
1. Introduction

Key comparisons are interlaboratory comparisons
that serve as technical bases for Mutual Recognition
Arrangements (MRA) between national metrology
institutes (NMIs) [1]. Key comparisons carried out by
the Consultative Committees (CCs) of the International
Committee of Weights and Measures (CIPM) or the
Bureau International des Poids et Mesures (BIPM) are
referred to as CIPM key comparisons. Key compar-
isons carried out by regional metrology organizations
(RMO) are referred to as RMO key comparisons. The
guidelines for carrying out CIPM key comparisons are
given in reference [2].

The objectives of a CIPM key comparison are
described in reference [1]. We consider two interpreta-
tions of these objectives. A common interpretation is
summarized by Nielsen [3] as follows: “The purpose

of measurement intercomparisons between NMIs is to
test, whether measurements performed in the partici-
pating countries are consistent taking into account the
uncertainties assigned to the measurements. If an
inconsistency is detected, the participating countries
should take the corrective actions needed to obtain
consistency. Otherwise, measurement results exchanged
across borders cannot be considered equivalent without
adding a ‘between countries uncertainty,’ which would
be in disharmony with the concept of the SI system of
units.”

This paper is based on a second interpretation of the
objectives of a CIPM key comparison: Generally,
the participants of a CIPM key comparison are NMIs
that are members of the appropriate Consultative
Committee; at least some of these NMIs provide
realizations of the SI values to establish the traceability
of measurements made in their countries. The purpose
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of a CIPM key comparison is to establish the key com-
parison reference value1, the degrees of equivalence2,
and their associated uncertainties on the basis of the
data provided by the participants.

This paper is limited to a simple CIPM key compar-
ison where the common measurand is a physical quan-
tity of stable value during the comparison. Many CIPM
key comparisons are not simple because it is often
impractical or impossible to realize exactly the same
measurand for or by all participants. We use the symbol
Y for the stable value of the measurand. The data
provided by the participants of a simple CIPM key
comparison are paired results and standard uncertain-
ties [x1, u(x1)], …, [xn, u(xn)], where the results x1, …, xn

are measurements of Y. The outputs of a statistical
analysis of these data are the key comparison reference
value xR, the degree of equivalence di = xi – xR of the
result xi, the degree of equivalence di, j = di – dj = xi – xj

of the results xi and xj, and their associated standard
uncertainties u(xR), u(di), and u(di, j), respectively, for
i, j = 1, 2, …, n and i ≠ j [1]. The key comparison refer-
ence value xR is an estimate forY. An estimate for Y is a
combined result of measurement determined from the
data [x1, u(x1)], …, [xn, u(xn)].

An understanding of the difference between sam-
pling probability distributions, used in classical
(frequentist) statistics, and state-of-knowledge proba-
bility distributions, used in Bayesian statistics, is neces-
sary for proper analysis and interpretation of the data
from a key comparison. Briefly, they are defined as
follows. In classical statistics, the value of the measur-
and is assumed to be an unknown constant, often called
the true value, and each result of measurement is
regarded as a realization of a random variable with a
sampling distribution. A sampling distribution is a
probability distribution that describes the relative fre-
quencies of occurrence for all possible results of meas-
urement when the conditions of measurement are
hypothesized to be fixed at the intended levels [4]. The
metrologist relates the expected values of the sampling
distributions for the results of measurement to the value
of the measurand. A classical (frequentist) statistical

interpretation is a statement that relates the realized
measurements to what one might expect if the key
comparison could be repeated infinitely many times
and throughout these repetitions the hypothesized
sampling distributions continued to apply.

In Bayesian statistics, the measurement data are
given constants and the value of the measurand is a
random variable. A probability distribution for
the value of the measurand is a state-of-knowledge
distribution that describes the degrees of belief for all
possible values that could be attributed to the measur-
and [4]. The belief is based on all available information
including current results of measurement and scientific
judgment based on prior and other data. Similar state-
of-knowledge distributions apply to the other para-
meters involved in assessing the value of the measur-
and. A Bayesian interpretation is a statement that repre-
sents the state-of-knowledge about the value of the
measurand based on state-of-knowledge distributions
before measurements are made and a likelihood
function conditional on the current measurements [4].
The ISO Guide [5] is consistent with a Bayesian inter-
pretation of measurements but not with a classical
(frequentist) interpretation [4].

