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The instability of steady circular Couette flow with radial heating across a vertically oriented
annulus with a rotating inner cylinder and a stationary outer cylinder is investigated using a linear
stability analysis. The convection regime base flow is developed for an infinite aspect ratio geometry
and constant fluid properties with buoyancy included through the Boussinesq approximation. The
base flow is characterized by a dimensionless stratification parameterg that is proportional to the
vertical temperature gradient. Critical stability boundaries are calculated for this assumed base flow
with respect to both toroidal and helical disturbances. The numerical investigation is primarily
restricted to a radius ratio of 0.6 at a Prandtl number of 100. Critical stability boundaries in
Taylor–Grashof number space are presented for two values of the stratification parameterg s4 and
13d. The results follow the development of critical stability from Taylor cells at small Grashof
numbers up to a maximum Grashof number used in this calculation of 20 000 and 80 000 forg
=4 and 13, respectively. Results show that increasing the stratification parameter stabilizes the
isothermal Taylor vortices, followed by a destabilization at higher azimuthal mode numberssn
.0d. The results also show that forg=4 sclose to the conduction regimed, two modes are obtained:
one is axisymmetric and the other is nonaxisymmetric. However, for the convection regimeslarge
gd six asymmetric modes are obtained. Finally, the disturbance wavelength, phase speed, and spiral
inclination angle are presented as a function of the critical Grashof number for the stratification
parameters considered in this work. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1905482g

I. INTRODUCTION

The viscous fluid flow created between differentially ro-
tating coaxial cylinders has provided a fertile testing ground
for both linear and nonlinear stability theory. Beginning with
the work of Taylor1 numerous experimental and theoretical
studies on flow transitions and morphologies of supercritical
circular Couette flow have appeared. Initial studies on ther-
mally driven circular Couette flow, motivated by technologi-
cal problems in the cooling of rotating electrical machinery,
have been reviewed by Kreith.2 Early theoretical attacks ne-
glected gravity and usually considered only axisymmetric
disturbances in the limit of infinite aspect ratio. Such inves-
tigations by Yih,3 Becker and Kaye,4 Walowit et al.,5 Bahl,6

and Soundalgekaret al.7 showed that isothermal Taylor cells
are destabilizedsstabilizedd by positive snegatived radial
heating gradients across the gap. Roesner8 is credited as be-
ing the first to properly include the effect of gravity in the
Boussinesq approximation but, like most of his predecessors,
considered only axisymmetric disturbances. Roesner’s re-
sults contrast those neglecting gravity in that isothermal Tay-
lor cells are stabilized by both positive and negative radial
heating and his computed stability boundaries exhibit perfect
symmetry with respect to the direction of the temperature

gradient. There has been a renewed interest in the problem of
radially heated rotating flows, partially from a continued ef-
fort to enhance the cooling of rotating machinerysLee and
Minkowyez9d, but also with the aim of understanding and
controlling instabilities in nematic liquid crystal systems
sBarratt and Zuniga10d and in the solidification of pure metal
sVives11d. Numerical studies of the effects of buoyancy on
bifurcation phenomena in systems of small-to-moderate as-
pect ratio have been reported by Ball and Farouk.12,13 Com-
prehensive studies on the stability of Taylor–Couette flow
with radial heating using a conduction regime base flow have
been conducted by Ali14 and by Ali and Weidman15 for both
wide and narrow gaps and for different Prandtl numbers.
Their results follow the development of critical stability from
Taylor cells at zero heating through a number of asymmetric
modes. Thermal convection in differentially rotating systems
where the centrifugal force dominates over gravity was stud-
ied by Kropp and Busse.16 Over a considerable range of the
parameter space either convection rolls aligned with the axis
of rotation or rolls in the azimuthal direction were found
using the narrow gap approximation. The interaction of a
small radial temperature gradient with both gravity and cen-
trifugal forces was studied by Chen and Kuo17 using a linear
stability analysis. Their study showed that the symmetries
found by Ali and Weidman15 can be broken if the depen-
dence of the centrifugal force on temperature gradient is in-
cluded in the stability analysis. However, their analysis is
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restricted to axisymmetric disturbances. On the other hand,
the limiting case in which the centrifugal force is much
smaller than the buoyancy force was studied by Aueret al.18

using a small gap approximation. In their studies, both cyl-
inders were rotating and linear stability analyses with some
weakly nonlinear regimes were presented.

