inter

leaved color components.

It is possible that the component planes of an input YCbCr imagelkan prgiously davnsampled. If
so, the-YCbCr flag must be included on the command line, listing the appropriate component plame do
sampling &ctors. Bydefault, this utility assumes no wosampling. YCbCimage results shouldvadys

be eplicitly stored in a rev pixmap file, because the IHead format only supports RGBlgixSeel CbCr
OPTIONS belav.)

OPTIONS
All switch names may be abhiated; for @ample,-raw_out may be writtenr.

<outext>
the tension of the output fileTo construct the output filenamapt2intr takes the input file-
name and replaces itstension with the one specified here.

<image fle>

the input rav pixmap file containing the color image to be wented.
<w,h,d,[ppi]>

the attrilutes of the input image in thewgixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image ingeteunits of piels per inch.
-raw_out

specifies that the results should be stored tavgpemap file.

-YCbCr HO,VO:H1,V1:H2,v2
indicates that a YCbCr color image is being input whose component plareekeka preiously
downsampled. Theraw_out flag should aliays be used in conjunction with this optio(See
YCbCr Options belw.)

NIST 02April 2001 157

NOT2INTR(1D) NFISReference Manual NOT2INTR(1D)

YCbCr OPTIONS

A common compression technique for YCbCr images is tondample the Cb & Cr component planes.
Not2intr can handle a limited range of YCbCrwidmsampling schemes that are represented by a list of
component planeattors. Theséactors together representwiosampling ratios relate © each other The
comma-separated list ohdtor pairs correspond to the @b, and Cr component planes respatyi The

first value in a &ctor pair represents thevdasampling of that particular component plane in the X-dimen-
sion, while the second represents thdiniension. Compressiomtios for a particular component plane
are calculated by diding the maximum componenadtors in the list by the current componsrigctors.
These intger factors are limited between 1 andH,V factors all set to 1 represent nonhsampling. Br
complete detailgjot2intr implements the densampling and interleang schemes described in the falto

ing reference:

W.B. Pennebatr and J.L. Mitchell, "JPEG: Still Image Compression Standard,” Appendix A -
"ISO DIS 10918-1 Requirements and Guidelinegh Wostrand Reinhold, NY993, pp. A1-A4.

For example the option specification:
-YCbCr 4,4:2,2:1,1

indicates that there has been navdsampling of the Y component plane (4,4 are thgelsirX and Y dc-
tors listed); the Cb component plane has beemdampled in X and Y by ad¢tor of 2 (maximumeéictors

4 divided by currentdctors 2); and the Cr component plane has beengiompled in X and Y by aétor

of 4 (maximum &ctors 4 diided by currentdctors 1). Note that dansampling component planes is a
form of lossycompression. Thetility rgb2ycc corverts RGB pixmaps to the YCbCr colorspace, and it
conducts dansampling of the resulting YCbCr component planes upon request.

EXAMPLES

Fromtest/imgtools/eecs/not2intr/not2intsrc:

% not2intr raw face.nin 768,1024,24 -r
converts the non-interlaged RGB face image in a vapixmap file into interleged color pixels.

SEE ALSO

intr2not (1D), rgb2ycq1D)

AUTHOR

NIST

NIST/ITL/DIV894/Image Group

02April 2001 158

OAS2PICS(1A) NFIReference Manual OAS2PICS(1A)

NAME
oas2pics — mads pictures of orientation arrays.
SYNOPSIS
oas2pics<oasfile> <i_start> <i_finish outpics_dir> <verbose>
DESCRIPTION
Oas2picsreads a specified gment of orientation arrays (oas) from a file, and esdkiead raster images
depicting the oasThis can be useful for testing whether oas are reasonable, and to find out about their
characteristics.
OPTIONS
<oasfile>
A PCASYS "matrix" file containing orientation arrays, with eacWw ®ing one oa.First dimen-
sion is number of oas in the file, and second dimension must be 1680 (the dimensionality of one
0a). (Usually the output ahkoas)
<i_start> <i_finish>
The program mads pictures of the genent consisting of oas i_start through i_finish, numbering
starting at 1.
<outpics_dir>
The program mads image files in this directorylf the directory does not alreadyist, the pro-
gram maks it.) The files will hae rames i.pct where i goes from i_start through i_finish.
<verbose>
If y, the program writes a progress message to stdout for each oa it is making a picture of.
EXAMPLE(S)
Fromtest/pcasysiecs/asc2bin/asc2bincsr
% oas2pics ../../data/oas/fvl.0as 1 2 oaspics y
Makes a set of images files (IHEAD format) so the user can sge¢hgoorientation arrays look
and compare to the actual fingerprint image if desired. The files can\metedrio JPEG format
using thecjegb command.
SEE ALSO
mkoas (1A), dgimage (1D), cjpgb (1D)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 159

OPTOSF(1A) NFISReference Manual OPTOSF(1A)

NAME

optosf — optimizes theverall smoothing d&ctor for the PNN classifier

SYNOPSIS

optosf<prsfile>

DESCRIPTION

Optosf optimizes the werall smoothing &ctor (osf) for the Probabilistic Neural Netxk (PNN) classifier

The regional weights are optimized using thptrws command. @ saveoptrws runtime, it is suggested
that optrws be run using the K-L featurectors of only a reasonably small set of fingerprints, perhaps a
small subset of the full prototype set that will be used in the finished clasBifiethen, after the full pro-
totype set of featureectors is made by transforming yi@usly made orientation arrays using the trans-
form matrix incorporating the optimizedgienal weights, one carxpect that the classifier that uses these
feature ectors will be slightly more accurate if it uses &erall smoothing &ctor slightly lager than 1, to
compensate for thea€t that the prototype set is dar than it vas during optimization of the genal
weights. Duringoptimization of the rgional weights, nolicit overall smoothing &ctor is used, since
ary effect such adctor would have had could equally well be produced by just usingedént \alues of the
regional weights; so, optrws infett fixes the werall smoothing &ctor at 1.

The optosf command is prioled to optimize thewerall smoothing &ctor for best results on the full set of
prototypes. loptimizes osf by attempting to find a minimum (or at least a local minimum) of aetiacti
error rate that results when a set of finished featectors is classified by PNNIhe set of prototypes used
by the PNN, during this optimization, is a superset of the set on which thaianterror rate is computed:
both sets start at thedianing of the preided data, bt they are of diferent lengths.Whichever fingerprint
the classifier is running on is temporarily left out of the prototypes set, i.eveadie@-out method is used
in order to simulate a realistic situation.

The optimization method used is ery simple one, consisting of taking steps of an initial size, then halv-
ing the stepsize andwversing direction if the error rates ceases to decreaseThts.method, while ob-
ously not sufcient for the general problem of minimizing a real function of one r@@e, appears to be
sufficient for this particular problem, since the watibn error rate as a function of the osf seemsw@ys

have a wmimodal form.

OPTIONS

<prsfile>
A file specifying alues of some or all of the parametePaameters not specified in this file
assume delult values. ® find out what the parameters are, and asxample of the format of a
parameters file, see the fileasys/parms/optagfs in the ARAMETER FILES section bele.
The uses prsfile must specify alues for those parameters tlggitosfprs indicates hee o
defaults; it can also specify dmflt-overriding values for one or more of the parameters thae ha
defaults.

PARAMETER FILES

NIST

pcasys/parms/optapfs
Contains dedult values of the parameters for optosf (optimizerall smoothing &ctor com-
mand). Rrameters with no dafilts must be set in the usersfile

Default settings inpcasys/parms/optagfs

n_feats useb4
How mary (first) features of the featureetors to use.

osf _init.1
Initial value for osf (@erall smoothing &ctor).

osf_initstep.2
Initial step size for osf.

