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Abstract

One argument often used against global warming is that the global tem-
perature record is too noisy to allow a clear determination of the signal. This
paper presents two models for the signal which suggest that: (1) the warming
is accelerating, (2) the warming is related to the growth in fossil fuel emissions,
and (3) the warming in the last 146 years has been at least 10 times greater
than the noise level. One model uses a constant rate for the acceleration and
the other an exponential whose rate constant is exactly one half that of the
growth in fossil fuel emissions. The two models can be viewed as best case and
worst case scenarios for extrapolations into the future, but the data measured
so far cannot reliably distinguish between them.

1 Introduction

Measurements by C. D. Keeling and his colleagues [7] at the Mauna Loa Observatory
in Hawaii show that in the years 1959-2001 the atmospheric CO2 concentration has
risen from 316 to 371 parts per million by volume, an increase of 17.4%. The
main source of this increase is thought to be fossil fuel emissions. Since CO2 is a
strong greenhouse gas, it is generally agreed that these additions to the atmosphere
should produce some global warming, but there is considerable disagreement over
the magnitude of the effect.

Figure 1 is a plot of annual global average tropospheric temperature anomalies
(relative to the average for 1961-1990) for the years 1856-2001. These data were
computed and tabulated by P. D. Jones and his colleagues [5, 6] at the Climatic
Research Unit of the University of East Anglia. They can be obtained online at
http://www.cru.uea.ac.uk/cru/cru.htm. The horizontal lines indicate the average
anomaly ± one standard deviation, i.e., (−0.145 ± 0.231) ◦C. Before 1980, it was
possible to argue that the apparent increase was too small, relative to the scatter
in the data, to indicate a systematic trend, but measurements over the last two
decades have removed much of the doubt about the warming.
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Figure 1: Annual global average temperature anomalies (1856-2001). Each anomaly
is the average temperature for that year minus the average for the period 1961-1990.

2 Polynomial Models

Figure 2 gives a plot of the least squares fit of the straight line model

T (t − t0) = T0 + C1(t − t0) , with t0 ≡ 1856.0 , (1)

where t is time (measured in years A.D.) and T is temperature anomaly (measured
in ◦C). For all of the fits in this paper, the zero point of the time scale was shifted
to epoch 1856.0, which is the beginning of the record, and each yearly average was
assigned to the mid-point of its corresponding year. The parameters estimates were

T̂0 = (−0.463± .023) [◦C] , Ĉ1 = (4.36± .28) × 10−3 [◦C/yr] . (2)

The residual time series, shown in Figure 3, exhibits a quasi-periodic oscillation
about a concave upward base line. The last property is not obvious by inspection
but is strikingly confirmed by a Fourier power (variance) spectrum. Figure 4 gives
the periodogram of the residuals, truncated at frequency 0.10 yr−1 rather than
0.50 yr−1 because there were no high frequeny features comparable to the two
low frequency peaks. The periods corresponding to the centers of those peaks are
τ0 ≈ 143 years and τ1 ≈ 62.5 years. Since the total length of the time series was
only 146 years, the first peak is an obvious indicator that the straight line is an
inadequate base line.

If the straight line, which represents warming with a constant rate C1, will not
do, then the next logical candidate for a base line is a quadratic

T (t − t0) = T0 + C1(t − t0) + C2(t − t0)
2 , (3)

which represents warming with a constant acceleration C2. The least squares esti-
mates for this model were

T̂0 = −0.311± .031 [◦C] , Ĉ1 = (−1.88± .97) × 10−3 [◦C/yr] ,

Ĉ2 = (4.27± .64) × 10−5 [◦C/yr2] .
(4)
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Figure 2: Straight line fit to the global temperature anomalies.

Figure 3: Residual time series for the fit in Figure 2.
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Figure 4: Truncated (in frequency) periodogram for the residuals in Figure 3.