The stability of viscous isothermal circular Couette flow
generated by rotation of the inner cylinder is controlled by
the radius ratio, the aspect ratio, and the Taylor number. Sta-
tionary counterrotating toroidal cells of uniform width
stacked one above the other appear at a critical Taylor num-
ber. Comprehensive reviews of both theory and experiments
on the stability of isothermal circular Couette flow have been
given by Di Prima and Swinney,19 and Stuart.20

In the absence of rotation, natural convection between
vertical differentially heated concentric cylinders depends
crucially on the magnitude of the imposed thermal heating
and the system aspect ratioA=H /L, whereH is the annulus
height andL is the gap width. Early experimental studies,
starting by Eckert and Carlson,21 fostered the identification
of three distinct flow regimes in both planar and cylindrical
gaps: conduction, transition, and convection. For circular
cylinders maintained at different uniform temperatures, the
transition regime for unity Prandtl number has been placed in
the range of Rayleigh numbers,22

400A , Ra, 3000A sA . 5d,

where Ra,400A corresponds to the conduction regime and
Ra.3000A to the convection regime where axial boundary
layers form along each cylinder wall. In the limitA→`, an
analytical solution for the base flow in the conduction regime
is readily obtained. A linearized Galekerin calculation testing
the stability of this flow against axisymmetric disturbance
has been carried out by Choi and Korpela.23 McFaddenet
al.24 extended Choi and Korpela’s results by testing stability
with respect to nonaxisymmetric disturbances. Weidman and
Mehrdadtehranfar25 have carried out experiments on the sta-
bility of natural convection in a vertical differentially heated
annulus for base flows in the convection regime. They ob-
served the simultaneous upward and downward propagation
of vortex rings.

On the other hand, stability analyses of the convection
regime in a planar gap have been carried out by Vest and
Arpaci,26 Gotoh and Mizushima,27 Hart,28 Elder,29 and
Bergholz.30

The purpose of this study is to develop an analytical
solution for the base flow in the convection regime in a ver-
tical annulus with a rotating inner cylinder and a stationary
outer cylinder. Then the stability of this base flow is tested
with respect to axisymmetric and asymmetric disturbances
for a high Prandtl numbersPr=100d in a wide gapsk=0.6d.
The mathematical formulation in Sec. II leads to the numeri-
cal solution procedure in Sec. III. Computed stability bound-
aries along with the associated disturbance wave character-
istics are discussed in Sec. IV, followed by conclusions in
Sec. V. The Appendix contains the analytical form of the
base flow solution.

II. MATHEMATICAL FORMULATION

The motion of a thermally active viscous fluid in an
annulus with a rotating inner cylinder and a stationary outer
cylinder is governed by the equation of continuity, the
Navier–Stokes equations, and the energy equation. The
Boussinesq approximation is invoked for the buoyancy term,
but otherwise constant fluid properties are presumed. To con-
sider flow in the convective regime, we will consider a modi-
fied problem30 in which the vertical temperature gradientb
that develops in the core of the flow when the Grashof num-
ber becomes large,29 is instead imposeda priori along the
vertical boundaries. The annulus is then assumed to be infi-
nite in vertical extent, with the effect of aspect ratioA enter-
ing implicitly through the value ofb which is used to model
the flow. For high Prandtl number flows in a vertical slot,
Elder29 found experimentally that the relation 2b=DT/H
holds to a good approximation if the Grashof number is large
enough, whereDT is the temperature difference across the
annulus gap.

The equations of motion are made dimensionless by
choosing the scalesfL ,U ,DT,r0Uy /L ,L /U ,V1R1g for the
length, radial and vertical velocities, temperature, pressure,
time, and azimuthal velocity, respectively. HereU
=gbDTL2/y is a characteristic velocity, the gap width isL
=R2−R1, g is the acceleration due to gravity,a is the thermal
expansion coefficient,r0 is the density,y is the kinematic
viscosity, andV1 is the rotation rate of the inner cylinder.
The dimensionless equations in a cylindrical coordinate sys-
tem are given by
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for k / s1−kd, r ,1/s1−kd, whereu, v, andw are the veloc-
ity components in ther, f, andz directions,u is the dimen-
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sionless temperature, andk=R1/R2 is the radius ratio. The
dimensionless parametersG=gaDTL3/y2 and Pr=y /k ap-
pearing in the equations are the Grashof and Prandtl num-
bers, respectively, wherek is the thermal diffusivity.