02April 2001 160

OPTOSF(1A) NFISReference Manual OPTOSF(1A)

osf_stepthr.01
Program stops when step size becomes <= #higev

tablesize1000
Size of the table used twad redundant computing.

verbosey
If y, write progress messages to stdout.

outfile_desc-
A - (hyphen) means let optosf mathe description; otherwisealue is the description.

fvs_file (no default, user must set)
The file containing the prototype featurectors, eachector stored as onewoof the
matrix.

classes_filgno default, user must set)
The file containing the classes of the prototype feateiceovs.

n_fvs_use_as_mtos_setno default, user must set)
The number of first featureegtors from fvs_file to use as the PNN prototypes when opti-
mizing osf.

n_fvs_use_as_tuning_sdho default, user must set)
The number of first featuresetors from fvs_file to run the PNN on to optimize osf.

outfile (no default, user must set)
The results output file.

EXAMPLE(S)
Fromtest/pcasyskecs/optosf/optosic:

% optosf optostprs
Optimize the werall smoothing &ctor based on the parameters set in thefiitesfprs.

SEE ALSO
optrws (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 161

OPTRNS(1A) NFISReference Manual OPTRNS(1A)

NAME

optrws — optimizes the gioonal weights for PNN classifier

SYNOPSIS

optrws <prsfile>

DESCRIPTION

NIST

Optrws optimizes the rgional weights, each of which goes with one 2g2ter block of the orientation
array Since that array has 28 x 3@ators, there are (28 / 2) x (30 / 2) = 21@ioeal weights.

Optimization consists of attempting to approximate the minimum, or at least a local minimum, of an "acti-
vation error rate" of the Probabilistic Neural Netk (PNN) classifier when it is run on a set of finger
prints, using the same set as the prototypes for the RiNMdiing out of the prototype set, each time, the
particular fingerprint that the netwk is being run onThe program first finds a reasonabédue to use as

an initial walue for all 210 weightsThen, it uses aery simple form of a gradient descent algorithm to fin-

ish optimizing the weightsEach iteration consists of, first, estimating the gradient of the error at the cur
rent "basepoint”, and second, approximately finding the minimum (or at least a local minimum) of the error
along the straight line pointing in the anti-estimated-gradient direc{iestimating the gradient seems to

be suficient, and calculating it from its definition may actually require more computation then estimating.)
Because the agttion error is apparently such a well-be&a function of distance along this line, for this
particular problem, it seems §iafent to use aery simple algorithm for the line search: this consists of
taking lage equal-sized steps in the anti-gradient direction until the error ceases to decrease, then halving
the stepsize and going in the opposite direction along the line until the eanorcagses to decrease, etc.,
with the process stopping when the step size becomes smaller than a thrésimlinds a local mini-

mum, and it appears that this function generally is unimodal along the line, so that this local minimum will
be the minimum along the line.

The Oth basepoint is (irikw,...,irw), where irw is the initial alue decided upon for all g®nal weights.

The 1st basepoint is the result of the line search thaiv®ltbe gradient-estimation at the Oth basepoint;
etc. Stoppingf the program is controlled by specifying the number of line searches that are to b#é done.
this parameter is set to 1, then the program only gety @s fbasepoint 1Since optrws records each base-
point, the program can be manually stopped if it turns out that it is taking too much time, without the run
being a total \aste of gcles.

At each of the basepoints, optrws produces theviglig files (in a directory specified as one of the param-
eters). Théasepoint, as a "matrix" file of dimensions 14 x 15 (these dimensions correspond to the geomet-
ric interpretation of the basepoint as a set a@fiamal weights); these files ¥& rames bspt_0.bin,
bspt_1.bin, etc. or bspt_0.asc, bspt_1.asc, €= estimated gradient of the aetion error rate at the
basepoint, also as a "matrix" file of dimensions 14 x 15; these fiesrames grad_0.bin, grad_1.bin,

etc. or grad_0.asc,grad_1.asc, etcAnd, the actiation error rate at the basepoint, asx fite; these files
have rames acerr_0.txt, acerr_1.txt, ef&s optrws is running (which makiake sveal hours), these inter
mediate results files may bgagnined to find out what kind of progress the optimization is makKirge
acerr files obiously can bexamined to find out if the reported error rate is still decreasing or Yeiede

off. Also, the rwpics command (see rwpics man page) can be usedeo froak a set of bspt files, a set of
grayscale IHead images depicting theggamal weights sets in their proper geometric laydRivpics can
also mak two aher kinds of pictures: grayscale pictures of a set of estimated gradigrad {#es), and
grayscale-binary (i.e. 0 and 255 @) pictures sheing the signs of the elements of estimated gradients.
(The blocks whose estimated gradient elements, i.e. estimated partials,gareenere ones whose
weights will be increasing as optrws ésksteps in the anti-estimated-gradient directi&ior)the "optimal”

set of rgional weights, just use the final bspt file produced before the optrws run stops by itself (because of
doing the specified number of iterations)iboptimization appears not to be making much more progress,
kill the optrws process and use the last bspt file produ€egdit could also be interesting to do testing
using \arious basepoints, to find out whether the decreases in tixianterror during optimization corre-
spond to error decreases on a test set, i.e. to find out whethesrall improvzements in the weights in the
sense of training error rate, are actually significant in the sense of generalizing to othéFltataeights
seem to generalize well, not too suprisingly since there are only 210 of them, hardly enlamgh number

02April 2001 162

OPTRNS(1A) NFISReference Manual OPTRNS(1A)

for them to be capable of becomingry specifically tuned to the training data in suchag as to hee lit-
tle generalizationalue.)

The parameters of optrws are specified by parameter filébe program first reads
pcasys/parms/optrws.grwhich contains defult values of some of its parameters; then it reads the user
provided parameters file whose name igegias the agument. Consuloptrws.prs to find out what the
parameters are, and as aample of the format of a parameters fi@ptrws.prs specifies dailt values for

the parameters that Ve defaults, and it also has a comment concerning each parameter that hasutto def
vaue. Theuser parameters file must specifyadue for each parameter that does neehadfault, and it
also can specify defilt-overriding values for one or more of the other parameters.

Optrws can start geral simultaneous instances of another program, optrywaph time it needs to esti-
mate the gradient, if desiredhis can reduce the time needed for optimization, if there seeas@roces-
sors a@ailable. To use this feature, set acerror_stepped_points_nprocs in your parameters faduta
(probably should be <= number of processmalable). If the operating system on your computer does
not implement fork() and xecl(), then the Ma&file for optrws should be modified by appending
-DNO_FORK_AND_EXECL to the definition of CFL@S, so that a diirent subset of the code will be
compiled and the lirde will thereby find no unresadd references.

OPTIONS

<prsfile>
A file specifying alues of some or all of the parametePaameters not specified in this file
assume deiult values.

PARAMETER FILES

NIST

pcasys/parms/optrws.pr
Contains dedult values for some of the optrws parameteffe remaining parameters, with no
default values must be specified in the ugesfile

Default settings inpcasys/parms/optrws.pr

n_feats uses4
How mary (first) features of each K-L featureator to use.

irw_init 0.1

Initial value for irw
irw_initstep 1.0

Initial step size for irw

irw_stepthr .01
Optimization of irw stops when step size becomes smaller than this threshold.

grad_est_stepsize001
Step size for secant-estimation of gradient.

n_lineseaches2
Number of (estimate gradient, line search) iterations to do.

linesearch_initstep .1
Initial step size for line search.

linesearch_stepthr.01
Line search stops when its step size becomes smaller than this threshold.

tablesize1000
Size of a table used to hold pairs afues corresponding to pieus computations of the
error, éther as a function of irw or as a function of distance alongnéidl-pointing line.
Lookup in this table sees ssme gcles by &oiding repeated calculations.