We refer to the results x1, …, xn as laboratory results.
The laboratory results x1, …, xn are regarded as reali-
zations of random variables x1, …, xn with sampling
distributions3. We use the symbols X1, …, Xn for the
expected values E(x1), …, E(xn) of the sampling distri-
butions of x1, …, xn, respectively. We refer to the
expected values X1, …, Xn as the laboratory expected
values. We use the symbols σ1, …, σn for the standard
deviations S (x1), …, S (xn) of the sampling distribu-
tions of x1, …, xn, respectively. Here S(xi) is the square
root of the variance V(xi) = E[xi – E(xi)]2 of the samp-
ling distribution of xi for i = 1, 2, …, n. The uncertain-
ties u(x1), …, u(xn) are statistical estimates of σ1, …, σn,
respectively.

References [1] and [2] do not discuss statistical
interpretations of the pairs [xR, u(xR)], [di, u(di)], and
[di, j, u(di, j)]. A statistical analysis of the data from a key
comparison and interpretation of its outputs requires
assumptions and models about the relationship between
the data [x1, u(x1)], …, [xn, u(xn)] and the value Y of the
measurand. In Sec. 2, we discuss two assumptions,
labeled as Assumption I and Assumption II, about the
relationship between the laboratory expected values
X1, …, Xn and Y. Then we discuss two classical statis-
tics models, a nonexistent laboratory-effects model
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1 “Key comparison reference value: the reference value accompa-
nied by its uncertainty resulting from a CIPM key comparison [1].”
2 “Degree of equivalence of a measurement standard: the degree to
which the value of a measurement standard is consistent with the key
comparison reference value. This is expressed quantitatively by the
deviation from the key comparison reference value and the uncer-
tainty of this deviation. The degree of equivalence between two
measurement standards is expressed as the difference between their
respective deviations from the key comparison reference value and
the uncertainty of this difference [1].”

3 We use the symbols x1, ..., xn for both the random variables and
their realized values.
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and a random laboratory-effects model, based on
Assumption I. Next, we propose a systematic laboratory-
effects model based on Assumption II. We describe the
key comparison reference value, the degrees of equiva-
lence, and their associated uncertainties determined
by each of the three statistical models. In Sec. 3 and
4, we discuss statistical interpretations of the pairs
[xR, u(xR)], [di, u(di)], and [di, j, u(di, j)] under the three
statistical models. Our conclusion is given in
Sec. 5.

2. Statistical Assumptions and Models for
the Relationship Between the Data and
the Value of the Measurand

In this section, we discuss statistical assumptions and
models for analyzing the data from a simple CIPM key
comparison to determine the key comparison reference
value, the degrees of equivalence, and their associated
uncertainties.

2.1 Assumptions About the Relationship Between
the Laboratory Expected Values and the
Value of the Measurand

One may either assume that the laboratory expected
values X1, …, Xn are all equal or allow for the possibil-
ity that X1, …, Xn may not be equal.

Assumption I: The expected values X1, …, Xn are all
equal. The Assumption I defined so far does not
specify the relationship between the results x1, …, xn

and Y. Therefore, in concert with Assumption I, it is
generally assumed that the common expected value is
equal to Y, i.e., X1 = … = Xn = Y. Under Assumption I,
the results x1, …, xn are subject to intralaboratory
variations only.