The relatively large uncertainty in Ĉ1 suggests that a reduced quadratic model

T (t − t0) = T0 + C2(t − t0)
2 (5)

might be indicated by the data. The estimates for that fit were

T̂0 = −0.363± .015 [◦C] , Ĉ2 = (3.06± .16) × 10−5 [◦C/yr2] , (6)

and a formal F-test accepts the null hypothesis C1 = 0 at the 95% level of signifi-
cance [11]. Thus, the data seem to demand a monotonically increasing, accelerated
warming. Figure 5 shows both fits, and Figure 6 shows the residual time series for
the reduced quadratic fit.

Figure 7 gives the periodogram of the residuals in Figure 6. It is dominated
by a single peak whose central frequency corresponds to a period τ1 ≈ 61.5 years.
Since there are ≈2.4 repetitions of this cycle in the record, it almost certainly
represents a real oscillation. Attempts [10, 11] to accomodate this variation by
fitting higher order polynomials were ineffective for polynomials of order 3 and 4.
That is, no statistically significant reduction in the sum of squared residuals was
obtained, and the uncertainties in the parameter estimates were almost as large as
the estimates themselves. That situation changed for a 5th order polynomial (6 free
parameters) which was able to capture the variation, with statistical significance,
but high order polynomial behavior is rare in nature whereas cycles are ubiquitous.
And this particular cycle has previously been noted by Mitchell [9], who was using
an older, cruder temperture record, and by Schlesinger and Ramankutty [16], who
suggested that “the oscillation arises from predictable internal variability of the
ocean-atmosphere system.” Even though the cause of the cycle is not known, it is
very important because a cycle with the same period occurs in the record of fossil
fuel CO2 emissions which are widely thought to be driving the global warming.
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Figure 5: Fits of the full quadratic model (3) and the reduced quadratic model (5)
to the global temperature anomalies.

Figure 6: Residual time series for the reduced quadratic fit in Figure 5.
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Figure 7: Truncated (in frequency) periodogram of the residuals in Figure 6.

3 The Fossil Fuel Connection

Figure 8 is a plot of the annual global total fossil fuel emissions of CO2, measured in
millions of metric tons of carbon [MtC]. These data, compiled by Marland, Boden,
and Andres [8], can be found at http://cdiac.ornl.gov/trends/emis/em cont.htm.
The solid curve is a nonlinear least squares fit of the model

P (t − t0) =

{

P0 + P1 sin

[

2π

τ1
(t − t0 + θ1)

]}

eα(t−t0) , (7)

with free parameters P0, P1, α, τ1, θ1. Although it looks complicated, it represents
a simple exponential base line with a superposed sinusoidal oscillation whose am-
plitude is growing with the same exponential rate as the base line. The parameter
estimates were

P̂0 = 133.8± 5.0 [MtC] , P̂1 = 25.4± 1.6 [MtC] ,

α̂ = 0.02814± .00034 [yr−1] , τ̂1 = 64.9± 1.5 [yr] ,

θ̂1 = 26.6± 2.7 [yr] ,

(8)

and the fit explained 100 × R2 = 99.73% of the total variance, which is quite
remarkable since the model had no provision for the temporary dislocations, quite
visible in the plot, coinciding with the two World Wars, the Great Depression and
the OPEC oil embargo.

Even more remarkable is the fact that the oscillation, with its sign reversed (i.e.,
with its phase shifted by exactly a half cycle), appears also in the global temperature
record. The solid curve in Figure 9 was obtained by a linear least squares fit of

T (t − t0) = T0 + C2(t − t0)
2 + A1 sin

[

2π

64.9
(t − t0 − 5.85)

]

, (9)

with free parameters T0, C2, A1. The period of the sinusoid is exactly the same
as the estimate τ̂1 obtained by the nonlinear fit of (7) to the emissions data, and
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Figure 8: Annual global total fossil fuel CO2 emissions. The curve is the fit of the
exponential/sinusoidal model (7).