02April 2001 163

OPTRNS(1A) NFISReference Manual OPTRNS(1A)

acerror_stepped_points_npocsl
How mary processes to use when computing thevatitin error at the points stepped to
from a basepoint, in order to compute the approximate gradient by secant méthod.
optrws computes the error at all stepped points it$eH.1, optrws starts this mgrchild
processes, each of which computes the error at anahtdrihe stepped points.

verbosey
If y, write progress messages to standard output.

ascii_outfilesn
Whether outputfiles are to be ascii (y) or binary (n).

klifvs_file (no default, user must set)
File containing K-L featureectors to be used as prototypes set, and also as "tuning" set,
for the optimization. Usually the output on the lintran function.

classes_filgno default, user must set)
File containing the classes that go with the featertors ofklfvs_file Must be a pcasys
"classes” formatted file.

n_Kklfvs_use(no default, user must set)
How mary of the K-L feature ®ctors to use (bthe top).

eigvecs_file(no default, user must set)
File containing the eigemlctors.

outfiles_dir (no default, user must set)
The directory in which optrws is to produce its output files.

EXAMPLE(S)
Fromtest/pcasyskecs/optrws/optrws.er

% optrws optrws.prs
Optimizes the rgional weights for a set of featurectors based on the parameters set in the file

optrws.ps.
SEE ALSO
rwpics (1A)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 164

PCASYS(1A) NFISReference Manual PCASYS(1A)

NAME
pcasys - fingerprint classifier demo, non-graphieasion

SYNOPSIS
pcasys[pr sfile]

DESCRIPTION
Pcasysis the non-graphical fingerprint classifier demo progrdinreads a sequence of image files, each
depicting one box as scanned from a fingerprint card, and classifies each fingerprint, using a Multi-Layer
Perceptron (MLP) or Probabilistic (PNN) Neural Netl; to one of six pattern-tel classes: Arch, Left
loop, Right loop, Scaifented arch, and Whorl. The type of classifier MLP or PNN is chosen in the param-
eters filepcasys/parms/pcasysgprPcasys optionally mads an output file, containing a results line for each
fingerprint and a summary at the endwimg the error rate and the "confusion matrix", and it optionally
writes progress messages to the standard output.

The graphical grsion, pcasysx, is recommended as being much more interesting thagrdlus.vHaov-
evea, pcasys is suitable if (1) the X Mdow System, which pcasysx requires, is not installed, or (2) greatest
classification speed is desirefhe graphical displays talka sgnificant amount of additional time.)

Pcasys will look in the dafilt locationpcasys/parmsor the de&ult parameter files it need$here are pro-
totype and weights files ipcasys/weights/{mlp|pnrthat are needed by the MLP and PNN classifiers. If
NFIS was installed in a location other tharsr/local/nfisthe INSTALL_DIR in include/littleh will need to

be changed and the code recompilédso, the current dellt location for the 2700 sample fingerprint
images istest/pcasys/data/inggs. If the user wants to see dsk space, these images could be left on a
mounted CD®M and a link made from the images directory on the ODRo the image directory where
the softvare is installed.

OPTIONS
[prsfile]

A file containing one or more parametatues that are toverride the dedult values. © find out
what the parameters are, and gameples of the format of a parameters file, consult thauttef
parameters files that pcasys reads, nampelsys/parms/oas.prand pcasys/parms/pcasysr
which are described in the sectiohFAMETER FILES. Each line, in the parms file consists of a
parameter name folleed by a ®alue; a pound sign indicates that the rest of its line is a comment.
If pcasys is run with no gument, i.e. not specifying a user parameters file, then it uses #hdt def
values of all parameters.

PARAMETER FILES
pcasys/parms/oas.pr

Contains dedult values of the parameters thateaf the making of orientation arrays (oas): these
are the parms of the gmentor (sgmnt), the image enhancer (enhnc), the ridigrworientation
finder (rors), the mgistration program (r92a), and the@igration-implementing pedwise orienta-
tions reaerager (ga). Thevalues used for these parms when making the oas used in optimizing
the classifier should also be used when running the finished clasS#ierthemkoasman page
for more information about the parameters in this file.

pcasys/parms/pcasysspr
Contains dedult values of the remaining parameters of pcasiso look atpcasys.mlpand
pcasys.pntfior examples on using each classifier
Default settings inpcasys/parms/pcasysspr

network_type 2
Set classifier as (1) PNN (Probabilistic Neural Net) or (2) MLP (Multi-layer Perceptron).

trnsfrm_nrows_usel28
How mary (first) rows of the transform matrix to use, and hencey hmry features to
male for the feature ector of each incoming fingerprint, and alsavhoary (first) fea-
tures to use of each prototype featueeter when running the classifier:

NIST 02April 2001 165

PCASYS(1A)

NIST

NFISReference Manual PCASYS(1A)

trnsfrm_matrix_file pcasys/weights/mip/mlp_tmat.bin
File used by the demo to transform the orientation array of an incoming fingerprint into
the lov-dimensional featureector that will be sent to the classifier

cls_strALRSTW
Class string used in graphics mode to display the oupwbtimtis. Shouldoe same size
as number of outputs (ie. pnn_nclasses or number outputs in mlp_wtsMils}. be
some combination of "ALRSTW"For PNN, these must be the same classes as used in
the prototype files and be in the same order as when the prototype were optimized.

pnn (Pobabilistic Neual Net) paametes:

pnn_nprotos_use24300
How mary first feature gctors to use, from the set of prototyp&se \alue 24300 corre-
sponds to the entire pridled set, corresponding t@lumes 1 - 9 "f* rollings of Special
Database 14.

pnn_nclasse$
How mary different classes there ar&or the fingerprint pattern-el classification
problem, there are 6: A, L, R, S,8d W,

pnn_osf1.368750
Overall smoothingdctor for the PNN.May be optimized using optosf.

pnn_protos_fvs_filepcasys/weights/pnn/pivs.bin
Prototype featureactors file.

pnn_protos_classes_filpcasys/weights/pnn/pcls.asc
Prototype classes file.

MLP (Multi-layer Rerception) network paametes:

mlp_wts_file pcasys/weights/mip/mlp_wts.bin
MLP weights file.

Parametes used by the pseudoriddracer:

pseudo_slthesh00.0
If squared-length of an orientatioeator (in the fine grid used by pseudo) is < thiue,
then the ector is zeroed before the (possible) application of smoothing iterations.

pseudo_slthesh10.04
If, after (possible) smoothing iterations, the squared-length of an orientatitor vs <
this value, then this location is matt as bad, meaning that no pseudoridge isvatico
start here and if one ares here, tracing stops at this point.

pseudo_smooth_cw6.0
Centerweight for each iteration of smoothing of the orientation gAdh. iteration con-
sists of replacing eaclewtor with the weightedvarage of itself and its four neighbors,
with itself getting this much weight and its neighbors equalgdiig the remaining
weight (sum of weights is 1).

pseudo_stepsizé.0
Length of one step in the production of a pseudoridge, which is actually a polfgon.
vaue of 1. corresponds to the spacing betweecttors in the (finer) orientation array
used by pseudo.

02April 2001 166

PCASYS(1A) NFISReference Manual PCASYS(1A)

pseudo_max_tilt45
Max allowed tilt of a candidate coneaupward's vertex (point of sharpest turning) from
a horizontal that corresponds tgaet uprightnessin degrees.

pseudo_min_side_tun 70
Minimum cumulatve trn that each side of conemaupward must hee. In degees.

Limits for the blok of starting positions in pseudoridgracing:

pseudo_initi_s11
Small limit, vertical. (TOP)

pseudo_initi_e46
Large limit, vertical. (BO'TOM)

pseudo_initj_s11
Small limit, horizontal. (LEFT)

pseudo_initj_e50
Large limit, horizontal. (RIGHT)

pseudo_maxsteps_eachd200
Maximum number of steps that traceertakes in either of the tavdirections from start-
ing point. (Controls the amount of memory needed to store a pseudoridge, and more
importantly such a limit is needed to prent possible infinitely looping pseudridges in
some whorls.)

pseudo_nsmoottB
How mary iterations of smoothing.

pseudo_maxtun 40
Maximum turn that is allwed to occur in a single step (ingilees). Anattempted turn
sharper than this causes tracing to stop.

