
Does Java have a role to play in the
numerical computing world? We
strongly believe so. Java has too
much to offer to be ignored. First,

it’s portable at both the source and object for-
mat levels. The source format for Java is the text
in a .java file. The object format is the byte-
code in a .class file. Either file type should
behave the same on any computer with the ap-
propriate Java compiler and Java virtual ma-
chine (JVM). Second, Java code is safe to the
host computer. It can execute programs (more
specifically, applets) in a sandbox environment
that prevents them from doing any operation
(such as writing to a file or opening a socket)
that they are not authorized to do. The combi-
nation of portability and safety opens the way
to a new scale of Web-based global computing, in
which an application can run distributed over

the Internet.1 Third, Java implements a simple
object-oriented model with features that facili-
tate the learning curve for newcomers (single
inheritance and garbage collection, for exam-
ple). But the most important feature Java offers
is its pervasiveness, in all aspects. Java runs on
virtually every platform. Universities all over the
world are teaching Java to their students. Many
specialized class libraries, from 3D graphics to
online transaction processing, are available in
Java.

With such universal availability and support,
it only makes sense to consider Java for numeri-
cal applications development. Indeed, a com-
munity of scientists and engineers developing
new applications in Java is slowly growing. A ral-
lying point for this community has been the Java
Grande Forum (www.javagrande.org); see “The
Java Grande Forum” sidebar.

However, the wide-scale adoption of Java as a
language for numerical computing presents dif-
ficulties. Java, in its current state of specification
and level of implementation, is probably quite
adequate for some of the GUI, postprocessing,
and coordination components of a large numer-
ical application. It fails, however, to provide
some features that hardcore numerical pro-
grammers have grown accustomed to, such as
complex numbers and true multidimensional ar-
rays. Finally, as with any language that caters to
numerical application programmers, Java must
pass the critical test: Its performance on float-
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ing-point intensive code must be at least on par
with the incumbents C and Fortran.

Java’s performance 

Numerical programmers confronted with the
idea of using Java for their code commonly ex-
claim, “But Java is so slow!” Indeed, when the
first JVMs appeared, they performed poorly by
simply interpreting the bytecode in .class files.

Much has changed in the past few years; today
nearly every JVM for traditional computing de-
vices (that is, PCs, workstations, and servers)
uses just-in-time compiler technology. JITs op-
erate as part of the JVM, compiling Java byte-
code into native machine code at runtime. Once
the JVM generates the machine code, it executes
it at raw machine speed. Modern JITs per-
form sophisticated optimizations, such as array
bounds check elimination, method devirtualiza-
tion, and stack allocation of objects. Driven by
the enormous market for Java, vendors improve
their JVMs and JITs continuously.

To help understand Java’s numerical perfor-
mance, we took a sampling of common compu-
tational kernels found in scientific applications:
fast Fourier transforms, successive over-relax-
ation iterations, Monte Carlo quadrature, sparse
matrix multiplication, and dense matrix LU fac-
torization for the solution of linear systems.
Each kernel typifies a different computational
style with different memory access patterns and
floating-point manipulations.

Together, these codes make up the SciMark
benchmark,2 a popular Java benchmark for scien-
tific computing, whose components the Java
Grande Benchmark Suite also incorporates.3 Sci-
Mark was originally developed in Java, not trans-
lated from Fortran or C, so it
represents a realistic view of how
you would program computa-
tional kernels in that language.
Furthermore, it is easy to use—
anyone with a Java-enabled Web
browser can run it with a few
mouse button clicks.

At the benchmark’s Web site,
http://math.nist.gov/scimark,
we have collected SciMark
scores for over 1,000 different
Java–hardware–operating-sys-
tem combinations, from laptops
to high-end workstations, rep-
resenting a thorough sample of
Java performance across the

computational landscape. As of this writing, Sci-
Mark has demonstrated scores of over 130
Mflops (the average for the five kernels). Figure 1
shows the composite score (in Mflops) of this
benchmark on six different architectures and il-
lustrates the wide range in performance over
common platforms. The first observation is that
Java performance correlates closely to the JVM’s
implementation technology rather than to the
underlying hardware performance. This figure
shows that JVMs for PCs typically outperform
JVMs available for high-end workstations. To