The swirl parameterS=V1R1/U appears because of the
difference in normalization between the azimuthal and me-
ridional velocities. All computed stability results are pre-
sented in terms of the Taylor number Ta=2k2V1

2L4/y2s1
−k2d in lieu of S.

A. The base flow

The base flow in the convection regime corresponds to a
steady, axisymmetric motion withu=0, v=Vsrd, w=Wsrd,
andu=t z+Qsrd, wheret=bL /DT is the dimensionless ver-
tical temperature gradient. Here capital letters for the veloci-
ties and temperature are used to signify the base flow condi-
tions. Equationss1d–s5d reduce to

]p

]r
= GS2V2

r
, s7d

d2V

dr2 +
1

r

dV

dr
−

V

r2 = 0, s8d

]p
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r
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+ Q + t z, s9d

WGt Pr =
d2Q

dr2 +
1

r

dQ

dr
. s10d

The pressure is then given byp=p0+Pz+t z2/2, wherep0

andP are constants. The vertical velocity thus satisfies

P =
d2W

dr2 +
1

r

dW

dr
+ Q. s11d

We assume thatW satisfies no-slip boundary conditions, and
that Q=1 at r =k / s1−kd andQ=0 at r =1/s1−kd. The con-
stantP is determined by requiring that there be no net mass
flux in the axial direction:

0 =E
k/s1−kd

1/s1−kd

rWsrddr. s12d

The solution may be expressed in terms of Kelvin functions
of order zero.31 If we write t PrG=g4, whereg is the strati-
fication parameter, then we have

Wsrd = a1 bersgrd + a2 beisgrd + a3 kersgrd + a4 keisgrd,

s13d

and the temperature is given by

Qsrd = g2a1 beisgrd − g2a2 bersgrd + g2a3 keisgrd

− g2a4 kersgrd + P. s14d

The coefficientsa1, a2, a3, anda4 are given in the Appendix.
The axial velocity and temperature profiles,Wsrd andQsrd,
are displayed in Figs. 1sad and 1sbd for various values ofg

ranging from 4sclose to conduction regimed to 16 sconvec-
tion regimed and fork=0.6. The base flow solutions can also
be computed by using the two-point boundary value problem
software SUPORT.32 The numerical solutions were checked
against the analytic formulass13d and s14d using theIMSL

software for the Kelvin functions. In the limitk→1, the
solutions approach those that are appropriate for a vertical

planar slot.30 The common solution for the azimuthal veloc-
ity in Eq. s8d is given by

Vsrd =
k

1 + k
F 1

s1 − kd2r
− rG . s15d

B. The disturbance equations

The primitive variables are written as the sum of the
base flow and a perturbed flow of the form

FIG. 1. Base flow for various values of the stratification parameterg: sad
velocity and sbd temperature. Here the dimensionless temperature isr
=k / s1−kd+z+1/2.
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In this formulation the disturbances are either toroidalsn
=0d or spiral snÞ0d with axial wavenumberK, frequency
−si, and growth rate sr. The radial eigenfunctions

ûsrd , v̂srd ,ŵsrd , ûsrd, andp̂srd are complex quantities and for
the determination of neutral stability, we setsr =0. Substitut-
ing s16d into s1d–s5d, subtracting the base flow and neglect-
ing terms that are quadratic or higher in the perturbation
amplitudes furnishes the linear stability governing equations,
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1

r
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G Prss + iKWdû + G PrsD Qdû
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r2Gû +
inSVG

r
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whereD=d/dr. Note that in Eq.s21d the stratification pa-
rameterg has been substituted in place of the dimensionless
vertical temperature gradientt as an independent parameter
of the problem. The choice is arbitrary, becauseg andt are
relatedst PrG=g4d, and in the present paperg is specified
directly ssee the work by Bergholz30 and Hart28d. These
equations are to be solved with homogeneous boundary con-
ditions at r =k / s1−kd and r =1/s1−kd. The phase function
sKz−nf+sitd in s16d with critical solution values forn, K,

and si completely determines the shape and kinematics of
the disturbance flow patterns at neutral stability. In particular,
the nondimensional axial phase speedC, the wavelengthl
normal to lines of constant phase, and the inclination anglec
of spiral cells with respect to the horizontal are given by