Used by the combineutine

combine_clash_confidence&
This is the confidencealue combine assigns if pseudo finds a ceacgward (causing
hyp dass to be whorl) it PNN thinks the print is not a whorl:

PCASYS I/O pametes.

demo_images_lispcasys/parms/ft20.txt
List of fingerprint images to run the demo ofhe de#ult list here lists the first 20 fin-
gerprints of the pndded demo set, which consists of the 2700 fingerprint®loinve 10
"s" rollings of NIST Special Database ptasys/parms/all.tdist all 2700 files.

outfile pcasys.out
Output file to be producedf no output file is vanted, set this to /gull.

clobber_outfile n
If n, then if outfile already»asts, it with an error messagdf y, then averwrite outfile
if it already ists.

verbosey
If y, then write progress messages to stdout.

NIST 02April 2001 167

PCASYS(1A) NFISReference Manual PCASYS(1A)

EXAMPLE(S)
Fromtest/pcasysecs/pcasys/pcasysr
% pcasys
Runs the pcasys demo using theadéifsettings found in
pcasys/parms/pcasysspr
% pcasys myprsfile
Runs the pcasys demo using parameters saypsfileto change thealue of the defult settings.

SEE ALSO
pcasysx (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 168

PCASYSX(1A) NFISReference Manual PCASYSX(1A)

NAME

pcasysx — fingerprint classifier demo, graphieakion

SYNOPSIS

pcasysxprsfile]

DESCRIPTION

Pcasysxis the graphical fingerprint classifier demo prograiinreads a sequence of image files, each
depicting one box as scanned from a fingerprint card, and classifies each fingerprint, using a Multi-Layer
Perceptron (MLP) or Probabilistic (PNN) Neural Netl; to one of six pattern-tel classes: Arch, Left

loop, Right loop, Scaifented arch, and Whorl. The type of classifier MLP or PNN is chosen in the param-
eters file pcasys/parms/pcasysspr Additional parameters specific to pcasysx are in
pcasys/parms/pcasysxspr

Pcasysx produces screen graphics illustrating the results of the processing phases (requulessy. Wt
optionally males an output file, containing a results line for each fingerprint and a summary at the end
shaving the error rate and the "confusion matrix", and it optionally writes progress messages to the stan-
dard output.

Pcasysx will look in the datilt locationpcasys/parmsor the deult parameter files it need3here are
prototype and weights files jpcasys/weights/{mlip|pnrthat are needed by the MLP and PNN classifiers
and images needed for the graphics displgycasys/imges. If NFIS was installed in a location other than
Jusr/local/nfisthe INSTALL_DIR in include/littleh will need to be changed and the code recompiled.
Also, the current dedult location for the 2700 sample fingerprint imageest/pcasys/data/inges. If the
user vants to see dsk space, these images could be left on a mounteddBD&nd a link made from the
images directory on the CIORM to the image directory where the sadte is installed.

OPTIONS

[prsfile]
A file containing one or more parametatues that are toverride the dedult values. © find out
what the parameters are, and gameples of the format of a parameters file, consult thauttef
parameters files that pcasysx reads, namebsys/parms/oas.grpcasys/parms/pcasyssprand
pcasys/parms/pcasysxspwhich are described in the sectiohFAMETER FILES. Each line, in
the parms file consists of a parameter namevieltbby a alue; a pound sign indicates that the
rest of its line is a commentf pcasysx is run with no gument, i.e. not specifying a user parame-
ters file, then it uses the aeft values of all parameters.

PARAMETER FILES

NIST

pcasys/parms/oas.pr
Contains dedult values of the parameters thateaf the making of orientation arrays (oas): these
are the parms of the gmentor (sgmnt), the image enhancer (enhnc), the ridigrwrientation
finder (rors), the mgistration program (r92a), and the@igration-implementing pedwise orienta-
tions reaerager (ga). Thevalues used for these parms when making the oas used in optimizing
the classifier should also be used when running the finished clasS#ierthemkoasman page
for more information about the parameters in this file.

pcasys/parms/pcasysspr
Contains dedult values of the parameters focasysx Also look atpcasys.ml@ndpcasys.pniiior
examples on using each classifi@ee thepcasysman page ér more information about the
parameters in this file.

pcasys/parms/pcasysxspr
Contains dedult values of parameters, in additiongoasys/parms/pcasysspthat are specific to
pcasysx
Default settings inpcasys/parms/pcasysxspr

Parametes for the gaphical demo, pcasysx, that caitsleeping (pausing) after displaying vari-
ous intermediateesults. ¥lue -1 is also allowed: that means wait for user to type erdggr k

02April 2001 169

PCASYSX(1A)

EXAMPLE(S)

NFISReference Manual PCASYSX(1A)

befole mntinuing

sleeps_titlepag®
after title page

sleeps_sgmntwrk 1
intermediate results of gmentor

sleeps_segra8
segmented image

sleeps_enhnd
enhanced image

sleeps_coe_medcoe 3
ridge-orientation bars, core, standard core

sleeps_egbars2
registered ridge-orientation bars

sleeps_featecl
bar graph of featureector input to PNN

sleeps_normac®
bar graph of normalized PNN outputs

sleeps_dundconupl
found a concge-upward pseudoridge (conup)

sleeps_noconu®
all pseudoridges, if no conup is found

sleeps_lastdisi?
results display for the fingerprint

Mouse contrl parameter:

warp_mousen
If y (yes), then warp the mouse pointer into graphical windeo its colormap tags
effect. If n (no), no varping.

PCASYS /O pametes.

outfile pcasysx.out
Output file to be producedf no output file is vanted, set this to /gull.

Fromtest/pcasysiecs/pcasys/pcasysr

SEE ALSO

% p casysxRuns the pcasysx demo using theadéifsettings found in
pcasys/parms/pcasysxspr

% pcasysx myprsfile
Runs the pcasysx demo using parameters saiymsfile to change thealue of the defult set-
tings.

pcasys (1A)

NIST

02April 2001 170

PCASYSX(1A) NFISReference Manual PCASYSX(1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 171

RDJPGCOM(1E) NFIReference Manual RDJPGCOM(1E)

NAME
rdjpgcom — display t& comments from a JPEG file

SYNOPSIS
rdjpgcom [—verbose] [filename]

DESCRIPTION
rdjpgcom reads the named JPEG/JFIF file, or the standard input if no file is hamed, and prite¢ an
comments found in the file on the standard output.

The JPEG standard als "comment" (COM) blocks to occur within a JPEG fikdthough the standard
doesnt actually define what COM blocks are fdhey are widely used to hold ussupplied t&t strings.
This lets you add annotations, titles, irderms, etc to your JPEG files, and later re&rithem as tet.
COM blocks do not interfere with the image stored in the JPEGTHe. maximum size of a COM block is
64K, but you can hee @& mary of them as you lik in one JPEG file.

OPTIONS
-verbose
Causesdjpgcom to also display the JPEG image dimensions.

Switch names may be abbirgted, and are not case sensiti

HINTS
rdjpgcom does not depend on the 1JG JPEG librdtg source code is intended as an illustration of the
minimum amount of code required to parse a JPEG file header correctly

In —verbosemode,rdjpgcom will also attempt to print the contents ofydAPP12" markrs as tet. Some
digital cameras produce APP12 menk containing usefulx&ual information. If you like, you can modify
the source code to print other APPn neartypes as well.

SEE ALSO
cjpeg(1), djpeg(1), jpegtran(1), wrjpgcom(1)

AUTHOR
Independent JPEG Group

3G 110October 1997 172

RDWSQCOM(1D) NFISReference Manual RDWSQCOM(1D)

NAME
rdwsgcom — scans a WSQ-encoded image file fgraad all comment blocks, printing their contents to
standard output.

SYNOPSIS
rdwsgcom<image fle>

DESCRIPTION
Rdwsqgcomtakes as input a file containing a WSQ-compressed imagewindut decoding and recon-
structing the image, the utility scans the file foy @nd all comment blocksAs a comment block is
encountered, its contents is printed to standard outpainments can be written to a WSQ file by using
thewrwsgcom command.