Assumption II: The expected values X1, …, Xn may
not be equal, i.e., Xi ≠ Xj for some i, j = 1, 2, …, n and
i ≠ j. Therefore, not all of X1, …, Xn may equal the
value Y of the measurand. The Assumption II defined
so far does not specify the relationship between the
results x1, …, xn and Y. Therefore, in concert with
Assumption II, it is generally assumed that Y is either
somewhere in the range of results x1, …, xn or in the

vicinity of this range4 [6]. Under Assumption II,
the results x1, …, xn are subject to both the intra-
laboratory variations represented by the uncertainties
u (x1), …, u (xn) and the interlaboratory variation
arising from the dispersion of X1, …, Xn about Y. The
differences (X1 – Y), …, (Xn – Y) are laboratory-effects
(biases) due to unrecognized sources of error, denoted
by b1, …, bn, in the results x1, …, xn. The biases are
common to all measurements in a particular laboratory
but may be different for different laboratories.

2.2 Assumption About the Uncertainties
Submitted by the Participants

The standard uncertainties u(x1), …, u(xn) submitted
by the participants of a key comparison are estimates
obtained by combining various estimated components
of uncertainty in determining the value Y of the measur-
and. A combined standard uncertainty u(xi) may be
unreliable for various reasons. For example, a classical
(frequentist) Type A component of u(xi) calculated from
a small number of independent measurements is
unreliable5 [5]. A Type A component of u(xi) based on
unjustified statistical assumptions may be unreliable. A
Type B component of u(xi) based on unreasonable
state-of-knowledge distributions may be unreliable. A
combined uncertainty u(xi) determined from an in-
complete measurement equation may be an underesti-
mate. The unreliability of estimated uncertainties
u(x1), …, u(xn) is a component of uncertainty in deter-
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4 If the expected value X1 were equal to the value Y of the measur-
and, then according to the ISO Guide, the interval [x1 ± 2u(x1)]
would represent an approximate range of the plausible values of Y.
Likewise, if X2 were equal to Y then the interval [x2 ± 2u(x2)] would
represent an approximate range of the plausible values of Y, and so
on for X3, X4, …, Xn.  It follows from Assumption II that any one or
more of the expected values X1, …, Xn may be close to or equal to
Y; therefore, the total interval consisting of the union of intervals
[xi ± 2u(xi)], for i = 1, 2, …, n, represents an approximate range of
the plausible values of Y.  However, most metrologists assign greater
belief-probability to the middle than to the ends of the total interval.
5 The unreliability of a classical (frequentist) estimate of uncertainty
arising from a small number of measurements is quantified by
degrees of freedom [5].
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mining the key comparison reference  value xR, the
degrees of equivalence di and di, j, and their associated
standard uncertainties. In this paper, we do not discuss
the additional uncertainty that arises from the unrelia-
bility of u(x1), …, u(xn). 

Classical (frequentist) statistical analyses and inter-
pretations discussed in this paper are based on the
assumption that the estimated uncertainties u(x1), …,
u(xn) are equal to the true standard deviations σ1, …, σn

of the sampling distributions of x1, …, xn, respectively.
Most metrologists make this assumption. For example,
the expression u(xW) = 1/√[Σi wi] for the standard
deviation of the weighted mean xW = Σi wi xi / Σi wi,
where wi = 1/u2(xi) for i = 1, 2, …, n, requires this
assumption.

Statistical analyses based on the ISO Guide regard a
laboratory expected value Xi as a variable with a state-
of-knowledge distribution having expected value xi and
standard deviation u(xi). Such analyses require the
assumption that the estimated uncertainties u(x1), …,
u(xn) are sufficiently reliable.

2.3 Classical (Frequentist) Statistics Models
Based on Assumption I

The weighted mean xW = Σi wi xi / Σi wi and the
expression u(xW) = 1/√[Σi wi], where wi = 1/u2(xi) for
i = 1, 2, …, n, are often used as the key comparison
reference value xR and its associated standard uncer-
tainty u(xR), respectively. The use of xW as xR and u(xW)
as u(xR) is based on the following classical (frequentist)
statistics model.