C =
− si

K
, l =

2p

G
, c = tan−1S n

rK
D ,

s22d
G = Îsn2/r2 + K2d,

whereG is the disturbance wavenumber normal to the lines
of constant phase. Note that the wavelength and inclination
angle for the asymmetric disturbances depend on the radial
coordinate; for a given mode of instability, spiral wavelength
sinclinationd will be shorterssteeperd when observed at the
inner wall than when observed at the outer wallssee the
work by Ali and Weidman15,33d.

III. NUMERICAL SOLUTION PROCEDURE

Equationss17d–s21d can be written as a set of 16 non-
linear first-order ordinary differential equations. This system
was solved using the boundary-value problem software pack-
age SUPORT sRef. 32d in combination with the nonlinear
equation solverSNSQE.34 Computations were performed in
double precision. Extensive code testing of theSUPORTpack-
age with theSNSQEsolver35 has been previously reported by
McFaddenet al.,36 Ali, 14 Ali and Weidman,15,33 and recently
by Ali et al.37 The eigenvalue problem may be written in the
implicit functional form

FsG,Ta,Pr,K,si,n,k,gd = 0. s23d

The parametersG, Pr, K, n, g, andk are usually fixed and
solution of the ordinary differential equations is obtained by
iteration on the eigenvalue pairsTa, sid. At fixed mode num-
ber n, a search is conducted to find the minimum Taylor
number over all wavenumberK, denoted here as Tan. Sample
neutral curves forg=4 and forn=0 and 1 are given in Figs.
2sad and 2sbd for k=0.6 and for different Grashof numbers.
Other sample curves corresponding tog=13 are shown in
Fig. 3 for different values of azimuthal mode number and
Grashof number. Critical conditions are then determined as
the minimum Tan over all positive and negative values ofn,
and the critical values so obtained are denoted by Tac, Gc,
Kc, and ssidc. Minimum values for Tac were determined by
incrementing the wavenumber in stepsDK=0.001 in the vi-
cinity of the extremum in order to obtain a more precise
determination ofKc. For the higher modes at large Grashof
numbers the integrations were extremely sensitive to the ini-
tial guess for the eigenvalue pair.

The use ofSUPORTsRef. 32d in combination with a root
finder such asSNSQEsRef. 34d allows a very accurate deter-
mination of the eigenvalue pairs, at the expense of requiring
good initial estimates for the eigenvalues. These estimates
can be obtained by continuation from previous solutions, as
we have done here. A popular alternative is to discretize the
equations by finite difference or spectral methods, and deter-
mine the complex eigenvalues=sr + isi by solving a matrix
eigenvalue problem. This is a robust approach that requires
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no initial guess, but the accuracy of the eigenfunction gener-
ally must be assessed by subsequent mesh refinement. In
contrast,SUPORT is a spatially adaptive technique that is
based on the use of local error estimates in the underlying
ordinary differential equation solver to obtain solutions with
specified accuracy.

IV. RESULTS AND DISCUSSION

The primary goal of this study is to track the evolution
of the instability of steady circular Couette flow with radial
heating in the convection regime from axisymmetric cells at
small Grashof number through a range of nonaxisymmetric
transitions with increasingG. Computations were carried out
for G.0, Pr=100, wide gapsk=0.6d, and for two stratifica-
tion parameterg=13 and 4. Some general comments with

respect to the overall results are given here. First, all critical
conditions were found in the range 1.457ølcø2.365 and
theseOs1d values verify that the gap widthL is the correct
length scale for the problem, regardless of gap size or incli-
nation angle of the spiral disturbances. Second, the critical
spiral modes were always associated with positive values of
n andsi corresponding to positive spiral inclination anglec
and downward axial speedC. Third, the critical stability
boundaries are searched for Grashof numbers up to 83104

and 23104 for g=13 and 4, respectively. Finally, the axi-
symmetric modes always have two critical solutions associ-
ated with positive or negativesi corresponding to downward
or upward drifting cells, respectively, and only the most un-
stable one is considered in the stability boundary.

