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Abstract
We describe a systematic approach to the recovery of a function analytic in
the upper half-plane, C+, from measurements over a finite interval on the
real axis, D ⊂ R. Analytic continuation problems of this type are well
known to be ill-posed. Thus, the best one can hope for is a simple, linear
procedure which exposes this underlying difficulty and solves the problem in a
least-squares sense. To accomplish this, we first construct an explicit analytic
approximation of the desired function and recast the continuation problem in
terms of a ‘residual function’ defined on the measurement window D itself.
The resulting procedure is robust in the presence of noise, and we demonstrate
its performance with some numerical experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In many areas of engineering and applied physics, one encounters time-invariant, causal
linear systems, with input H(t), output S(t), and transfer function F(t). Such systems are
characterized by the relation

S(t) =
∫ t

−∞
F(t − τ)H(τ) dτ. (1)

If we assume that F ∈ L2(R+), we can investigate the Fourier transform

f (ω) = 1√
2π

∫ ∞

0
F(t)eiωt dt. (2)
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By the Paley–Wiener theorem [DM], f (ω) is analytic for ω ∈ C+ = {ω| Im (ω) > 0} and
satisfies the integrability property

sup
y>0

{ ∫ ∞

−∞
|f (x + iy)|2 dx

}
=

∫ ∞

−∞
|f (x)|2 dx < ∞. (3)

Functions analytic in the upper half plane, and satisfying (3) are referred to as Hardy functions
(f ∈ H2(R)). The converse also holds: all Hardy functions may be obtained as Fourier
transforms of functions supported on (0,∞).

It is well known that the real and imaginary parts of Hardy functions are not independent
of one another. Rather, applying a limiting procedure to the Cauchy integral representation for
analytic functions, one obtains the following integral identities.

Lemma 1 (Kramers–Kronig relations). Let f (ω) = fr(ω) + ifi(ω) ∈ H2(R). Then

fr(ω) = − 1

π

∫ ∞

−∞
− 1

ω − s
fi(s) ds,

fi(ω) = 1

π

∫ ∞

−∞
− 1

ω − s
fr(s) ds.

(4)

Furthermore, the ‘time domain’ function F(t) in (2) is oftentimes real-valued. In this case,
the real and imaginary parts of f (ω) are respectively even and odd. Incorporating these
symmetries into (4) gives [Kra]

fr(ω) = 2

π

∫ ∞

0
− s

s2 − ω2
fi(s) ds,

fi(ω) = −2ω

π

∫ ∞

0
− 1

s2 − ω2
fr(s) ds.

(5)

Remark 2. The pairs of equations are redundant for, in both (4) and (5), one line implies the
other. For a given ω ∈ R, we refer to the ‘local’ part of the operator as the integration region
where s ≈ ω; the rest of the integral we refer to as the ‘far-field’ contribution.

In applications, the desire to use analyticity in the form of the Kramers–Kronig relations
is pervasive. The universal problem in practice is that it is possible to take frequency
measurements only over a finite data window, ω ∈ D = (�min, �max), while the integrals
in (4) and (5) are global, ω ∈ R. The specific problems that one encounters depend on the
data available through experiment:

(1) In some situations it is possible to measure both real and imaginary parts of the complex,
causal function f (ω) = fr(ω) + ifi(ω). In this case, the natural problems are
(a) to determine to what extent the measured functions satisfy the Kramers–Kronig

relations, i.e. to what degree these relations may be viewed as a constraint;
(b) to extrapolate the given data to frequencies outside D (or the entire real line) in such

a way that the extension is causal and matches the measured functions over the data
window.

(2) In other experiments only the real part of the function fr is available. Here, one would like
to apply causality in the form of the Kramers–Kronig relations to determine the imaginary
part fi. A common example is phase determination (see section 3.2).

We refer to the first type of problem as ‘analytic continuation’ and the second as ‘analytic
interpolation’. As mentioned above, both problems are complicated primarily by the fact that
the frequency-measurement window is finite. There are two competing theorems here. First,
it is well known that analytic continuation is unique. On the other hand, it is a theorem due
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to Riesz that the restriction of Hardy functions to any finite interval is dense in L2 [Par, DM].
Thus, problems 1(a) and 2 are senseless. Problem 1(b) fares only slightly better: it is one of
the classical ill-posed problems of mathematical physics. Hence, one must seek solutions to
these problems that parametrize the reconstruction in some systematic fashion.