2.3.1 Nonexistent Laboratory-Effects Model
The results are regarded as realizations of the

random variables x1, …, xn, where

(1)

and ei = (xi – Y) is the error in xi for i = 1, 2, …, n. In
this model, the parameter Y is identified with the value
of the measurand and the errors e1, …, en are mutually
independently distributed random variables with
sampling distributions. The sampling distributions of
e1, …, en are generally assumed to be normal (Gaussian).
The expected values of e1, …, en are assumed to be
zero and the variances of e1, …, en are assumed to be
u2(x1), …, u2(xn), respectively. Under model (1) [repre-
sented by Eq. (1)], the expected value E(xi) is equal
to Y and the variance V(xi) is equal to u2(xi), for
i = 1, 2, …, n. Since the expected values of all results
are equal to Y, the model (1) is based on Assumption I.
In model (1), the results x1, …, xn are free of laboratory-

effects (biases). Therefore, we refer to it as a nonexist-
ent laboratory-effects model. The best least-squares
estimate for the parameter Y of the nonexistent
laboratory-effects model (1) is the weighted mean
xW = Σi wi xi / Σi wi , where wi = 1/u2(xi) for i = 1, 2, …, n.
The term best least-squares estimate6 means that the
estimate xW has the smallest variance among all esti-
mates of Y that are both linear functions of the results
x1, …, xn and have the expected value Y. The standard
deviation of the sampling distribution of xW is
u(xW) = 1/√[Σi wi]. Thus the key comparison reference
value xR based on model (1) is xW and u(xR) is u(xW).
The corresponding degrees of equivalence are
di = xi – xW and di, j = xi – xj, for i, j = 1, 2, …, n and
i ≠ j. The uncertainties u(di) and u(di, j) are determined
from the sampling distributions of x1, …, xn and xR

under model (1).

Note 1: When not all uncertainties u(x1), …, u(xn) are
sufficiently reliable estimates of the true standard
deviations σ1, …, σn, the true standard deviation of the
sampling distribution of the weighted mean xW may be
larger than the true standard deviation of the sampling
distribution of the arithmetic mean xA. Thus in this
case the weighted mean xW may be an inferior key
comparison reference value to the arithmetic mean xA.

2.3.2 Random Laboratory-Effects Model

The classical statistics model based on Assumption I
for the situation where the dispersion of results x1, …,
xn may be more than what can reasonably be attributed
to the intralaboratory variances u2(x1), …, u2(xn) is as
follows. The results are regarded as realizations of the
random variables x1, …, xn, where

(2)

bi = (Xi – Y) is the laboratory effect (bias) in xi and
ei = (xi – Xi) is the intralaboratory error in xi for i = 1, 2,
…, n. The classical statistics assumptions to relate the
results x1, …, xn to Y are as follows: the laboratory
biases b1, …, bn are regarded as random variables
having the same normal sampling distribution with
expected value zero and variance σb

2 ≥ 0, called inter-
laboratory variance; and b1, …, bn are assumed to be
mutually independent and independent of the errors e1,
…, en. The model (2) [represented by Eq. (2)] with
these assumptions is referred to as a random laboratory-
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,i ix Y e= +

6 Least-squares estimation does not require that the errors e1, …, en
and hence x1, …, xn have normal distributions.

,i i ix Y b e= + +



effects model [7]. Here the term random means that the
biases b1, …, bn are regarded as random variables with
the same sampling distribution that is assumed to be
normal with expected value zero and variance σb

2.
Under the random laboratory-effects model (2), the
expected value E(xi) is equal to Y and the variance V(xi)
is equal to σb

2 + u2(xi) for i = 1, 2, …, n. The non-
existent laboratory-effects model (1) is a special case of
the random laboratory-effects model (2) where σb

2 = 0,
which means that the biases b1, …, bn are all zero, i.e.,
X1 = … = Xn = Y.

A popular estimate for the parameter Y of model (2)
is the weighted mean7 xW = Σi wi xi / Σi wi, where
wi = 1/[sb

2 + u2(xi)] and sb
2 is an estimate for σb

2.
Reference [8] discusses various methods for determin-
ing sb

2. The estimate sb
2 inflates each of the intralabora-

tory variances u2(x1), …, u2(xn) just enough to account
for the dispersion of results x1, …, xn that is not
accounted for by model (1). Under the assumption that
the estimated variances sb