The Java Grande Forum
The Java Grande Forum (www.javagrande.org) is a union of

researchers, company representatives, and practitioners who are
working to improve and extend the Java programming environment
to enable efficient compute- or I/O-intensive applications—so-called
grande applications. The forum’s main goals include

• evaluating Java’s applicability and the runtime environment
for grande applications, 

• bringing together the “Java Grande community” to develop
consensus requirements and to act as a focal point for inter-
actions with Sun Microsystems, and

• creating demonstrations, benchmarks, prototype implemen-
tations, application programmer interfaces, and recommen-
dations for improvements to make Java and its runtime envi-
ronment useful for grande applications.

The Forum organizes regular public meetings, scientific confer-
ences, workshops, minisymposia, and panels. The most important
annual event is the ACM Java Grande Conference. You can find
many of the Java Grande community’s scientific contributions in
back issues of Concurrency: Practice & Experience (vol. 10, nos.
11–13, 1998; vol. 9, nos. 6 and 11, 1999;  vol. 12, nos. 6–8, 2000).
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Figure 1. Java’s performance for the SciMark benchmark varies greatly across 
computing platforms. Different JVM implementations—rather than underlying 
hardware architecture—mainly cause this difference.
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demonstrate the continuous improvement in
virtual machine technology, Figure 2 illustrates
the performance of SciMark on progressively
new Sun JVM versions on the same hardware
platform.

Today we see Java codes performing competi-
tively with optimized C and Fortran. Figure 3
compares three of the more commonly available
Java environments (IBM, Sun, and Microsoft)
against two of the most popular optimizing C
compilers for the Windows PC: Microsoft and
Borland. Both cases used full optimization (some
SciMark kernels ran at about 50 percent of ma-
chine peak), but Java clearly outperforms C in
this case. Figure 4 gives a look at the results for
the component SciMark kernels for one C and
one Java implementation. Although these results
might be surprising, remember that we are not
comparing the two languages per se, but rather
different implementations of compilers and exe-
cution environments, which differ from vendor
to vendor. We should also point out that, for

other platforms, the results are not as good. For
example, a similar comparison on a Sun Ultra-
SPARC shows that Java attains only 60 percent
of the speed of C. Nevertheless, it is safe to say in
this case that Java performance is certainly com-
petitive with C. One common rule of thumb is
that, for these types of numeric codes, Java runs
at about 50 percent of the performance of con-
ventional compiled languages.

Researchers have already demonstrated the
technology to apply advanced compiler opti-
mizations in Java, including automatic loop
transformation and parallelization. Table 1 illus-
trates the performance the Ninja compiler from
IBM T.J. Watson Research Center achieved in a
set of eight Java numerical benchmarks.4 For
each benchmark, the table shows the absolute
performance achieved on a single-processor
200-MHz Power3 machine, that performance as
a percentage of the equivalent Fortran code on
the same machine, and the speedup obtained
through automatic parallelization on four
processors. For many benchmarks, Java’s per-
formance is better than 80 percent of equivalent
Fortran code and for the most part achieves a
reasonable speedup. 

Language specifications’ role

We do not attribute all the performance im-
provements during the last few years to enhance-
ments in JVM and JIT technology. In some cases,
the original Java language specification itself was
detrimental to performance. Changes to the spec-
ification, which led to significant performance im-
provements, were made as a result of proposals
put forward by the Java Grande Forum’s Numer-

ics Working Group. For exam-
ple, from Java 1.2 forward, the
Java specification allows float-
ing-point computations to be
performed with extended expo-
nent range (until results are
stored to memory). This is
much more efficient on the x86
class of processors (such as the
Pentium). The side effect is that
exact reproducibility of results is
no longer guaranteed in Java
implementations when floating-
point numbers are used—Java
class files using floating point
can produce slightly different
results on the x86, the PowerPC,
and the Sparc. The semantics of
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Figure 2. Evolution of Java performance for the SciMark benchmark
on a single platform: a 333-MHz Sun Ultra 10.
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Figure 3. Surprisingly, Java outperforms some of the most common optimizing C
compilers on Windows platforms, for the SciMark benchmark. These results are on a
500-MHz Intel Pentium III running Windows 98. Results for other platforms are not as
good. Nevertheless, Java remains competitive with C and Fortran.
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floating point are still much more strictly defined
in Java than in other languages, however. Java
programmers who still require strict repro-
ducibility can use a new keyword, strictfp, on
methods and classes to impose the original Java
semantic.  