OPTIONS
<image fle>
the input WSQ file to be scanned.

EXAMPLES
Fromtest/imgtools/eecs/dwsgcomfdwsgcom.sr.

% r dwsqcom fingerwsq > fingercom prints ary comments stored in the WSQ fingerprint file to
an output file.

SEE ALSO
cwsq1D), wrwsgcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 173

RGB2YCC(1D) NFISReference Manual RGB2YCC(1D)

NAME
rgh2ycc — comerts a color RGB image to the YCbCr colorspace andndamples component planes as
specified.
SYNOPSIS
rgb2ycc<outext> <image fle>
[-raw_in w,h,d,[ppi]
[-nonintriv]
[-YCbCr HO,VO:H1,V1:H2,V2
DESCRIPTION
Rgb2ycctakes as input a file containing an uncompressed color RGB inTage possible input file for
mats are accepted, NIST IHead files and pxmap files. If a rawv pixmap file is to be corerted, then its
image attribbtes must be prided on the command line as wefbnce read into memarihe RGB pixmap
is corverted to the YCbCr colorspace. The results aneyd written to a ra pixmap file because the NIST
IHead file format only supports interlesll RGB images.
The color components of RGB pis in a rav pixmap file may be interle&d or non-interlezed. By
default,rgb2yccassumes interlead color pixels. (SedNTERLEAVE OPTIONS belur.)
If requestedrgb2yccalso conducts densampling of the YCbCr component plan&y. default, this utility
does no dansampling. Rgadless of davnsampling, the camrsion from RGB to YCbCr and back to
RGB will not result in the samexact image. Some piels \alues will be slightly perturbed due to the
round-of of the floating point transformations that are appli¢see YCbCr OPTIONS beio)
OPTIONS
All switch names may be abhiated; for @ample,-raw_in may be writtenr.
<outext>
the etension of the YCbCr output fileTo construct the output filenameagb2ycctakes the input
filename and replaces itgtension with the one specified here.
<image fle>
the input file, either an IHead file omrgixmap file, containing the color RGB image to be con-
verted.
-raw_in w,h,d,[ppi]
the attrilutes of the input imagerThis option must be included on the command line if the input is
a raw gxmap file.
w the pixel width of the pixmap
h the pixel height of the pixmap
d the pixel depth of the pixmap
ppi the optional scan resolution of the image ingeteunits of piels per inch.
-nonintrlv
specifies that the color components inimput raw pixmap file image are non-interkesl and
stored in separate component plang@&ee INTERLEAE OPTIONS bela.)
-YCbCr HO,VO:H1,V1:H2,vV2
this option, if preided on the command line, direatgb2yccto conduct dawnsampling of the
YCbCr component planedf all the H,V factors are set to 1 then nordsampling is done; this is
equialent to ommiting the option(See YCbCr Options belo)
NIST 02April 2001 174

RGB2YCC(1D) NFISReference Manual RGB2YCC(1D)

INTERLEA VE OPTIONS
The color components of RGB pis in a rav pixmap file may be interlead or non-interlexed. Color
components are interhead when a piel's (R)ed, (G)reen, and (B)lue components are sequentially adjacent
in the image byte stream, ie. RGBRGBRGB.If the color components are non-intexled, then all (R)ed
components in the image are sequentially adjacent in the image byte streamgdfdiioall (G)reen com-
ponents, and then lastly folied by all (B)lue componentd&ach complete sequence of color components
is called gplane The utilitiesintr2not andnot2intr corvert between interlaged and non-interleged color
components. Bylefault, rgb2ycc assumes interlead color components, and note that all color IHead
images must be interbeed.

YCbCr OPTIONS
Rgb2ycc corverts color RGB images to the YCbCr colorspage.common compression technique for
YCbCr images is to densample the Cb & Cr component planédgb2yccconducts a limited range of
YCbCr davnsampling schemes that are represented by a list of component audtors.f Thesdactors
together represent dmsampling ratios relate © each other The comma-separated list afctor pairs cor
respond to the ,YCb, and Cr component planes respatyi The first \alue in a &ctor pair represents the
downsampling of that particular component plane in the X-dimension, while the second represents the
Y-dimension. Compressioratios for a particular component plane are calculated \iglinly the maxi-
mum componentafctors in the list by the current componsritictors. Thesénteger factors are limited
between 1 and 4H,V factors all set to 1 represent nonth@ampling. Br complete detailsigb2ycc
implements the densampling and interleang schemes described in the faliag reference:

W.B. Pennebatr and J.L. Mitchell, "JPEG: Still Image Compression Standard,” Appendix A -
"ISO DIS 10918-1 Requirements and Guidelinegh Wostrand Reinhold, NY993, pp. A1-A4.

For example the option specification:
-YCbCr 4,4:2,2:1,1

directsrgb2yccto not davnsample the Y component plane (4,4 are thgekstrX and Y dctors listed); the
Cb component plane will be dmsampled in X and Y by adtor of 2 (maximumeéictors 4 diided by cur
rent factors 2); and the Cr component plane will bevgampled in X and Y by aétor of 4 (maximum
factors 4 dvided by currentdctors 1).Note that dansampling component planes is a formasfsycom-
pression. Thauitility ycc2rgb takes the YCbCr results and a@nts them back to the RGB colorspadé.
downsampling vas applied to the YCbCr components, then thendampled planes are up-sampled prior
to corversion to RGB. Note that gen without davsampling, the corersion from RGB to YCbCr and back
to RGB will not result in the sameact image.Some piels \alues will be slightly perturbed due to the
round-of of the floating point transformations that are applied.

EXAMPLES
Fromtest/imgtools/eecs/gb2ycc/gb2ycc.st:

% r gb2ycc ycc face.raw -r 768,1024,24 -Y 4,4:1,1:1,1
corverts an RGB #&ce image in a vapixmap file to the YCbCr colorspace andadisamples the
Cb and Cr component planes byaatbr of 4 in both dimensions.

SEE ALSO
cjpegl(1D), dpyimage(1D), intr2not (1D), not2intr (1D), ycc2rgb(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 175

RWPICS(1A) NFISReference Manual RWPICS(1A)

NAME

rwpics — malks pictures of igional weights or gradients.
SYNOPSIS

rwpics <rwfile_in[rwfile_in...]> <rws|eg|s&> <outpics_dir>
DESCRIPTION

Rwpics reads a set of PCASYS "matrix" format files each of size 14 xTh®.input files either should be

a <t of points in rgional weights space (in particuldrasepoints produced by the optimizejional
weights command optrws), or thehould be a set of estimated gradients of thevaain error (also pro-
duced by optrws)Makes a corresponding set of IHead format image files depicting the weights points or
gradients; these image files can then be displayed usingage. Rwpicsan be used as a sanity check

on whether optrws is evrking properly and to help decide when the time has come that it is reasonable to
stop an optrws run because further significant change of the weights seewly.unlik

OPTIONS
<rwfile_in[rwfile_in...]>
The pcasys "matrix" format file(s) to be depictdtither theg should each be a basepoint of the
optrws optimization (point in pgonal weights space), or thehould each be an estimated gradi-
ent, also produced by optrwin either case, tlyemust be matrices of size 14 x 15, corresponding
to the weights, each of which is associated with one 2 ectw block of the 28 x 30 pattern of
orientation ‘ectors. (Usually the output optrws.)

<rws|eg|segy>
A code telling rwpics what kind of pictures to neak

If rws ("regional weights"), the program medk a grayscale picture that is reasonable if the input
file represents a set ofgienal weights, e.g. one of the bspt files produced by an optrwsTan.
do so, it linearly maps absolutalues of input &lues to gray tones, setting the mapping so that O.
maps to black and the maximum absolutéug across all components of all input matrices, to
white. Absolutevalues are the reasonable thing to depict whemeéning a point in rgional-
weights space, since the sign of gioeal weights has nofett on the PNN classifie(Optimiza-

tion may sometimes cause some unimportant outer weights to be sligidiive® Themapping

is adapted to the maximum absolu@ue across all input files, rather than being separately
adapted for each input file; this is done so that thkierakresulting pictures can beamined side

by side with the kneledge that all gray tones are on the same scale.