Informally speaking, the reason for some hope is that the Hilbert transform is dominated
by its local part where the kernel in (4) is singular. In the far-field the kernel is smoothly
decaying and, as is straightforward to show, the contribution from distant values of f to the
local measurements is not only differentiable, but analytic. In other words, although it is
theoretically possible for features outside the data window to have arbitrary influence on the
interior, the exertion of this influence requires a great deal of L2-energy and structure to exist
in the far field (the ‘tail regions’). In the literature, this idea tends to exist in the form of
heuristically chosen regularizations.

In the present paper, we present a systematic analysis of the problem through the use
of a singular-value analysis of operators related to (5). By extending the function from the
data window smoothly (but not necessarily analytically), we are able to formulate a ‘residual
problem’ which provides

(1) a natural choice of subspaces in which to solve the continuation problem, and
(2) a simple measure of the difficulty of extension.

In section 2, we briefly describe the singular-value expansion for compact operators. Section 3
comprises the bulk of the paper. Here we derive the residual problems associated with the
analytic continuation and interpolation problems presented above, describe the constraints that
we employ to guarantee the compactness of these residual problems, and discuss some possible
discretization techniques. We follow this with numerical examples in section 4. Section 5
contains some concluding remarks, including a discussion of our procedure in relation to
existing approaches.

2. Singular-value expansions

The following theorem is a standard result in functional analysis [Con].

Theorem 3 (Singular-value expansion (SVE)). LetX, Y be two infinite-dimensional Hilbert
spaces and K : X → Y be a compact operator. Then there exists a sequence, {un, vn, λn} ∈
X × Y × R+, such that λn→0 decreasingly and

• {vn} forms a basis for N(K)⊥ ⊂ X, the orthogonal complement of the null-space of K .

• {un} forms a basis for R(K) ⊂ Y , the closure of the range in Y .

• For all f ∈ X, Kf = ∑∞
1 λnun(f, vn)X.

The functions {un, vn} are referred to as the left and right singular functions respectively, and
{λn} as the corresponding singular values.

The above representation for the action of K parallels the singular-value
decomposition (SVD) of matrices, K = UΛV ∗. The use of the SVD to solve discrete,
least-squares algorithms is well known and an analogous procedure may be employed in the
compact (i.e. continuous) case. Our goal is to bring this analysis to bear on appropriately
defined problems stemming from the Kramers–Kronig relations (5).

Once the SVE has been obtained for a compact operator K , one may form its pseudo-
inverse, K†, mapping R(K) ∪ R(K)⊥ →N(K)⊥. More precisely, the solution to Kf = g is
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f = K†g =
∞∑
n=1

(
(un, g)Y

λn

)
vn. (6)

Since the singular values decay to zero, it is clear that the pseudo-inverse is unbounded on
R(K). The condition number of a finite-dimensional, truncated approximation of K is defined
to be the ratio λ1/λN with pseudo-inverse given by the preceding series truncated afterN terms.
Assuming measurement errors of the order ε, it is sensible to choose N so that λ1/λN ≈ √

1/ε.
This limits the amplification of error and provides a definition for the ‘effective rank’ of the
operator K (with specified precision, ε) [GRV].

3. The residual problem

In this section, we recast the analytic continuation and interpolation problems from the
introduction into a ‘residual’ form. We will see that the residual problems are naturally posed
as simple Fredholm integral equations of the first kind. For ease of presentation we consider
the case where the measurement window takes the form D = (0, �max). Recognizing that
equations (5) are homogeneous in the frequency variable, we may rescale D to be the interval
(0, 1). One sometimes encounters a non-zero, low-frequency cutoff, so that the data window
is (�min, �max). In optical experiments, for example, only a portion of the electromagnetic
spectrum is accessible. Generalizing the procedure described below to this and more general
data regions is straightforward.