Figure 9: Fits of the quadratic/sinusoidal model (9) and the exponential/sinusoidal
model (10) to the global temperature anomalies.
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the phase constant -5.85 has been set to make the oscillation exactly one half cycle
ahead (or behind) the one obtained for that fit. Thus, maxima in the temperature
oscillation correspond to minima in the emissions oscillation and vice versa. This
inverse correlation has previously been noted by Rust and Kirk [15] and Rust and
Crosby [14] who argued that it might represent a Gaiaen feedback by which in-
creasing temperatures would cause reductions in fossil fuel production. That may
be wishful thinking, however, and it must be admitted that the cause of the os-
cillation is unknown. But its occurrence in both records is strong evidence for a
connection between the warming and the fossil fuel emissions.

We have seen that the temperature data seem to demand a monotonically in-
creasing base line which we modelled with the reduced quadratic (5). But the data
are fit just as well by an exponential base line whose rate constant is exactly one
half of the α̂ obtained by fitting (7) to the emissions data. The dashed curve in
Figure 9 was obtained by a linear least squares fit of

T (t − t0) = T0 + C2 exp [0.01407(t− t0)] + A1 sin

[

2π

64.9
(t − t0 − 5.85)

]

, (10)

with free parameters T0 , C2 , A1. The estimates for these parameters, together
with those for the fit of (9), are given in Table 1. Those results and the two curves

Table 1: Parameter estimates and some diagnostics for the models (9) and (10).

Param. Red. Quadratic Exponential

T̂0 −0.380± .013 [◦C] −0.510± .017 [◦C]

Ĉ2 (3.27 ± .14) × 10−5 [◦C/yr2] 0.1094± .0045 [◦C]

Â1 0.105± .013 [◦C] 0.104± .013 [◦C]

100R2 80.71% 80.81%

σ̂r 0.1023 [◦C] 0.1021 [◦C]

T̂146 − T̂1 0.8300 [◦C] 0.8740 [◦C]

in the figure indicate that both models are equally acceptable, with each explaining
approximately 80.75% of the variance in the record. But the two models will diverge
when they are extrapolated into the future because the exponential base line will
accelerate much faster than the quadratic. At the present time, they might be
considered as best case and worst case scenarios for future warming.

The fact that the data are well modelled by an exponential with a rate exactly
half that of the one for the fossil fuel emissions may be only a coincidence. If the
constant rate 0.01407 yr−1 is replaced in (10) by a variable β, and the resulting
expression is fit, with free parameters T0 , C2 , A1 , β, to the data, then the per-
centage of variance explained increases only to 80.94%, and the estimate for β is
β̂ = (0.0165 ± .0025) yr−1. Since the rate 0.01407 lies just inside the ±1σ un-

certainty interval for β̂, we can say that if an exponential base line is the correct
model, then the data demand a rate approximately one half that for the fossil fuel
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Figure 10: Residual time series for the fit of the quadratic/sinusoidal model (9) to
the global temperature anomalies.

emissions, but it is hard to imagine a dynamical process connecting the two records
that would exactly halve that rate.

The last two rows in Table 1 give the residual standard errors,

σ̂r =

√

√

√

√

1

143

146
∑

i=1

(

Ti − T̂i

)2

, (11)

and the net increases, over the length of the record, in the model predicted tem-
peratures. If we take the former as a measure of the noise in the record and the
latter as a measure of the total warming, then the two models predict that the total
warming so far has been ≈8.34 times greater than the noise level.

4 Completing the Model for the Signal

The fits in Figure 9 track the data well, but neither produces white noise residuals.
The residuals for the quadratic model are given in Figure 10, and the periodogram
and cumulative periodogram [3, Chapt. 7] of those residuals are given in Figure
11. The two diagonal lines plotted with the cumulative periodogram define the 95%
Kolmogorov-Smirnov bounds for white noise. Since the cumulative periodogram
lies outside these bounds at ≈34% of the frequencies, the white noise hypothesis
is resoundingly rejected. Comparing the periodogram with the one in Figure 4
shows that fitting (9) completely removed the two dominant peaks and that the
two insignificant looking bumps at frequencies ≈0.05 and ≈0.10 yr−1 in Figure 4
reappear as the two most significant peaks in Figure 11. These peaks are responsible
for most of the cumulative periodogram’s excursion outside the 95% white noise
band.