If eg ("estimated gradient"), the program reaka grayscale picture that is reasonable if the input
file represents an estimated gradient of the error function, e.g. one gfréldefiies produced by
an optrws run.To do 90, it afinely maps input &lues to gray tones, setting the mapping so that
the minimum input &lue across all input files is mapped to white and the maximum iajugt, \to
black.

If seg ("sign of estimated gradient”), the program emla grayscale-binary (ie. 0 and 255epix
values) picture that is reasonable if the input file represents an estimated gradient of the error func-
tion. To do S0, it maps ngative values to white (255) and norgative values to black (0)This is
interesting because if the component of the estimated gradient (i.e., the estimated partial
derivative) associated with a ggon is ng@aive, that shavs that the weight for this geon should be
increased (and will be increased by optrws).

<outpics_dir>
The directory in which the program should produce its output files, which will be raster images in
the NIST IHead format(The directory must alreadyist, i.e. rwpics does not produce it.) Each
output files name is produced by taking the last component of the corresponding input file and
appending an underscore, then the rgysfg code, then .pct (the standard IHEAD filefsgf The
output image files may bex@mined using the giimage command.

NIST 02April 2001 176

RWPICS(1A) NFISReference Manual RWPICS(1A)

EXAMPLE(S)
Fromtest/pcasyskecs/rwpics/rwpics.sr

% r wpics ../optrws/optrws.bin rws rwpics

Produces an image of the optimizediomal weights, which can be cmnted to JPEG format

using thecjpegb command.

% r wpics ../optrws/optdir/egrad_1.bin eg rwpics

Produces an image of the estimated gradient, which can kerteashto JPEG format using the
cjpegb command.

% r wpics ../optrws/optdir/egrad_1.bin seg rwpics

Produces an image of the sign of estimated gradient, which canvsetedrio JPEG format using
thecjpegb command.

SEE ALSO
dpyimage (1A), optrws (1A), cjb (1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 177

SD_RFMT(1D) NFISReference Manual SD_RFMT(1D)

NAME
sd_rfmt — taks images from NIST Special Databases 4, 9, 10, 14, and 18 and reformats the compressed
data to verk with the decompressodfpegl anddwsag.
SYNOPSIS
sd_rfmt <SD #> <image fle>
SD list = {4,9,10,14,18}
DESCRIPTION
Sd_rfmt reformats images compressed with the old JPEGLSD and WSQ14 compression, on NIST Special
Databases 4, 9, 10, 18 (JPEGLSD) and 14 (WSQ14), so the images can be decompressed with the ne
commandsljpegl anddwsg.
When JPEGLSD was used to compress images on NIST Special Databases (4, 9, 10, 18) the NIST IHEAD
header was used to store the data for the JPEGLSD compredsidhe nev versionscjpegl anddjpegl the
full IPEG format is used not the IHEAD header
The WSQ14 compression used on SD14 has problems with ordering of the data in the compressed file.
Sd_rfmt simply reorders the data to comply with the format specified in thes EBFinal Justice Infor
mation Services (CJIS) document, "WSQ Gray-scale Fingerprint Compressions Specification," Dec. 1997.
This is the only fingerprint compression format accepted by the FBI IAFIS syN&TRE: The method
for selecting the quantization amount was efined after the release of SD14 so the data loss in the
reconstructed image may be ma than seen when using the newevsions cwsq and disq.
OPTIONS
<SD #>
Specify that the input image is from NIST Special Database #.
<outext>
the extension of the reformatted output fil&To construct the output filenamsd_rfmt takes the
input filename and replaces itg@nsion with the one specified here.
<image fle>
the compressed input file to be reformatted.
EXAMPLES
Fromtest/imgtools/eecs/sd_rfmt/sd_rfmtsr
% sd_rfmt 7 jpl sd09.old
% sd_rfmt 10 jpl sd10.old
% sd_rfmt 14 wsq sd14.old
% sd_rfmt 18 jpl sd18.old
Corvert the special database images to the correct formatted compressed files (JPEGL and WSQ).
User could usedjpgcom andrdwsgcomto read the NISTCOM comment that is written in the
reformatted output fileAfter reformatting the ne file can be decompressed witjpegl or dwsq.
SEE ALSO
djpegl(1D), dwsq(1D), dpyimage(1D), rdjpgcom(1D), rdwsqcon(1D)
AUTHOR

NIST/ITL/DIV894/Image Group

NIST 02April 2001 178

STACKMS(1A) NFIS Reference Manual STACKMS(1A)

NAME
stackms - stacks PCASYS formatted matrix files together

SYNOPSIS
stackms <matrixfile_in[matrixfile_in...]> <matrixfile_out> <matrixfile_out_desc> <ascii_outfile mes-
sages>

DESCRIPTION

Stackmsstacks together geral PCASYS "matrix" files: produces a file whose matrix has, asvits, rine
rows of all the input matrices. All input matrices musvéghe same second dimensiofThe standard
"cat" (catenate files) command is irfatiént for proper stacking of matrix files, since the files contain
header information and not just theveoof entries.)

OPTIONS
<matrixfile_in[matrixfile_in...]>
The matrix files to be read(Can be ascii or binanand they don't all have © havethe same
ascii/binary setting.)All must hasze the same second dimension.
<matrixfile_out>
The matrix file to be writtenlts rons will be the ravs of all the input matrices.

<matrixfile_out_desc>
A string to be written into the output matrix file as its description string; must contain no embed-
ded navline characters.If it contains spaces, tabs, or shell metacharacters that are not to be
expanded, then it should be quotedio leave the description emptyuse * (two dngle quote
marks, i.e. a single—quoted empty stringp let stackms makthe description (stating that the file
was made by stackms, and listing the names of the input files), usghe(h).

<ascii_outfile>
If y, sackms maks an ascii output file; if n, it mek a binary output fileBinary is recom-
mended, unless the output file must be portable acrdssedif byte orders or floating—point for
mats.

<messges>
If y, sackms writes a progress message to the standard output each time it is about to start reading
a rew input file; if n, no messages.

EXAMPLE(S)
Fromtest/pcasysiecs/stakms/stakms.sc:

% stackms ../meancwe/fvl.men ../meance/fv2.men tst.men - ny
Combines the mean fildgl.menandfv2.meninto a single file. This is only and xxample, the
cmbmcsshould be used to combine mean fildfie mean files were used to presetigsk space.

The stackmsin practice is used to combine featuextor files (ie. where oneants to stack the
data in the files).

SEE ALSO
asczbin (1A), bin2asc (1A)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 179

TXT2AN2K(1C) NFISReference Manual TXT2AN2K(1C)

NAME
txt2an2k — Cowerts a formatted t file into an ANSI/NIST 2000 file.
SYNOPSIS
txt2an2k <fmttext in> <ansi_nist out>
DESCRIPTION
Txt2an2k parses a specially formattectdile representing the contents of an ANSI/NIST 1-2000 file,
and writes its contents to awdile in the standard compliant formakhis utility when used in conjunction
with an2k2txt enables changes to be interedi made to an ANSI/NIST file using a simpleteditor
OPTIONS

<fmttext in>
the formatted te file to be cowmerted

<ansi_nist out>
the output ANSI/NIST file

INPUT FORMAT
Every line in the input te represents a single information item for the ANSI/NIST fildese lines are
formatted as folls:

r.f.s.i[t.n]=value{US}

r.f.s.i references the information item with

r the items positionalrecord ind& in the file
f the items positionalfield index in the record
S the items positionalsubfield inde in the field

[the items positionalitem inde in the subfield

Note that all indices start at 1.

t.n references the Recorgfe and Field ID from the standard.
t the recordstype
n the fields ID number

value is the tetual content of the information item, unless the information item contains binary
image data, in which case, thalwe is the name of anxternal file containing the binary
data.