3.1. Analytic continuation

We assume that both the real and imaginary parts of an analytic (i.e. Hardy) function are
available in the form f (ω) = fr(ω) + ifi(ω), ω ∈ D. We first construct separate extensions
of the real and imaginary parts to the entire real line so that the extended functions agree with
the measured data on D = (0, 1) and have sufficient decay at infinity:{

fr(ω)

fi(ω)
, ω ∈ (0, 1) →

{
f ext

r (ω)

f ext
i (ω)

, ω ∈ (0,∞). (7)

The exact manner in which this is done is not essential. In the computations presented here,
we define

f ext
r = (a0 + a1(ω − 1) + a2(ω − 1)2)e−α(ω−1)

f ext
i = (b0 + b1(ω − 1) + b2(ω − 1)2)e−α(ω−1)

for ω ∈ [1,∞). The value α > 0 is selected by the user, and the coefficients ai, bi are chosen
to match the first two derivatives:

a0 = fr(1), a1 − α a0 = f ′
r (1), 2a2 − 2α a1 + α2a0 = f ′′

r (1)

b0 = fi(1), b1 − α b0 = f ′
i (1), 2b2 − 2α b1 + α2b0 = f ′′

i (1).

Thus, the functions, (f ext
r , f ext

i ) are in C2(R) and exponentially decaying.
Next, employing the Kramers–Kronig relations (5), we compute Hilbert transforms and

form complex functions that we know to be in H2

f (A)(ω) = f ext
r (ω) − i

2ω

π

∫ ∞

0
− f ext

r (s)

s2 − ω2
ds,

f (B)(ω) = 2

π

∫ ∞

0
− sf ext

i (s)

s2 − ω2
ds + if ext

i (ω).
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Both f (A)(ω) and f (B)(ω) can be viewed as initial approximations of the measured function
f (ω).

Definition 4. The residual R(ω) for ω ∈ (0, 1) is given by the difference between the
measurement and the average of these two causal extensions:

R(ω) = f (ω) −
(
f (A)(ω) + f (B)(ω)

2

)
. (8)

Recalling that f (ω) satisfies the Kramers–Kronig relations, and performing some algebra,
we may write

2

π

∫ ∞

1

s (fi(s)

s2 − ω2
ds − i

2ω

π

∫ ∞

1

(fr(s)

s2 − ω2
ds = R(ω) (9)

for ω ∈ (0, 1), where

(fr(s) = 1
2 (fr(s) − f ext

r (s)),

(fi(s) = 1
2 (fi(s) − f ext

i (s)),

for s ∈ (1,∞).
Our central observation is that the smoothness of the residual R(ω) for ω ∈ (0, 1) is

largely dependent on whether the original data is ‘locally consistent’, and is independent of
the quantity of structure exhibited by the measurements. Consider, for example, the functions
given by

f1(ω) = 1/(0.18 − ω2 − 0.6ωi),
f2(ω) = 1/(0.18 − ω2 − 0.6ωi) + 1/(0.49 − ω2 − 0.06ωi),

fnc(ω) = Re (f1(ω)).

(10)

The first two belong to H2 and have poles at {±0.3 − 0.3i} and approximately {±0.3 −
0.3i,±0.7−0.03i} respectively. The third is clearly non-causal. Restricting the above functions
to the data window [0, 1] and extending them smoothly to zero, we obtain the residual functions
R(ω) shown in figure 1. We observe that the residuals derived from the two causal functions
are equally featureless despite the additional pole in f2. This is not so for the non-causal
function. Also in that figure, we show the magnitudes of the projections of the residuals onto
the left singular functions of the appropriate operators (see (12) below). The decaying versus
non-decaying magnitudes of these projection coefficients are indicative of the causal versus
non-causal character of the above data functions. This will hold true generically.

We draw two obvious conclusions: (1) the problem is clearly ill-posed and (2) if the
residual has significant local structure, enormous amounts of L2 energy must be required
outside the interval to create it. Analytically, this may be seen by inspection of (9), which is a
first-kind Fredholm integral equation. The right-hand side R(ω) is available explicitly and the
functions (fr,(fi appearing under the integrals are unknowns defined for s ∈ (1,∞). These
densities contribute to the residual function on D = (0, 1) as smooth, ‘far-field’ contributions.