In another recent development, Java 1.3 now
lets vendors use different implementations of ele-
mentary functions (that is, sin, cos, exp, and
other functions in java.lang.Math), as long as
they deliver results that differ by at most one bit in
the last place from the correctly rounded exact re-
sult. Methods in the new java.lang.Strict-
Math class can be used to enforce reproducibility
of results. This class defines a specific implemen-
tation of the elementary functions that guaran-
tees the same result on all platforms.

Are we there yet?

Problems with Java performance still remain,
and we must tackle them as we have done before:
with combined language specification changes
and new JVM and compiler technologies. It is
still possible to write Java code that is orders of
magnitude slower than equivalent Fortran code.
Because JITs operate at runtime, they have a lim-
ited time budget and cannot perform extensive
analysis and transformations of the scale that
current static compilers do. The representation
of elementary numerical values (such as complex
numbers) as full-fledged objects exerts a heavy
toll on performance. We will discuss these chal-
lenges to Java performance and some proposed
solutions later in more detail.

Although Java is not yet as efficient as optimized
Fortran or C, its speed is better than its reputation
suggests. Carefully written Java code can perform
quite well (see the “Do’s and Don’ts
for Numerical Computing in Java”
sidebar).5,6 Still in its infancy, Java
compiler and JIT technology is
likely to continue to improve signif-
icantly in the near future. Taken
with Java’s other advantages, it could
really become the best ever environ-
ment for numerical applications.

Numerical libraries in Java

An important consideration in
selecting a programming environ-
ment is the availability of tools to
facilitate developing applications.
Libraries are a particularly impor-

tant example of programming tools. For one
thing, standardized libraries serve as an exten-
sion of the programming language. They pro-
vide powerful application-specific primitives that
tailor the language to a particular area and facil-
itate code development. Standardized libraries
also define a notation for expressing domain-
specific operations that the practitioners in the
field commonly understand. Finally, a library’s
components constitute a specific group of oper-
ations that both expert programmers and smart
compilers can highly optimize.

The straightforward mechanism to provide
Java with libraries for numerical computing is the
Java Native Interface. With JNI, Java programs
can access native code libraries for the platform
on which they execute. This approach makes
available in Java a large body of tested and opti-
mized legacy libraries for numerical computing.
It provides, in particular, access to message-passing
interface technology and linear algebra packages.7

The disadvantages of using native libraries
with Java lie in five areas: safety, robustness, re-
producibility, portability, and performance.
Typically, Java systems cannot execute externally
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Figure 4. Comparison of SciMark component benchmarks on a 500-MHz Intel
Pentium III running Windows 98. The figure compares a C implementation based
on Microsoft Visual C++ 5.0 to a Java implementation using Sun’s JDK 1.2.

Table 1. A summary of Java performance with the Ninja compiler. 

Percent of Speedup on
Benchmark Mflops Fortran four processors

MATMUL 340 84 3.84
MICRODC 210 102 3.05
LU 154 93 2.27
CHOLESKY 167 97 1.44
BSOM 175 81 2.04
SHALLOW 156 83 2.40
TOMCATV 75 40 1.16
FFT 104 54 2.40
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compiled native code in a controlled sandbox,
and therefore this native code is not as safe to
the host computer. Second, native code does not
include all the runtime validity and consistency
checks of Java bytecode and is therefore less
robust. Third, native code, even for a standard
library, is likely to have small differences from
platform to platform, which might result in dif-
ferent outcomes in each one. Fourth, native
code is not portable across machine architec-
tures and operating systems. Finally, invoking a
native method from Java incurs runtime over-
head; if the operation’s granularity is large, it
can amortize the invocation’s cost. However, for
simple operations, the cost of going through JNI
can completely dominate the execution time.

Because of all the problems associated with the
use of native methods from Java, it makes sense to
pursue numerical libraries development directly
in Java. Research groups and commercial ventures
have begun to develop many such libraries, prin-
cipally in the area of numerical linear algebra, but
more are needed. The lack of such easily available
libraries is one reason for Java’s slow adoption for
numerical computing. You can find a fairly com-
prehensive listing of available class libraries for nu-
merical computing on our Java numerics Web
page (http://math.nist.gov/javanumerics).