In the present study we restrict out attention to the effect
of buoyancy on the centrifugal instability of steady circular
Couette flow at finite Taylor numbers. As an aside, we note
that the stability of the base flow with radial heating but
without rotationsTa=0d is characterized by both shear and
buoyant modes of instability. The shear modes are associated
with the inflection point in the vertical velocity profile, and
are relatively insensitive to Prandtl number. Critical Grashof
numbers for the axisymmetricsn=0d shear mode for Ta=0,
Pr=100, andk=0.6 are 8378.5, 11 546.9, and 365 485 for
g=0, 4, and 13, respectively. The buoyant modes are associ-
ated with the extremes in the vertical velocity profile, and are
prominent for large Prandtl numbers. For Ta=0, Pr=100,
and k=0.6 there are upward driftingssi ,0d axisymmetric
modes withG=643.02, 703.67, and 4590.1 forg=0, 4, and
13, respectively, and downward driftingssi .0d axisymmet-
ric modes withG=968.79, 1021.3, and 6478.5 forg=0, 4,
and 13, respectively. The effects of rotation on the shear and
buoyant modes are outside the scope of this paper, and will
be described in a separate publication.

The critical stability boundary separating stable from un-
stable circular Couette flow in Ta-G space forg=13 is pre-

FIG. 2. Neutral stability curves forg=4 and for various values of Grashof
number forsad axisymmetric modesn=0d and sbd spiral modesn=1d.

FIG. 3. Samples of the neutral stability curves for different modes at various
Grashof numbers forg=13.
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sented in linear-log form in Fig. 4. IncreasingG stabilizes
each axisymmetric mode up to the first onset of spiral insta-
bility. Note that dashed and solid lines for then=0 mode
correspond to cells drifting upwardsC.0d and downward
C,0, respectively. The critical curves progressively lose
stability to spiral modesn=1–6 with increasing Grashof
number. The critical Taylor and Grashof numbers at the in-
tersection between the modes are given in Table I. Note also
that asG increasesn increases up to 3 where the flow is
destabilized, and further increases inG tend to stabilize the
flow with increasingn up to 6. On the other hand, the sta-
bility boundaries forg=4 given in Fig. 5 exhibit strong de-
stabilization of the axisymmetric mode. Here the critical
curve bifurcates to spiral mode ofn=1 only and the current
search shows no evidence of higher modes up toG
=20 000. Observe that comparison between Figs. 4 and 5
shows that the effect of increasing the stratification param-
eter g is to stabilize the flow. For example, atn=0 andG
=5 the critical Taylor numbers are 2650.97 and 3001.08 for
g=4 and 13, respectively, which indicates that asg tends to
zerosconduction regimed at small Grashof numbers, Ta tends
to the critical value of Taylor vortices Ta=2572.00.

The evolution of critical axial phase speeds, disturbance
wavelengths, and spiral inclination angles along the stability
boundary are given in Figs. 6–8, respectively. These figures
compare two stratification parameter results for Pr=100 and
k=0.6. The values forlc and cc were computed from Eq.

s22d at a radial position very near the outer cylindrical wall.
Thus the spiral wavelengths and inclination angles are in-
dicative of what one would observe from outside a transpar-
ent annulus using particle suspensions to visualize the flow
sWeidman38d in a laboratory experiment. The axial phase
speeds presented in Fig. 6 show that increasing the Grashof
number reduces upward drift of the cells, but bifurcation to
the spiral modes at higher Grashof number induces succes-
sively downward axial propagation speeds with weak discon-
tinuities across each transition fromn=2 up to 6 forg=13 as
shown in Fig. 6sad. However, the discontinuities are clear
betweenn=0 and 1 forg=4 fFig. 6sbdg. Instability wave-
lengths presented in Fig. 7 change fromlc=1.822 for weakly
heated cells across the spiral modes to maximum valueslc

=2.365 for g=13 and fromlc=1.985 to 15.645 forg=4.
One observes, particularly forg=13 in Fig. 7sad, that the
wavelengths of successive helical modes grow continuously
and then suddenly shrink to admit a new counterrotating cell
pair into the annulus. Figure 8 shows the evolution of spiral
inclination angle. Atg=13 the heated horizontal cells give
way to spirals which tilt successively upward with the ad-
mission of each new helical wave; the terminal spiral mode
angle is 55° as seen in Fig. 8sad. However, in Fig. 8sbd for
g=4 the terminal spiral mode angle is 85°, which is achieved
for the first mode.