It remains only to invert (9) in some systematic fashion. All suitable inversion procedures
can be interpreted in this context and require regularization. Options include the following.

(1) After computing the residual by means of the Hilbert transform (as above), one can switch
to a time-domain representation for the residual, solving

R(ω) = F[σ ](ω) = 1√
2π

∫ ∞

0
eiωtσ (t) dt (11)

for the unknown time signal σ(t). An immediate concern is that this operator is not
compact. Smoothness of the residual, however, suggests that we look for short ‘time
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Comparison of residual functions for Hardy and non-Hardy data.
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Figure 1. Comparison of residuals. (a) Input data (note that the real parts of f1 and fnc are super-
imposed in the graph), (b) residual, (c) projections onto the appropriate right singular functions.
The functions f1, f2 and fnc are given by (10). Real and imaginary parts are plotted on the left and
right respectively.

signatures’, leading to a consideration of weighted L2 spaces. For this, we let L2
P be the

set of functions {f | ∫ ∞
0 |f (t)|2|P(t)|−2 dt < ∞}. It is straightforward to show that L2

P is
a Hilbert space with inner product, (f, g)P = ∫ ∞

0 f ḡ|P(t)|−2 dt . If P(t) is bounded and∫
R+ t

n|P(t)|2 dt < ∞ for n = 0, 1, . . . ,M for M � 2, then F : L2
P →L2(D) as defined

in (11) is compact. Suppose, for example, that P(t) is simply the characteristic function
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for the interval [0, T ]. Then, as T increases, we increase the range of representable
functions, allowing for the approximation of more and more structured residuals. This is
closely connected to the notion of band-limited approximation for which an appropriate
theory has been developed using prolate spheroidal wavefunctions [SlPol, LaPol, Rok].
The smallest value of T needed to achieve a specific approximation error is clearly a good
measure of the difficulty of extension.

(2) Remaining in the frequency domain, one can employ a variety of compact versions of the
integral operators in (9). One approach is to make use of the smoothness of the underlying
functions, since we have constructed C2 extensions. If we let

W0([1,∞)) =
{
f |f absolutely continuous, f (1) = 0,

∫ ∞

1
|f |2 + |f ′|2 < ∞

}
,

then it is straightforward to show that the integral operators

K1,K2 : W0([1,∞), ds) → L2((0, 1), dω),

[K1f ](ω) = −2 iω

π

∫ ∞

1

1

s2 − ω2
f (s) ds,

[K2f ](ω) = 2

π

∫ ∞

1

s

s2 − ω2
f (s) ds

(12)

are compact. We now need to invert equation (9), which takes the form

K2(fi + K1(fr = R. (13)

3.2. Analytic interpolation

We next consider the interpolation problem. The application that we have in mind is the ‘phase
retrieval’ problem in which the modulus of a Hardy function is measured over a finite range of
frequencies, and one requires its phase over that same range. In order to make the connection
with real and imaginary parts of analytic functions, one can write f (ω) = |f (ω)| exp(iφ(ω))
and take the logarithm,

ln(f (ω)) = ln(|f (ω)|) + iφ(ω).

As the logarithm is analytic in any domain where its argument is analytic and non-zero,
Kramers–Kronig analysis of this function can often be justified. Regardless, the generic
problem is that one measures one-half of a Hardy function, e.g. the real part, and wishes to
reconstruct its imaginary part. The algorithm is much the same as above, with the obvious
exception that the symmetry between real and imaginary parts is broken. We denote the
corresponding residual by Rφ so as to distinguish this case from the previous one.

Given a smooth data function fr(ω), ω ∈ (0, 1), we form its extension, f ext
r , as in (7).

Next, we compute the appropriate Hilbert transform

f
(A)

i (ω) = −2ω

π

∫ ∞

0
− f ext

r

s2 − ω2
ds,

and define the residual as the difference

Rφ(ω) ≡ fi(ω) − f
(A)

i (ω), ω ∈ (0, 1)

= 2ω

π

∫ ∞

1

1

s2 − ω2
(fr(s) ds, (14)

where

(fr(s) = fr(s) − f ext
r (s).
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Again, we can invert (14) using either the Fourier time-domain representation (11) with the
compact operator F : L2

P →L2((0, 1)), or remain in the frequency domain and use the operator
K1.