2 + u2(x1), …, sb
2 + u2(xn) are

regarded as the true variances of the sampling distribu-
tions of x1, …, xn, the best estimate of the parameter Y
of model (2) is the weighted mean xW and the standard
uncertainty associated with xW is u(xW) = 1/√[Σi wi],
where wi = 1/[sb

2 + u2(xi)] for i = 1, 2, …, n [9], [8].
Thus the key comparison reference value xR based
on model (2) is the weighted mean xW = Σi wi xi / Σi wi

and uncertainty u(xR) is u(xW) = 1/√[Σi wi], where
wi = 1/[sb

2 + u2(xi)] for i = 1, 2, …, n. The corresponding
degrees of equivalence are di = xi – xR = xi – xW and
di, j = xi – xj, for i, j = 1, 2, …, n and i ≠ j. The uncer-
tainties associated with the degrees of equivalence are
determined from the sampling distributions of x1, …, xn

and xR under model (2).
The advantage of model (2) relative to model (1) is

that it allows for the possibility that the dispersion
of results x1, …, xn may be more than what can reason-
ably be attributed to the intralaboratory variances
u2(x1), …, u2(xn). When the dispersion of x1, …, xn is
not more than what can reasonably be attributed to
u2(x1), …, u2(xn), the estimate sb

2 is zero. In that case,
model (2) yields the same xR and u(xR) as model (1).
Therefore, there is no disadvantage to using model (2)
in place of model (1).

The random laboratory-effects model (2) of classi-
cal statistics is conceptually faulty for the analysis of a
CIPM key comparison for the following reasons. First,

the participants of a CIPM key comparison are specific
NMI laboratories rather than randomly chosen from a
large population of laboratories. Therefore, the biases 
b1, …, bn may not be regarded as random variables with
the same sampling distribution. Second, the assumption
that the sampling distribution of the biases b1, …, bn is
a normal distribution with expected value zero may not
be justified. The next section introduces a new model
that does not assume that the biases b1, …, bn are
random variables with a normal sampling distribution.

2.4 A Model Based on Assumption II and
the ISO Guide

A statistical analysis of the data from a simple CIPM
key comparison based on Assumption II requires one to
account for the uncertainty that arises from the
unknown bias in a combined result of measurement that
is used as an estimate for Y. Before publication of the
ISO Guide, there was no generally accepted approach
to account for the uncertainty that arises from an
unknown bias. The approach proposed by the ISO
Guide to account for the uncertainty that arises from an
unknown bias is now generally accepted. So we have
used the ISO Guide to develop the following syste-
matic laboratory-effects model.

2.4.1 Systematic Laboratory-Effects Model

We start with a combined result of the form ∑i ai xi,
where Σi ai = 1, that is used as an initial estimate for Y.
This estimate requires the assumption that Y is within
the range of results x1, …, xn. We refer to the initial
estimate as the uncorrected combined result (UCR)
and denote it by xUCR = Σi ai xi. If ai = wi / Σi wi,
then xUCR is the weighted mean xW = Σi wi xi / Σi wi,
where wi = 1/u2(xi) for i = 1, 2, …, n. If ai = 1/n
for i = 1, 2, …, n, then xUCR is the arithmetic mean
xA = Σi xi / n. Let XUCR = Σi ai Xi be the expected value of
the sampling distribution of xUCR. According to
Assumption II, the result xUCR is subject to the bias
(XUCR – Y). The ISO Guide recommends that the result
xUCR should be corrected to counter its possible bias and
the uncertainty associated with the correction should be
included in the combined standard uncertainty associat-
ed with the corrected result. The bias (XUCR – Y) is an
unknown constant but the correction for bias, denoted
by C, is a variable with a state-of-knowledge proba-
bility distribution. If the expected value and standard
deviation of a state-of-knowledge probability distribu-
tion for the correction variable C are denoted by c and
u(c), respectively, then the correction applied to the
result xUCR to counter its possible bias is c and the
standard uncertainty associated with the correction is u(c).
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7 We did not introduce a new symbol for the weighted mean deter-
mined from model (2) because model (1) is a special case of model (2).