Remaining difficulties

Despite the very impressive progress in Java per-
formance during the last few years, some chal-
lenges still remain: overrestrictive floating-point
semantics, inefficient support for complex num-
bers and alternative arithmetic systems, and lack
of direct support for true multidimensional arrays.

Despite some relaxations in Java 1.2 and 1.3, re-
producibility of floating-point results is still a fea-
ture very central to Java. As a consequence, Java
forbids common optimizations, such as making
use of the associativity property of mathematical
operators, which does not hold in a strict sense in
floating-point arithmetic: (a + b) + c might produce
a different rounded result from a + ( b + c). Fortran
compilers, in particular, routinely make use of the
associative property of real numbers to optimize
code. Java also forbids using fused multiply–add
(FMA) operations. This operation computes the
quantity ax +  y as a single floating-point opera-
tion. Many compute-intensive applications, par-
ticularly matrix computations, contain such oper-
ations. With this instruction, only a single
rounding occurs for the two arithmetic operations,
yielding a more accurate result in less time than
would be required for two separate operations.
Java’s strict language definition does not allow the
use of FMAs and thus sacrifices up to 50 percent of
performance on some platforms.

To make Java usable by programmers that re-
quire the fastest performance possible, it is nec-
essary to further relax Java’s restrictive floating-
point semantics. This can be accomplished by
introducing a fast mode for execution of float-
ing-point operations in Java. This mode would
only be used in those classes and methods ex-
plicitly marked with a fastfp modifier. In this
fast mode, FMAs and numerical properties such
as associativity could be used by an optimizing
compiler. We note that the default mode would
continue to lead to more reproducible results (as
today), and the programmer can only enable the
fast mode by explicitly identifying classes and
methods where he or she could use it.

Complex numbers and alternative
arithmetic systems

Another indicator of a programming lan-
guage’s ability to support scientific and engineer-
ing computing is the ease and efficiency with
which it can do computation with complex num-
bers. Other important alternative arithmetics of
growing importance are interval arithmetic and
multiprecision arithmetic. A good scientific com-

Do’s and Don’ts for Numerical
Computing in Java

The following are suggestions as to which Java features to em-
brace and avoid if you wish to do efficient numerical computing
in the language.

• Do use modern JVM implementations (the best are on PCs)
that use JITs or other compiling technologies; avoid older
JVMs that are interpreted.

• Do alias multidimensional arrays in loops whenever possible;
that is, turn A[i][j][k] into Aij[k].

• Do employ the same optimizations for numeric computing
as you would for C and C++; for example, pay attention to
memory hierarchy.

• Do declare local (scalar) variables in innermost scope; that is,
for (int i=0;...).

• Do use += rather than + semantics for methods to reduce
the number of temporaries created.

• Don’t create and destroy many little objects in innermost
loops; Java’s garbage collector can slow things down.
Instead, use your own pool of homogeneous objects (that is,
an array of these) and manage the memory yourself.

• Don’t use the java.util.Vector class for numerics; this
is designed for a heterogeneous list of objects, not scalars.
(You will need to cast each element when accessing it.)
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puting language should have the flexibility to in-
corporate new arithmetics like these in a way that
is both efficient and natural to use.

The most natural way to realize complex num-
bers in Java is in the form of a Complex class whose
objects contain, for example, two double values.
Programmers must then express complex-valued
arithmetic by means of complicated method calls,
as in the following code fragment, which computes
z = ax+y, where x = 5 + 2i and y = 2 − 3i.

Complex x = new Complex(5,2); 
Complex y = new Complex(2,-3); 
Complex z = a.times(x).plus(y);

This has several disadvantages. First, such
arithmetic expressions are quite difficult to read,
code, and maintain. Moreover, although concep-
tually equivalent to real numbers implemented
with primitive types (for example, double), Com-
plex objects behave differently—the semantics
of assignment (=) and equals (==) are different for
objects. Finally, complex arithmetic is slower
than Java’s arithmetic on primitive types because
it takes longer to create and manipulate objects.
Objects also incur more storage overhead than
primitive types. In addition, the program must
create temporary objects for almost every
method call. This leads to a glut of temporary
objects that the garbage collector must deal with
frequently. In contrast, Java directly allocates
primitive types on the stack, leading to very effi-
cient manipulation. Another disadvantage is that
class-based complex numbers do not blend seam-
lessly with primitive types and their relationships.
For example, an assignment of a double value to
a Complex object will not cause an automatic
typecast—although we would expect such a cast
for a genuine primitive type complex.