We expect that Rφ is representable with a small number of terms:

Rφ,N(ω) =
N∑

n=1

βnun(ω),

where {un(ω)} are the left singular vectors of K1. The distinction between this problem and
the previous one is that, in the continuation problem, there was an experimental determination
of fi(ω), ω ∈ D = (0, 1). Therefore it was possible to project Im (R) onto the space
Span{un, n = 1 . . . N} by computing quadratures. Here, the function Rφ given by (14) is
unknown. Therefore, we need additional information if we are to compute the coefficients
βn. This information may come in several forms. The simplest is the situation in which, via
supplementary measurements, it is possible to determine the imaginary part of f at a small
number of frequencies. One can, for example, assume that two point values {fi(ω1), fi(ω2)} are
available. (In optical experiments, such measurements can be made using a tunable laser and
a procedure such as ellipsometry which returns the complex reflectance at fixed wavelengths.)
In this case, one may compute the values of Rφ(ω) at two frequencies and determine the values
of {βn} by solving the linear system

Rφ,2(ω1) = β1u1(ω1) + β2u2(ω1)

Rφ,2(ω2) = β1u1(ω1) + β2u2(ω2).
(15)

We note that if it is not possible to obtain any extra information, the problem may be
weakened. Namely, we can determine the initial extension and assert that the imaginary part is
its transform. Recognizing that the norm of a compact operator is given by its largest singular
value, it is possible to compute an L2-error bound with this assertion given only an energy
bound on the real part of the function outside the measurement window.

3.3. Discretization

All the above methods involve a SVE of compact operators. For the sake of brevity, we restrict
our attention to the continuation problem using the operators K1 and K2 from (12). To enforce
boundary conditions and differentiability we employ a Galerkin discretization. For this, the
functions (fi and the real part of the residual Rr are expanded in the following cosine series

(fi(s) =
∞∑
k=0

cos
(

2k+1
2

π
s

)
s

√
1 + π2

(
2k+1

2

)2
ak,

Rr(ω) = 1
2b0 +

∞∑
k=1

cos(kπω)bk.

(16)

The function Rr(ω) belongs to the even half of L2(−1, 1) so the usual cosine series
is appropriate. A few words are necessary to justify the expansion for (fi(s). In lieu of
constructing an orthonormal basis forW0([1,∞)) defined above, we analyse the operators (12)
after right multiplication by the operator defined by

T ∗ : L2((0, 1), dt) → L2((1,∞), ds),

[T ∗g](s) = 1

s
g

(
1

s

)
.

It is a simple matter to compute the kernel of the product, K2T
∗ : L2((0, 1), dt) →

L2((0, 1), dw). Furthermore, the restriction of this product to functions with square-integrable
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derivatives that vanish at t = 1 (the analogue of W0([1,∞))) will again be compact. The point
of this contortion is that a trigonometric basis for this new space on (0, 1) is immediately
available. We return to the expansion for (fi(s). Recall that (fi(s) must have odd parity,
therefore its pre-image under T ∗ is even, necessitating the use of cosines. The half-integer
fundamental frequencies are chosen to enforce the vanishing at t = 1, and the square-root
weighting reflects the use of the Sobolev norm. Applying the operator T ∗ to such expansions
gives the form for (fi(s) above. The heuristic for our specific choice of T ∗ to accomplish this
change of basis is that, as is possible to check, T ∗ and its adjoint are both unitary transformations
in the L2-norms. Given the SVE of an operator, it is relatively straightforward to compute the
corresponding SVEs of new operators related to the original through pre- or post-multiplication
by unitary transformations. We recognize that T ∗ and its adjoint are not unitary in the desired
Sobolev norms; however this will introduce a penalty more in efficiency than accuracy. Similar
considerations yield parallel expansions in terms of appropriately weighted sine series for the
functions (fr and the imaginary part of the residual Ri.