In order to specify a state-of-knowledge probability
distribution for the correction variable C, the labora-
tory expected values X1, …, Xn and the value Y of the
measurand are regarded as variables with state-
of-knowledge distributions and the data x1, …, xn and
u(x1), …, u(xn) are regarded as given constants. A
state-of-knowledge distribution for Xi represents the
state of knowledge about the value Y of the measurand
in the laboratory labeled i for i = 1, 2, …, n. The
expected value E(Xi) and standard deviation S(Xi) of the
variable Xi are assumed to be xi and u(xi), respectively,
for i = 1, 2, …, n [5], [4]. It follows that XUCR = Σi ai Xi

is a variable with a state-of-knowledge prob-
ability distribution. The expected value of XUCR is
E(XUCR) = Σi ai E(Xi) = Σi ai xi = xUCR. In the expression
(Y – XUCR) for the negative of bias, treated as a variable,
we replace XUCR with its expected value xUCR. Then a
probability distribution for C represents belief about the
possible values of (Y – xUCR), where xUCR is a constant
and Y is the variable. The belief about possible values
of Y is based on all available information including
results of measurement and scientific judgment. In
reference [6], we proposed a triangular distribution for
the correction variable C, with peak at xUCR and default
limits [x(1) – xUCR] = min{x1 – xUCR, …, xn – xUCR} and
[x(n) – xUCR] = max{x1 – xUCR, …, xn – xUCR}. A criticism
of the proposed triangular distribution with default
limits is that it is determined by the extreme results
x(1) = min{x1, …, xn} and x(n) = max{x1, …, xn}, which
are sometimes suspected to be in error.

Here, we propose a discrete-equal-probability distri-
bution that is determined by all of the results x1, …, xn.
The results x1, …, xn are plausible values of Y as deter-
mined by competent laboratories.8 So the known con-
stant differences (x1 – xUCR), …, (xn – xUCR) are plausible
values of (Y – xUCR). These differences are a statistical
basis for specifying a probability distribution for C.
Let ci = xi – xUCR for i = 1, 2, …, n. Suppose
c1, …, cn are assigned probabilities p1, …, pn. Then the
expected value of C is c = E(C) = Σi pi ci = (Σi pi xi) – xUCR

and the standard deviation of C is u(c) = S(C) = √[Σi pi

(ci – c)2]. Frequently, the available scientific knowledge
is inadequate to assign different probabilities p1, …, pn

to c1, …, cn. Therefore, we propose the discrete-
equal-probability distribution for which pi = 1/n for
i = 1, 2, …, n. The expected value and standard devia-
tion of C based on discrete-equal-probability distribu-
tion are c = xA – xUCR and u(c) = √[Σi (xi – xA)2/n],

respectively, where xA = Σi xi / n is the arithmetic mean
of the results x1, …, xn.

A measurement equation is required to incorporate
correction for possible bias in a combined result of
measurement for Y. The measurement equation that
corresponds to the bias (XUCR – Y) in the uncorrected
combined result xUCR is Y = XUCR + C. This measure-
ment equation is widely applicable in metrology [10]. It
suggests the following model for the value Y of the
measurand:

(3)
where a1, …, an are constants such that Σi ai = 1. In this
model, X1, …, Xn, XUCR, C, and Y are variables with
state-of-knowledge distributions. The expected value
and standard deviation of Xi are the given constants
xi and u(xi), respectively, for i = 1, 2, …, n. A state-
of-knowledge distribution for the correction variable
C is defined independently of the state-of-knowledge
distributions for the variables X1, …, Xn, after the latter
have been specified. In particular, XUCR and C are inde-
pendently distributed. We refer to model (3) [repre-
sented by Eq. (3)] as a systematic laboratory-effects
model to distinguish it from the random laboratory-
effects model (2) that regards the biases (systematic
errors) b1, …, bn as random variables having the same
sampling distribution with expected value zero.
Suppose the standard deviation of the variable XUCR is
S(XUCR) = u(xUCR). Then the corrected combined result
for Y determined from the systematic laboratory-effects
model (3) is y = xUCR + c and its associated standard
uncertainty is u(y) = √[u2(xUCR) + u2(c)].