The detection of temperature oscillations with periods 21, 16, 6, and 5 years has
been reported by Ghil and Vautard [4], but their findings were sharply challenged
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Figure 11: Periodogram and cumulative periodogram of the residuals in Figure 10.
Note the large difference between the vertical scale of the periodogram here and the
one in Figure 4.

by Elsner and Tsonis [2]. The debate was continued, inconclusively, by Allen, Read
and Smith [1] and by Tsonis and Elsner [17]. The principle guiding the current effort
was to incorporate into the models (9) and (10) just enough of the cycles indicated
in Figure 11 to reduce the residuals to white noise. To do so, it was necessary to
include the three largest peaks which were at frequencies 0.0487, 0.109, and 0.210
yr−1, i.e., at periods τ2 = 20.5, τ3 = 9.22, and τ4 = 4.77 yr. This gave, for the
quadratic base line, the model

T (t − t0) = T0 + C2(t − t0)
2 + A1 sin

[

2π
64.9 (t − t0 − 5.85)

]

+A2 sin
[

2π
20.5(t − t0 + θ2)

]

+A3 sin
[

2π
9.22(t − t0 + θ3)

]

+A4 sin
[

2π
4.77(t − t0 + θ4)

]

,

(12)

with 6 additional free parameters A2, θ2, A3, θ3, A4, θ4. A similar expression
(17) can be written for the exponential base line model. Both models can be fit by
linear least squares because each new sinusoidal term can be rewritten

Aj sin

[

2π

τj

(t − t0 + θj)

]

= Bj sin

[

2π(t − t0)

τj

]

+ Dj cos

[

2π(t − t0)

τj

]

, (13)

where the Bj and Dj are equivalent (to Aj and θj), new free parameters defined by

Bj = Aj cos

(

2πθj

τj

)

, Dj = Aj sin

(

2πθj

τj

)

, j = 2, 3, 4 . (14)

Since the new parameters appear linearly in the model, the fit can be done by linear
least squares, and the estimates B̂j and D̂j can be converted into estimates of Aj
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and θj by the inverse relations

Âj = +

√

B̂2 + D̂2 , θ̂ =
τj

2π
tan−1

(

D̂j

B̂j

)

, j = 2, 3, 4 . (15)

More details on the use of these tranformations and on converting the uncertainties
in the B̂j and D̂j to equivalent uncertainties in the Âj and θ̂j can be found in two
recent tutorial papers by Rust [12, 13].

Some of the parameter estimates and statistics for the fit of of the expanded
model (12) are given in Table 2, together with the estimates for the simpler model

(9) for comparison. The estimated phase shifts θ̂2, θ̂3, θ̂4 were not included because

Table 2: Parameter estimates and some diagnostics for the models (9) and (12).

Param. 3-Param. Model 9-Param. Model

T̂0 −0.380± .013 [◦C] −0.382± .012 [◦C]

Ĉ2 (3.27± .14) × 10−5 [◦C/yr2] (3.28 ± .12)× 10−5 [◦C/yr2]

Â1 0.105± .013 [◦C] 0.106± .011 [◦C]

Â2 0.041± .011 [◦C]

Â3 0.042± .011 [◦C]

Â4 0.033± .011 [◦C]

SSR 1.4975 [◦C2] 1.1576 [◦C2]

100R2 80.71% 85.09%

σ̂r 0.1023 [◦C] 0.09192 [◦C]