We then represent the operators K1 and K2 in these bases. Once the matrix entries are
computed, we employ a standard singular-value factorization scheme (from LAPACK) to return
the singular-values of the continuous operators K1 and K2, and the corresponding cosine (sine)
expansions of its singular vectors. The left and right singular functions and singular-values of
K1 are plotted in figure 2.

We have said little about truncating the SVEs after a finite number of terms. One can
truncate the expansions (16) atN terms and solve a sequence of problems forN = 1, 2, . . . ,∞
until the least-squares error is less than some prescribed tolerance, tolSVD. The algorithm can
then return the parameter N as well as the resulting analytic continuation. As N increases, of
course, the solution is more and more susceptible to corruption by noise since the inversion
process (6) involves division by the singular values, which are rapidly convergent to zero. We
view N as an informal measure of the difficulty of the continuation process.

4. Numerical results

We apply our procedure to a standard low-pass fourth-order Chebyshev filter whose magnitude
response is given by

|χ4(ω)|2 = 1

1 + γ 2|T4
(
ω
ωc

)|2
γ = 0.025

ωc = 0.75,

(17)

where T4 is the standard fourth-order Chebyshev polynomial. One can find the poles of the
transfer function by solving for the eight roots of

T4(ω) = ±i
1

γ
.

We define χ4(ω) as the inverse of the product of the four roots that lie in the lower half of the
complex plane, thus enforcing the requisite analyticity. For details, see [Chen]. Our model
causal transfer function is then defined in the Fourier domain by

ε(ω) = χ4(ω)e
2π iωτ0 , (18)

where τ0 represents a time delay that has been introduced by ‘upstream’ data handling or
uncertainties in the experimental setup. We arbitrarily set τ0 = 3.1.

The data below are obtained by sampling the above function ε(ω) at approximately
1000 regularly spaced frequencies in the interval (0, 1). In figure 3, we plot the results
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Singular functions and values.
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Figure 2. Singular functions. We plot the first four left, right and time-domain singular functions
of K1: (un(ω), vn(s), v̂n(t)) in (a), (b), (c) respectively. The first six singular values of the same
operator are shown in (d).

of the continuation procedure applied to the sampling of ε(ω) with no noise. The
real and imaginary parts along with the extensions εext

r , εext
i from (7) are shown in the

top two plots (solid and dashed curves respectively). Note that the magnitude of the
original data is of order one and that it contains a number of oscillations over the
measurement window. We then compute the Hilbert transform of the extensions and form
the residual (8). We plot R(ω) in figure 3(b) (solid curve). Note that the residual is
roughly two orders of magnitude smaller than the original ε(ω) and is relatively featureless.
The expansion of R in the basis of left singular vectors converges with an absolute
error

‖R − RSVE‖ < 10−4

using only two of the left singular functions in both real and imaginary parts. The
SVE is inverted using either 1, 3, or 6 singular functions to give a continuation of
R(ω) to all frequencies (figure 3(b), dashed curve). This result is added to the original
extensions to form the continuation εC(ω). We plot the real and imaginary parts of
εC (solid curve) and compare with the exact function (dotted curves) in figure 3(c).
The agreement is very good within the data window. This is to be expected as the
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Continuation of sample transfer function data, no noise.
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Figure 3. Continuation of causal data. (a) Data and initial extensions (solid, dashed), (b) residual
and its expansion in singular functions, (c) true function and results of continuation (dashed,
coloured). Real (imaginary) parts are plotted on the left (right).

small magnitude of the residual suggests that the original extensions are also good
approximations to the true causal function. The determination of εC outside the data
window is less impressive. While the extensions using six singular functions are more
accurate than those using one (the extrapolation manages to ‘capture’ one additional
oscillation of the true causal function), the inclusion of more terms fails to improve matters
significantly.
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Continuation of "non-causal" sample transfer function data.

Figure 4. Continuation of non-causal data. (a) Data and initial extensions (solid, dashed),
(b) residual and expansion of residual using three singular functions (solid, dashed). Note the
large degree of structure in the residual compared with figure 3. Real (imaginary) parts are plotted
on the left (right).