The systematic laboratory-effects model (3) allows
for the possibility that not all pairs of the variables
X1, …, Xn may be independently distributed. The
variance V(XUCR) = u2(xUCR) is determined from the
variances and covariances of the variables X1, …, Xn.
When the distributions of X1, …, Xn are independent and
XUCR is the weighed mean XW = Σi wi Xi / Σi wi, where
wi = 1/V(Xi) = 1/u2(xi) for i = 1, 2, …, n, then
u2(xUCR) = V(XW) = 1/[Σ i wi] = 1/{Σ i [1/u2(xi)]}.
When the distributions of X1, …, Xn are independent and
XUCR is the arithmetic mean XA = Σi Xi / n, then
u2(xUCR) = V(XA) = (1/n2)Σi V(Xi) = (1/n2)Σi u2(xi)9.

In order to specify c and u(c), one is free to use any
reasonable distribution for C, based on scientific judg-
ment. When the discrete-equal-probability distribution
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( ) ( ) ( ) UCR UCR, , , ,i i i i i ii
E X x S X u x X a X Y X C= = = = +∑

9 Since the harmonic mean of positive numbers is less than or equal
to their arithmetic mean, V(XW) ≤ V(XA). When u2(x1), … , u2(xn)
are equal, V(XW) = V(XA).

8 As noted in the footnote of Sec. 2.1, the total interval consisting of
the union of intervals [xi ± 2u(xi)], for i = 1, 2, …, n, represents an
approximate range of the plausible values of Y.



is used, c = xA – xUCR and u(c) = √[Σi (xi – xA)2/n]. In
that case, the result of measurement for Y is
y = xUCR + c = xUCR + xA – xUCR = xA and u(y) = √[u2(xUCR)
+ u2(c)], where u(c) = √[Σi (xi – xA)2/n]. 

Following the ISO Guide, the result y and uncertainty
u(y) determined from the systematic laboratory-effects
model (3) are interpreted as the expected value and stan-
dard deviation of a state-of-knowledge distribution for
the values that could reasonably be attributed to Y based
on the data x1, …, xn and u(x1), …, u(xn) [5], [4], [6].
Thus the key comparison reference value xR based on
the systematic laboratory-effects model (3) is y and
uncertainty u(xR) is u(y). The corresponding degrees of
equivalence are di = xi – y and di, j = xi – xj for i, j = 1, 2,
…, n and i ≠ j. The uncertainties u(di) and u(di, j) are
determined from state-of-knowledge distributions for
the variables X1, …, Xn and Y.

3. Interpretation of the Key Comparison
Reference Value and Its Associated
Uncertainty

3.1 Classical Statistics Models Based on Assumption I

The nonexistent laboratory-effects model and the
random laboratory-effects model are based on classical
(frequentist) statistics. In particular, the results x1, …, xn

are regarded as realizations of random variables with
sampling distributions and Y is an unknown constant.
Therefore, the key comparison reference value xR is a
realization of a random variable with a sampling distri-
bution that has expected value Y and standard deviation
u(xR) = u(xW) = 1/√[Σi wi]. In the nonexistent laboratory-
effects model wi is 1/u2(xi) and in the random laboratory-
effects model wi is 1/[sb

2 + u2(xi)] for i = 1, 2, …, n.
The interval [xR ± 2u(xR)] determined from a classical
statistics model is a confidence interval for Y computed
from the data x1, …, xn and u(x1), …, u(xn). Imagine that
the CIPM key comparison could be repeated infinitely
many times in exactly the same conditions using exact-
ly the same instruments and artifacts. Now imagine that
throughout these repetitions exactly the same sampling
distributions continued to apply to the random variables
x1, …, xn. Then the confidence level is the fraction of
the infinitely many hypothetical intervals, such as
[xR ± 2u(xR)], that would include Y [4]. 