We conclude the discussion with a presentation of dis-

FIG. 4. Critical stability boundaries forg=13 showing the flow bifurcation
from the axisymmetric modesn=0d to spiral modesn.0.

TABLE I. The critical points of Taylor and Grashof numbers at the intersection points between the different
bifurcating modes forg=13.

n=0, C.0
n=0, C,0

n=0, C,0
n=1

n=1
n=2

n=2
n=3

n=3
n=4

n=4
n=5

n=5
n=6

Tac 3015 3071 3290 2 962 2 852 2 928 3 211

Gc 600 1325 7500 14 625 22 600 35 000 62 000

FIG. 5. Critical stability boundaries forg=4 showing the flow bifurcation
from the axisymmetric modesn=0d to spiral moden=1.
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turbance velocity vector fields and disturbance temperature
contours. In Figs. 9 and 10 these fields are projected onto a
meridional section over one vertical wavelength. In each
frame the vertical wavelength has been scaled to a common
height for ease of comparison. For the velocity vector fields
portrayed in Fig. 9 the Grashof number increases from left to
right following the evolution from approximate Taylor cells
sn=0d through six examples of mixed convection to the
asymmetric mode forn=6 shown in the final frame. The
intervening spiral modes exhibit overlapping cells that are
radially tilted outwards. Figure 10 shows the evolution of
disturbance temperature contours exactly out of phase with
their disturbance velocity counterparts in Fig. 9. The neatly
stacked temperature cells in Fig. 10sad for slightly heated
flow become skewed and overlapping for the spiral modes
with increasingn.

V. CONCLUSIONS

The convection regime base flow has been derived and
tested for different stratification parameters. The effect of
this base flow on the stability of Taylor vortices has been
determined for two stratification parametersg=4 and 13, for
a wide gap vertical annulusk=0.6, and for Pr=100. The
introduced stratification parameterg tends to stabilize the
Taylor vortices. However, forg=13, as the Grashof number
increases the stabilization effect continues through the axi-
symmetric mode only; destabilization occurs forg=4 for the
same mode. Furthermore, the axisymmetric modes always
have two critical solutions, one corresponding to upward

FIG. 6. A comparison of the evolution of vertical phase propagation speeds
acrosssad the six spiral modes forg=13 andsbd the one spiral mode for
g=4.

FIG. 7. A comparison of the evolution of wavelengths normal to the phase
lines acrosssad the six spiral modes forg=13 andsbd the one spiral mode
for g=4.
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moving cells and the other to downward moving cells. The
stability boundaries in Taylor–Grashof space are obtained
and displayed in Figs. 4 and 5 forg=13 and 4, respectively.
For g=13, six asymmetric modes are obtained where each
mode starts with a destabilization effect followed by stabili-
zation up to the intersection with the next higher mode in a
spikelike shape directed downwards. This mechanism con-
tinues up to mode number 4. After that, only stabilization of
the flow occurs. Forg=4, only two modes are foundsn
=0,1d with a destabilization influence throughout the region
of Grashof number studied in this paper. Finally, as the mode
numbers successively increasesn=2 and up forg=13 and
n=1 for g=4d the terminal spiral phase speed becomes al-
most independent of the critical Grashof number.
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APPENDIX: THE BASE STATE

Here we give the coefficients for the velocityWsrd and
temperatureQsrd in the base state. The velocity is given by

Wsrd = a1 bersgrd + a2 beisgrd + a3 kersgrd + a4 keisgrd,

sA1d

and the temperature is given by

Qsrd = g2a1 beisgrd − g2a2 bersgrd + g2a3 keisgrd

− g2a4 kersgrd + P. sA2d

The sreal-valuedd Kelvin functions ber, bei, ker, and kei sat-
isfy the equations,31