A general solution to these problems would be
the introduction of two additional features to
the language: operator overloading and lightweight
objects. Operator overloading is well known. It
lets you define the meaning of a + b when a and
b are arbitrary objects. Operator overloading is
available in several other languages, such as C++,
but practitioners have widely abused it, leading
to very obtuse code. However, when dealing
with alternative arithmetics, the mathematical
semantics of the arithmetic operators remain the
same, so operator overloading leads to naturally
readable code. Java needs to overload the arith-
metic operators, the comparison operators, and
the assignment operator. Lightweight objects are
final classes with value semantics. They can often

be allocated on the stack and passed by copy.
An alternative approach to providing efficient

support for complex numbers is to build into a
JVM knowledge about the semantics of the Com-
plex class, using a technique called semantic ex-
pansion.8 Internally, this approach uses a complex
value type in place of temporary objects and car-
ries out the usual compiler optimizations for
complex numbers (as in Fortran compilers). In
particular, it replaces most complex arithmetic
methods and constructor calls that prevail in the
Java code, with direct stack or register operations.

Yet another approach to obtaining both effi-
ciency and a convenient notation is to extend the
Java language with a complex primitive type.
The cj compiler, developed at the University of
Karlsruhe, compiles an extended version of Java
(with primitive complex type) into conventional
Java bytecode, which any regular JVM can exe-
cute.9 It maps the primitive data type complex
to a pair of double values. In this way, it avoids
all object overhead.

All these approaches have their advantages and
disadvantages. Introducing lightweight objects
into the language is a fundamental change with
far-reaching effects. Semantic expansion does
not require any changes to the language or byte-
code specification, but does require specializing
the compiler for each new arithmetic that it
needs to support efficiently. The same special-
ization also happens with the complex primitive
type, but only at the level of Java-to-bytecode
translation. Further study and experimentation is
necessary to decide the best solution.

Multidimensional arrays

Numerical computing without efficient and
convenient multidimensional arrays is unthink-
able. Java offers multidimensional arrays only as
arrays of one-dimensional arrays. This causes sev-
eral optimization problems. One is that several
rows of a multidimensional array could be aliases
to a shared one-dimensional array. Another prob-
lem is that the rows could have different lengths.
Moreover, each access to a multidimensional ar-
ray element requires multiple pointer indirections
and multiple bound checks at runtime.

Compiler optimizations that can bring Java
performance on par with Fortran require true
rectangular multidimensional arrays in which all
rows have exactly the same length. Aliasing of
rows in an array never occurs for true multidi-
mensional arrays, and aliasing between rows of
different arrays is easier to analyze and disam-
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biguate than arrays of one-dimensional arrays.
Multidimensional arrays could be provided in

Java by an extra package plus semantic expansion,
combined or not with a pre-processor. The ap-
proach without pre-processor support has deliv-
ered good performance but suffers from awkward
set and get accessor methods instead of elegant
[] notation.4 The pre-processor approach requires
a nontrivial syntactic extension because of the nec-
essary interaction with regular one-dimensional
Java arrays. Once again, further study is necessary
to determine which solution, or combination of
solutions, is most appropriate.

Many researches have demonstrated
the technology to achieve very high
performance in floating-point com-
putations with Java. Its incorpora-

tion into commercially available JVMs is more an
economic and market issue than a technical one.
The combination of Java programming features,
pervasiveness, and performance could make it the
language of choice for numerical computing. Fur-
thermore, all Java programmers can potentially
benefit from the techniques developed for opti-
mizing Java’s numerical performance, not just
those with “grande” applications. We hope this
article will encourage more numerical program-
mers to pursue developing their applications in
Java. This, in turn, will motivate vendors to de-
velop better execution environments, harnessing
Java’s true potential for numerical computing.
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