T̂146 − T̂1 0.8300 [◦C] 0.9193 [◦C]

their uncertainties are not reliable indicators of the significance of the cycles. The
estimated amplitudes Â2 , Â3 , Â4 and their uncertainties do indicate the strength
of the cycles, and in all three cases the amplitudes are at least 3 times larger than
their corresponding uncertainties. This suggests statistical significance, and the
standard F-test confirms that the 6 new free parameters do produce a significant
reduction in the sum of squared residuals. Let the null hypothesis be H0 : A2 =
A3 = A4 = θ2 = θ3 = θ4 = 0. Then, with m = 146, n = 9, and k = 6 we have

u =
(SSR)H − (SSR)F

(SSR)F

×
m − n

k
= 6.703 > 2.165 = F0.95(k, m − n) , (16)

so H0 is rejected.
The fit is shown in Figure 12. Although the three new oscillations are not readily

discernable in the data, they are quite obvious in the fit, so they look somewhat
contrived. But a good argument for their reality is the fact that including them
reduces the residuals, shown in Figure 13, to normally distributed white noise.
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Figure 12: Fit of the quadratic base line model (12) to the temperature anomalies.

Binning the residuals in a histogram and applying the χ2 test showed them to
be acceptably normal, and estimating their autocorrelation function revealed no
significant correlations at lags greater than 0. The periodogram and cumulative
periodogram are shown in Figure 14. The cumulative periodogram lies outside the
95% Kolmogorov-Smirnov bounds at only 3.60% of the frequencies, so the residuals
are an acceptable realization of normally distributed white noise.

Similar results are obtained for the exponential base line model,

T (t − t0) = T0 + C2 exp [0.01407(t− t0)] + A1 sin
[

2π
64.9 (t − t0 − 5.85)

]

+

4
∑

j=2

Aj sin
[

2π
τj

(t − t0 + θj)
]

.
(17)

The fit, which is graphically almost indistinguishable from the one in Figure 12,
explains 85.22% of the variance in the data. The cumulative periodogram of the
residuals strays outside the 95% white noise bounds at only 3.23% of the frequencies.
The estimated residual standard error is σ̂r = 0.09152 ◦C, and the estimated total
warming is T̂146−T̂1 = 0.9634 ◦C, so for both models the total warming for the period
1856-2001 has been at least 10 times greater than the noise level in the record.

5 Extrapolating into the Future

Both models (12) and (17) reduce the temperature anomaly residuals to normally
distributed white noise, so both fits are adequate representations of the signal. The
two fits differ very little over the period 1856-2001, but, as can be seen in Figure 15,
they diverge quickly when extrapolated into the future. The last minimum of the
64.9 year oscillation occurred at epoch 1975.4, so the period 1975-2001 corresponds
to a time when the cycle was reinforcing the base line increase. This condition will
continue, at an abated rate, until the cycle’s next maximum at epoch 2007.9. For
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Figure 13: Residual time series for the fit in Figure 12.

Figure 14: Periodogram and cumulative periodogram of the residuals in Figure 13.
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Figure 15: One hundred year extrapolations for the two models (12) and (17).

the next 32.5 years after that, the cycle will decline and partially offset the base
line increase, an effect clearly visible in the quadratic extrapolation, but less so in
the exponential extrapolation. After that the exponential increases so rapidly that
the oscillation is scarcely discernible.

These extrapolations assume that the dynamics causing the signals will continue
unchanged into the future. Fossil fuel reserves are probably sufficient to support a
continuation of the exponential growth observed in Figure 8, though doing so might
require massive switches from petroleum fuels back to coal and its derivatives. The
causes of the 64.9 year oscillations are unknown, but their persistence and coherence
in both records for 2.25 cycles certainly suggest stability. But there remains the
possibility that warming might trigger other events which would produce positive
feedbacks. For example, an extensive thawing of the permafrost in the Arctic and/or
the ignition of peat in the soil by hot forest fires in the tropical and temperate regions
might add new transfers of CO2 to the atmosphere which would not be subject to
human control. Such events might have disasterous consequences, especially if the
exponential base line scenario is correct.
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