SD2 +
1

r
DDbersgrd + g2 beisgrd = 0, sA3d

SD2 +
1

r
DDbeisgrd − g2 bersgrd = 0, sA4d

SD2 +
1

r
DDkersgrd + g2 keisgrd = 0, sA5d

SD2 +
1

r
DDkeisgrd − g2 kersgrd = 0, sA6d

with D;d/dr. Applying the boundary conditions

Wsk/h1 − kjd = Ws1/h1 − kjd = Qs1/h1 − kjd = 0,

Qsk/h1 − kjd = 1,

we obtain the linear system

1
bersj1d beisj1d kersj1d keisj1d
beisj1d − bersj1d keisj1d − kersj1d
bersj2d beisj2d kersj2d keisj2d
beisj2d − bersj2d keisj2d − kersj2d

21
a1

a2

a3

a4

2
=1

0

h1 − Pj/g2

0

− P/g2
2 , sA7d

wherej1=gk / s1−kd and j2=g / s1−kd. The solution to the
linear system can be expressed in terms of the coefficients,

Arr = bersj1dkersj2d − bersj2dkersj1d,

Air = beisj1dkersj2d − beisj2dkersj1d,

Ari = bersj1dkeisj2d − bersj2dkeisj1d,

FIG. 8. A comparison of the evolution of spiral inclination angles acrosssad
the six spiral modes forg=13 andsbd the one spiral mode forg=4.
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Aii = beisj1dkeisj2d − beisj2dkeisj1d.

The determinantD of the linear system reduces to

D = Ari
2 + Arr

2 + Aii
2 + Air

2 − 2fbersj1dbeisj2d

− bersj2dbeisj1dgfkersj1dkeisj2d − kersj2dkeisj1dg,

sA8d

and the solution is given by

g2Da1 = Psfkersj2d − kersj1dgfAir − Arig + fkeisj2d

− keisj1dgfArr − Aiigd + keisj2dfAii − Arrg

+ kersj2dfAri − Airg, sA9d

FIG. 9. Evolution of the disturbance velocity vector fields in a meridional section. The left wall of each figure locates the outer cylinder. Vertical wavelengths
have been scaled to equal height. The actual wavelengths can be computed from the critical conditions:sad Tac=3001,Gc=3, Kc=3.45; sbd Tac=2847,Gc

=4500, Kc=3.456; scd Tac=2740, Gc=11 220,Kc=3.33; sdd Tac=2709, Gc=18 000,Kc=3.23; sed Tac=2764, Gc=26 000,Kc=3.071; sfd Tac=2974, Gc

=45 000,Kc=2.32; sgd Tac=3253,Gc=70 000,Kc=1.89.

FIG. 10. Evolution of the disturbance
temperature contours in a meridional
section. See caption of Fig. 9 for criti-
cal conditions.
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g2Da2 = Psfkersj2d − kersj1dgf− Arr − Aiig + fkeisj2d

− keisj1dgfAir + Arigd + keisj2df− Air − Arig

+ kersj2dfArr + Aiig, sA10d

g2Da3 = Psfbersj2d − bersj1dgf− Air + Arig + fbeisj2d

− beisj1dgfArr + Aiigd + beisj2df− Aii − Arrg

+ bersj2dfAir − Arig, sA11d

g2Da4 = Psfbersj2d − bersj1dgfAii − Arrg + fbeisj2d

− beisj1dgf− Air − Arigd + beisj2dfAir + Arig

+ bersj2dfArr − Aiig. sA12d

From the representationsA1d for W, we then find

E
k/s1−kd

1/s1−kd

rWsrddr = a1I1 + a2I2 + a3I3 + a4I4, sA13d

where31

I1 =E
k/s1−kd

1/s1−kd

r bersgrddr = U − j

Î2g2
fber1sjd − bei1sjdgU

j=j1

j=j2

,

sA14d

I2 =E
k/s1−kd

1/s1−kd

r beisgrddr = U − j

Î2g2
fbei1sjd + ber1sjdgU

j=j1

j=j2

,

sA15d

I3 =E
k/s1−kd

1/s1−kd

r kersgrddr = U − j

Î2g2
fker1sjd − kei1sjdgU

j=j1

j=j2

,

sA16d

I4 =E
k/s1−kd

1/s1−kd

r keisgrddr = U − j

Î2g2
fkei1sjd + ker1sjdgU

j=j1

j=j2

.

sA17d

Setting the flux equal to zero in Eq.sA13d then gives a linear
equation forP, which completes the solution of the base
flow.
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