{US} s the non-printable ASCII character 0x1Fhis separator character is one of 4 used in
the standardIn VIM, this non-printable character may be entered using the "v command
and entering the decimal code "31lh Emacs, this non-printable character may be
entered using the "qg command and entering the octal code "037".

Example Input Lines
1.5.1.1 [1.005]=19990708

This is the information item corresponding to the Dat&T(Dfield in the standardlt is the 5th
field in a Type-1 record, and theype-1 record is atays the first record in the ANSI/NIST file;
therefore, its record indds 1, its field inde& is 5 its subfield indeis 1, and its item indg is 1
The \alue of this information item represents the date of July 8, 1988.' at the end of the
line represents the non-printable {US} character

1.3.4.1[1.003]=14-
This information item is part of the File Content (CNT) fielthe CNT field is the 3rd field in a

NIST 02April 2001 180

TXT2AN2K(1C) NFISReference Manual TXT2AN2K(1C)

Type-1 record, so this information itesnecord ind& is 1 and its field ind& is 3 This informa-
tion item is in the 4th subfield of the CNT field, and has an itenxiofl&; therefore, its alue 14
signifies that the 4th record (the subfield xjde this ANSI/NIST file is a ¥pe-14 record.

4.14.1.1 [14.999]=fld_2_14.tmpe

This information item corresponds to an Image Data field ofpe-L4 record.This field alays
has numeric ID 999 and isvadys the last field in the image recor@his Type-14 record is the 4th
record in this ANSI/NIST file, so the Image Data information item has record #ded it is in
the 14th field (field inde14) in the record.This information item in the ANSI/NIST file contains
binary pixel data, so the inputalue "fld_2_14.tmp" references axternal filename from which
txt2an2k reads the itens’binary data.

EXAMPLES
Fromtest/an2k/recs/txt2an2k/txt2an2kcsr

% txt2an2k ../an2k2txt/nist.fmt nist.an2

SEE ALSO
an2k2txt(1C), an2ktool(1C)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 181

WRJIPGCOM(1E) NFIReference Manual WRJIPGCOM(1E)

NAME

wrjpgcom - insert te&¢ comments into a JPEG file

SYNOPSIS

wrjpgcom [—replace] [-commenttext] [—cfile name] [filename]

DESCRIPTION

wrjpgcom reads the named JPEG/JFIF file, or the standard input if no file is named, and generates a ne
JPEG/JFIF file on standard outpét.comment block is added to the file.

The JPEG standard als "comment" (COM) blocks to occur within a JPEG fikdthough the standard
doesnt actually define what COM blocks are fdhey are widely used to hold ussupplied t&t strings.
This lets you add annotations, titles, irderms, etc to your JPEG files, and later re&rithem as tet.
COM blocks do not interfere with the image stored in the JPEGTHe. maximum size of a COM block is
64K, but you can hee & mary of them as you lik in one JPEG file.

wrjpgcom adds a COM block, containingxteyou provide, to a JPEG fileOrdinarily, the COM block is
added after gnexisting COM blocks; bt you can delete the old COM blocks if you wish.

OPTIONS

Switch names may be abbirgted, and are not case sensiti

-replace
Delete ag existing COM blocks from the file.

—commenttext
Supply tet for nev COM block on command line.

—cfile name
Read t&t for newv COM block from named file.

If you have anly one line of comment xéto add, you can puide it on the command line withcomment
The comment t& must be surrounded with quotes so that it is treated as a siggheeart. Longecom-
ments can be read from xtdile.

If you give reither—commentnor —cfile, thenwrjpgcom will read the comment x& from standard input.

(In this case an input image file name MUST be supplied, so that the source JPEG file comes from some-
where else.)You can enter multiple lines, up to 64KBowth. Type an end-of-file indicator (usually con-

trol-D) to terminate the commentixteentry

wrjpgcom will not add a COM block if the praded comment string is emptyherefore-replace —com-
ment " can be used to delete all COM blocks from a file.

EXAMPLES

Add a short comment to in.jpg, producing out.jpg:
wrjpgcom —c "View of my badk yard" in.jpg > out.jpg

Attach a long comment priwusly stored in comment.txt:
wrjpgcom in.jpg < comment.tx out.jpg

or equvaently

wrjpgcom -cfile comment.tx¥ in.jpg > out.jpg

SEE ALSO

cjpeg(1), djpeg(1), jpegtran(1), rdjpgcom(1)

AUTHOR

3G

Independent JPEG Group

15June 1995 182

WRWSQCOM(1D) NFISReference Manual WRWSQCOM(1D)

NAME

wrwsgcom - inserts a specified comment block into a WSQ-encoded image file.
SYNOPSIS

wrwsgcom <image fle> <-f comment fil¢ -t comment tet>

DESCRIPTION

Wrwsgcom takes as input a file containing a WSQ-compressed image, and insertsspacted com-
ment block into the fileThe comment may be represented by the contents of a file or it may be represented

as a string on the command lin€Eomments can be read from a WSQ file by usingdivesgcom com-
mand.

OPTIONS
<image fle>
the input WSQ file to modified.
-f comment file
specifies that the commenktés contained in the follwing file.
-t comment tet
specifies that the commenktés the follaving string on the command line.

EXAMPLES
Fromtest/imgtools/eecs/wrwsgcom/wrwsgcontsr

% wrwsgcom fingerwsq -f comment.txt
inserts the contents of the fdlemment.txtinto the WSQ fingerprint file.

SEE ALSO
cwsq1D), rdwsgcom(1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 183

YCC2RGB(1D) NFISReference Manual YCC2RGB(1D)

NAME
ycc2igbh — cowerts a color YCbCr image to the RGB colorspace and accounts farsdmpling of the
YCbCr component planes.

SYNOPSIS
ycc2rgb <outext> <image fle> <w,h,d,[ppi]>
[-raw_out]
[-nonintrlv]
[-YCbCr HO,VO:H1,V1:H2, V2]

DESCRIPTION
Ycc2rgb takes as input a vapixmap file containing an uncompressed color YCbCr image angtsrits
pixels to the RGB colorspacdwo output file formats are possible, a NIST IHead file (thauléfor a rav
pixmap file (specified by theaw_out flag).

The color components of YCbCr jgis in a rav pixmap file may be interlead or non-interleaed. By
default, ycc2rgh assumes interlead color pixels. Notethat interleaed input produces interlgad output,
and likewise, non-interleged input produces non-interfead output. Resultfrom non-interleged input
should be plicitly stored in a rev pixmap file, because the IHead format only supports intestegixels.
(See INTERLEAE OPTIONS belwr.)

It is possible that the component planes of the input YCbCr imagelbaan preiously davnsampled. If
so, the-YCbCr flag must be included on the command line listing the appropriate component plare do
sampling &ctors. Ifdownsampling is specified, theycc2rgb conducts appropriate upsampling of the
YCbCr component planes prior to RGB wersion. By default, this utility assumes no woasampling.
Regardless of dnsampling, the camrsion from RGB to YCbCr and back to RGB will not result in the
same gact image.Some piels \alues will be slightly perturbed due to the rountieffthe floating point
transformations that are applieGee YCbCr OPTIONS belo)

OPTIONS
All switch names may be abhliated; for @ample,-raw_out may be writtenr.

<outext>
the tension of the RGB output fileTo construct the output filenamggcc2rgb takes the input
filename and replaces itgtension with the one specified here.

<image fle>

the input rav pixmap file containing the color YCbCr image to bevested.
<w,h,d,[ppi]>

the attrilutes of the input image in thewgixmap file.

w the pixel width of the pixmap

h the pixel height of the pixmap

d the pixel depth of the pixmap

ppi the optional scan resolution of the image indeteunits of piels per inch.
-raw_out

specifies that the results should be stored tavgbemap file.

-nonintrlv
specifies that the color components in tfgut raw pixmap file image are non-interlea and
stored in separate component plan&he -raw_out flag should akays be used in conjunction
with this option. (See INTERLEAE OPTIONS belar.)