3.2 Systematic Laboratory-Effects Model Based
on Assumption II

The key comparison reference value xR and uncer-
tainty u(xR) determined from the systematic laboratory-
effects model are given constants that represent the ex-

pected value and standard deviation of a state-of-
knowledge distribution for Y based on the data x1, …, xn

and u(x1), …, u(xn). The interval [xR ± 2u(xR)] deter-
mined from the systematic laboratory-effects model is
an expanded uncertainty interval for Y. The coverage
probability (level of confidence) of the interval
[xR ± 2u(xR)] is the fraction of a state-of-knowledge dis-
tribution for Y that is encompassed by this interval [4].

4. Interpretation of the Degrees of
Equivalence and Their Associated
Uncertainties

4.1 Classical Statistics Models Based on Assumption I

In the random laboratory-effects model and its
special case the nonexistent laboratory-effects model,
the expected values of the sampling distributions of
x1, …, xn, and xR are all equal to Y. Therefore, the
expected values of the sampling distributions of all
degrees of equivalence di = xi – xR and di, j = xi – xj are
zero, for i, j = 1, 2, …, n and i ≠ j. This implies that all
computed degrees of equivalence, whether small or
large, are statistical estimates of zero. In particular,
according to these models, all degrees of equivalence
published in the key comparison database (KCDB)
[11] are estimates of zero.

4.2 Systematic Laboratory-Effects Model Based
on Assumption II

In the systematic laboratory-effects model, the
results x1, …, xn are the expected values and the uncer-
tainties u(x1), …, u(xn) are the standard deviations of
state-of-knowledge distributions for the laboratory
expected values X1, …, Xn, treated as variables. It fol-
lows that the degree of equivalence di = xi – xR = xi – y
is the expected value of a state-of-knowledge distribu-
tion for the laboratory effect (bias) Xi – Y for i = 1, 2, …, n,
and the degree of equivalence di, j = xi – xj is the expect-
ed value of a state-of-knowledge distribution for the
difference Xi – Xj for i, j = 1, 2, …, n and i ≠ j. The
uncertainty u(di) is the standard deviation10 of Xi – Y
and the uncertainty u(di, j) is the standard deviation of
Xi – Xj, for i, j = 1, 2, …, n and i ≠ j.
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10 The standard deviation of Xi – Y depends on the covariance
between Xi and Y for i = 1, 2, …, n. Since Y = XUCR + C = Σi ai Xi + C
and the variable C is distributed independently of the variables X1,
…, Xn, the covariances C(Xi, Y), for i = 1, 2, …, n, can be determined
from the variances and covariances of X1, …, Xn. Then u(di) =
√[V(Xi – Y)], where the variance V(Xi – Y) is equal to V(Xi) + V(Y) –
2×C(Xi, Y).



5. Conclusion

We addressed a simple CIPM key comparison where
the common measurand is a physical quantity of stable
value during the comparison. We discussed statistical
interpretation of the key comparison reference value, 
the degrees of equivalence, and their associated uncer-
tainties determined from the following three statistical
models: nonexistent laboratory-effects model, random
laboratory-effects model, and systematic laboratory-
effects model. The first two models are based on
classical (frequentist) interpretation of measurements.
The systematic laboratory-effects model is based on
Bayesian interpretation of measurements.

The key comparison reference value xR and uncer-
tainty u(xR) determined from the systematic laboratory-
effects model represent the expected value and standard
deviation of a state-of-knowledge distribution for the
value Y of the measurand. Therefore their statistical
interpretation agrees with the ISO Guide. According to
the systematic laboratory-effects model, the degree of
equivalence di and uncertainty u(di) are, respectively,
the expected value and standard deviation of a state-of-
knowledge distribution for the laboratory effect (bias)
Xi – Y, for i = 1, 2, …, n, and the degree of equivalence
di, j and uncertainty u(di, j) are, respectively, the expect-
ed value and standard deviation of a state-of-knowledge
distribution for the difference Xi – Xj, for i, j = 1, 2, …, n
and i ≠ j. Thus the degrees of equivalence determined
from the systematic laboratory-effects model quantitate
the agreements and disagreements of laboratory results.
Therefore, the systematic laboratory-effects model is
suitable for the data analysis of a simple CIPM key
comparison.
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