4.1. Non-causal data and the residual

As an illustration of the utility of passing to the residual problem, we repeat the above steps
introducing a slight error in the measured signal in the form of a decorrelation between the
real and imaginary parts. Specifically, we sample a new transfer function defined by

ε(ω) = Re
{
χ4(ω)e

2π iωτ0
}

+ iIm
{
χ4(ω)e

2π iωτ0(1+δ)
}
,

where δ = 0.01. As before, we plot the real and imaginary parts in figure 4(a). To the eye
there is no difference between these curves and the previous example. Furthermore, the density
theorem of Riesz implies that there exists a causal continuation of these two functions to the
entire real line that agrees with the given data to any precision on (0, 1). Performing the initial
extension and then computing the residual, however, the ‘inconsistency’ of the measurement
becomes apparent. There is now significant visible structure in the residual function within the
data window (figure 4(b)). Clearly one anticipates that such a function would have a nontrivial
projection onto a large number of singular functions. As noted earlier, the continuation then
requires division by a sequence of singular values which is rapidly decaying. In physical terms,
this implies that the continuation is introducing considerable power outside the measurement
region. We plot the inversion after projecting onto three singular functions as dashed curves
in figure 4(b).
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Continuation of noisy sample transfer function data.

0 0.5 1 1.5 2
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

R
ea

l(
ε r),

 R
ea

l(ε
rex

t )

(a)

0 0.5 1 1.5 2
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

(ε
i),

 Im
ag

(ε
iex

t )

(a)

0 0.5 1 1.5 2
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

R
ea

l(
R

),
 R

ea
l(

R
1 S

V
E
)

(b)

0 0.5 1 1.5 2
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

Im
ag

(R
),

 Im
ag

(R
1 S

V
E
)

(b)

0 0.5 1 1.5 2
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Frequency, ω

R
ea

l(
ε C1

)

(c)

0 0.5 1 1.5 2
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Frequency, ω

Im
ag

(ε
C1

)

(c)

Figure 5. Continuation of causal data with experimental noise. (a) data and initial extensions
(solid, dashed), (b) residual and continuation using one singular function (solid, dashed), (c) final
continuation and noise-free function (solid, dashed). Real (imaginary) parts are plotted on the left
(right).

4.2. Continuation of noisy data

We next demonstrate that the above analytic continuation procedure is robust in the presence of
noise. Experimental error is simulated by discrete white noise, i.e. the input to the continuation
program is

εnoise(wi) = ε(ωi) + ni,



1320 A Dienstfrey and L Greengard

where n is a vector of Gaussian random variables with mean 0 and standard deviation 0.025.
The threshold parameter for truncating the projection onto the singular functions will be set
equal to this standard deviation, tolSVD = 0.025.

For the underlying, causal, ε(ω) we use the same low-pass filter as before (18). The results
are plotted in figure 5. Again we plot the real and imaginary parts of the noisy data signal at the
top. In the middle, we plot the corresponding residual. The high-frequency noise is apparent
in this curve. The residual has an expansion in the left singular functions of the operators
K1,K2 which converges to the noise level using just one singular vector. The lower plots
show the result of the continuation along with the error-free ε(ω). These should be compared
with figure 3—approximately the same quality of reconstruction has been achieved on the data
window ω ∈ (0, 1) while simultaneously controlling the extrapolation energy of the continued
signal.

5. Conclusion

We have described a simple framework for analytic continuation problems using a ‘deferred
correction’ point of view. We first compute an explicit guess (involving simple smooth
extensions of real-valued functions and Hilbert transforms). We then form a residual problem
and view all subsequent methods in terms of the residual equation (9) and SVEs of operators.

Since the procedure is inherently ill-posed, one cannot compute such continuations
accurately. We believe the most valuable aspect of our approach is that the residual function
itself contains useful information. With little structure present, the continuation process is
easily carried out (but not guaranteed). More important is that, with a lot of structure present,
we can be certain that the original function contains significant power outside the data window.
This may be of diagnostic use. This notion is similar in spirit to that presented by Milton et al
[MEM]. In some sense, the present paper can be viewed as theL2 analogue of theirL∞ analysis.
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