NIST 02April 2001 184

YCC2RGB(1D) NFISReference Manual YCC2RGB(1D)

-YCbCr HO,VO:H1,V1:H2,v2
this option, if preided on the command line, indicates that the YCbCr component planes of the
input image hee been preiously davnsampled. Ycc2rgb uses the listedattors to conduct
upsampling of the YCbCr component planes prior to RGBImigrversion. Ifall the H,V fctors
are set to 1 then no upsampling is required; this issalgut to omitting the option(See YCbCr
Options belov.)

INTERLEA VE OPTIONS
The color components of YCbCr pis in a rav pixmap file may be interlead or non-interleaed. Color
components are interlead when a piel’s Y, Cb, and Cr components are sequentially adjacent in the image
byte stream, ie. YCbCrYCbCrYCbCr. If the color components are non-intexled, then all Y compo-
nents in the image are sequentially adjacent in the image byte streamedobyg all Cb components, and
then lastly follaved by all Cr component€Each complete sequence of color components is cajimha
The utilitiesintr2not andnot2intr corvert between interleged and non-interleged color componentsBy
default, ycc2rgh assumes interlead color pixels. Notethat interlesed input produces interlgad output,
and likewise, non-interleged input produces non-interfead output. Resultfrom non-interleged input
should beexplicitly stored in a na pixmap file, because the IHead format only supports intestegixels.

YCbCr OPTIONS
Ycc2rgb corverts color YCbCr images to the RGB colorspade.common compression technique for
YCbCr images is to densample the Cb & Cr component plan&&c2rgb can handle a limited range of
YCbCr davnsampling schemes that are represented by a list of component audtors.f Thesdactors
together represent dmsampling ratios relate © each other The comma-separated list afctor pairs cor
respond to the ,YCb, and Cr component planes respatyi The first \alue in a &ctor pair represents the
downsampling of that particular component plane in the X-dimension, while the second represents the
Y-dimension. Compressioratios for a particular component plane are calculated \iglinly the maxi-
mum componentafctors in the list by the current componsritictors. Thesénteger factors are limited
between 1 and 4H,V factors all set to 1 represent nowt@ampling. Br complete detailsycc2rgb
implements the densampling and interleang schemes described in the faliag reference:

W.B. Pennebatr and J.L. Mitchell, "JPEG: Still Image Compression Standard,” Appendix A -
"ISO DIS 10918-1 Requirements and Guidelinegh Wostrand Reinhold, NY993, pp. A1-A4.

For example the option specification:
-YCbCr 4,4:2,2:1,1

indicates that there has been navdsampling of the Y component plane (4,4 are thgelsirX and Y dc-

tors listed); the Cb component plane has beemdampled in X and Y by ad¢tor of 2 (maximumeaictors

4 divided by currentdctors 2); and the Cr component plane has beengimpled in X and Y by aétor

of 4 (maximum &ctors 4 diided by currentdctors 1). The utility rgb2ycc corverts RGB pixmaps to the
YCbCr colorspace, and it conductsadsampling of the resulting YCbCr component planes upon request.
Note that davnsampling component planes is a formasflsycompression. IHovnsampling vas applied

to an input imageycc2rgb takes the dansamples planes and upsamples them prior to RGizeiion.

Note that gen without davnsampling, the camrsion from RGB to YCbCr and back to RGB will not result

in the same>xact image.Some piels \alues will be slightly perturbed due to the rounfiedfthe floating
point transformations that are applied.

EXAMPLES
Fromtest/imgtools/eecs/yccyb/ycc2gb.src:

% ycc2rgb raw face.ycc 768,1024,24 -r -Y 4,4:1,1:1,1
cornverts a YCbCr &ce image with densampled Cb and Cr component planes to the RGB col-
orspace, storing the results to & q@xmap file.

NIST 02April 2001 185

YCC2RGB(1D) NFISReference Manual YCC2RGB(1D)

SEE ALSO
intr2not (1D), not2intr (1D), rgh2ycq1D)

AUTHOR
NIST/ITL/DIV894/Image Group

NIST 02April 2001 186

	INTRODUCTION
	INSTALLATION GUIDE
	Software Installation
	Data and Testing Directories

	PACKAGES
	PCASYS – Fingerprint Pattern Classification
	MINDTCT – Minutiae Detection
	Definition of Minutiae
	Latent Fingerprints

	AN2K – Standard Reference Implementation
	IMGTOOLS – General Purpose Image Utilities

	SYSTEMS
	PCASYS
	Algorithmic Description
	Segmentor [src/lib/pca/sgmnt.c; sgmnt()]
	Image Enhancement
	Ridge-Valley Orientation Detector [src/lib/pca/ridge.c; rors(), rgar()]
	Registration [src/lib/pca/r92a.c; r92a()]
	Feature Set Transformation [src/lib/pca/trnsfrm.c; trnsfrm()]
	Karhunen-Loève Transform
	Regional Weights [src/bin/optrws/optrws.c]
	Combined Transform [src/bin/mktran/mktran.c]

	Probabilistic Neural Network Classifier [src/lib/pca/pnn.c; pnn()]
	Multi-Layer Perceptron Neural Network Classifier
	Auxiliary Classifier: Pseudo-ridge Tracer [src/lib/pca/pseudo.c; pseudo()]
	Combining the Classifier and Pseudo-ridge Outputs

	Computing Features
	Make the Orientation Arrays
	Make the Covariance Matrix
	Make the Eigenvalues and Eigenvectors
	Run the Karhunen-Loève Transform

	Training the Neural Networks
	Optimizing the Probabilistic Neural Network
	Optimize the Regional Weights
	Make the Transform Matrix
	Apply the Transform Matrix
	Optimize the Overall Smoothing Factor

	Training the Multi-layer Perceptron Neural Network

	Running PCASYS
	PCASYS Data Files
	Commands
	Classifier Demos
	Training (Optimization) Commands
	Utility Commands

	Running the Classifier
	Graphical and Non-graphical Versions
	Default Parameters and Specifying Parameters
	Output File

	Classification Results

	MINDTCT
	Input ANSI/NIST File [src/lib/an2k/fmtstd.c; read_ANSI_NIST_file()]
	Generate Image Quality Maps [src/lib/lfs/maps.c; gen_image_maps()]
	Direction Map [src/lib/lfs/dft.c; dft_dir_powers()]
	Low Contrast Map [src/lib/lfs/block.c; low_contrast_block()]
	Low Flow Map [src/lib/lfs/maps.c; gen_initial_maps()]
	High Curve Map [src/lib/lfs/maps.c; gen_high_curve_map()]
	Quality Map [src/lib/lfs/quality.c; gen_quality_map()]

	Binarize Image [src/lib/lfs/binar.c; binarize_V2()]
	Detect Minutiae [src/lib/lfs/minutia.c; detect_minutiae_V2()]
	Remove False Minutiae [src/lib/lfs/remove.c; remove_false_minutia_V2()]
	Remove Islands and Lakes [src/lib/lfs/remove.c; remove_islands_and_lakes()]
	Remove Holes [src/lib/lfs/remove.c; remove_holes()]
	Remove Pointing to Invalid Block
	Remove Near Invalid Blocks
	Remove or Adjust Side Minutiae
	Remove Hooks [src/lib/lfs/remove.c; remove_hooks()]
	Remove Overlaps [src/lib/lfs/remove.c; remove_overlaps()]
	Remove Too Wide Minutiae [src/lib/lfs/remove.c; remove_malformations()]
	Remove Too Narrow Minutiae [src/lib/lfs/remove.c; remove_pores_V2()]

	Count Neighbor Ridges [src/lib/lfs/ridges.c; count_minutiae_ridges()]
	Assess Minutia Quality [src/lib/lfs/quality.c; combined_minutia_quality()]
	Output ANSI/NIST file [src/lib/an2k/fmtstd.c; write_ANSI_NIST_file()]

	REFERENCES

