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On the Distribution of the Limit of Products of
I.I.D. 2 x 2 Random Stochastic Matrices
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This article gives sufficient conditions for the limit distribution of products of
i.i.d. 2 x 2 random stochastic matrices to be continuous singular, when the
support of the distribution of the individual random matrices is finite.
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1. INTRODUCTION

In the 1960s and 1970s, Rosenblatt and others studied convergence of ran-
dom walks taking values on compact semigroups [see Mukherjea and
Tserpes(4); Rosenblatt(6)], and properties of the limiting distributions in
this abstract setting. However, very few concrete examples have been
studied so far to illustrate these results. The set of 2 x 2 stochastic matrices,
though an extremely simple (multiplicative) compact semigroup, is large
enough to support some highly nontrivial cases that can shed light on a
number of important questions in the above context. In this paper we study
the question of continuous singularity of the limiting distribution, and
then, as an application, consider the question whether the limiting distribu-
tion can arise from more than one random walk.

Let A1, A2, ..., An be 2 x 2 stochastic matrices such that the first
column of Ai is ( x i , y i) , where 0 < xi < 1, 0 < yi < 1. In this paper, the point
(xi ,yi) on the plane will always represent the matrix Ai. The second
column of Ai is, of course, (1 – xi , 1 –yi). Let u be a probability measure
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such that the support of u is given by S ( u ) = { A 1 , A2,..., An} and
u ( A i ) =p i , 1 < i < n. Let us assume that for each i, 1 <i<n, 0 < xi< 1 and
0<y i <1. Then it is well-known [see Rosenblatt(6)] that the sequence (un)
of convolution powers of u (where un is the distribution of Y1 . Y2 . . . Yn,
Yi's being i.i.d. random matrices with distribution u) converges weakly to
a probability measure A whose support consists of 2 x 2 stochastic matrices
with identical rows, so that they are represented by points (x, x), 0 < x < 1.
Let us define the function G(x) by

Then G is the distribution function of L, and since L * u = L, G satisfies the
functional equation:

where A U B U C ={0, 1,..., n–1}, and the sets A, B, C, and C[x] are
given by

and

For the purposes of this paper we will assume that C is empty. Indeed
if C = {1, 2,..., n– 1}, then L =u. If, on the other hand, C is a nonempty
proper subset of { 0,..., n – 1}, the support of A is enumerable. Indeed, if

and if
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then repeated applications of Eq. (1.1) would show that the G-measure of
Dm will be no less than

It follows then that D, the union of the sets Dm defined in Eq. (1.3) is
an enumerable set of G-measure 1.

If C is empty, then G(x) is continuous when all the points in S(u) are
not collinear with (1, 0); and it is known that it is either continuous
singular or absolutely continuous (with respect to the Lebesgue measure on
[0, 1]). In Mukherjea and Ratti,(3) we found sufficient conditions for G to
be continuous singular when the sets B and C are empty. In this article, we
consider the case when B and C are not necessarily empty, and our results
here are much more complete. The treatment of the case when H is non-
empty is not at all obvious from our earlier considerations [Mukherjea
and Ratti(3)], and thus, necessitates the present paper. The question when
G is continuous singular was raised by Rosenblatt.(6)

Finally, we should mention that the problem was earlier considered by
Nakassis(5) and Sun,(7) in the case when S ( u ) has exactly two points (both
below the diagonal). In Section 2, we present our main result. In Section 3,
we present a nontrivial special case when the function G is like the classical
Cantor function. The last section contains an application where we use
results of Section 3.

2. CONTINUOUS SINGULARITY OF THE FUNCTION G

This section will establish our main result, will present extensions of
the main result, and will construct examples in which the limit distribution
is piece-wise polynomial.

2.1. Definitions and Terminology

As we pointed out in the introduction, 2 x 2 stochastic matrices are
fully specified by their first column and can therefore be identified with the
elements of the unit square, [0, 1] x [0, 1], and in what follows we will
use the point notation to identify our stochastic matrices. Under this
assumption,



for every Borel set B such that B C [0, 1].
We can now assume without loss of generality that S ( u ) contains at

least two points and that (1, 0) is not in S ( u ) . For if (1, 0) were in S (u ) ,
then u would be of the form

where 0<p<1, S(u1) = { ( 1 , 0 ) } , and S ( u 2 ) = S(uu ) – { ( 0 , 1)}.
Under these conditions, the iterates of u would have the same limits

as the iterates of u2 .

and u { ( x i , yi )} =pi >0 with p0 + . . . +pn-1 = 1.
If at least one of the points in S(u) is neither (0, 1) nor (1, 0), and if

X is as before, the support of A will be some subset of the main diagonal.
Thus, L = L * u, will be equivalent to

Clearly, whenever x = y, right multiplication by (x, y) defines an
injective mapping. Moreover, if x' = y', its image (x, y) will satisfy x = y.
Thus if one were to identify the points in the main diagonal (i.e.,
{ (a , a) | 0 < a < 1}) with the unit interval, right multiplication by (x, y)
could be seen as a linear transformation of [ 0, 1 ].

Following the customary notation, we define

Definition 1. For every mapping s, s: A ->B, every X, X c A, every
Y, Y c B, and every b, b e B, X s = { x s | x e X}, Ys–1 = {x | x e A and
xs e Y}, and { b } s – 1 = bs–1.

We note that:

• In the context of this paper A and B are sets of 2x2 stochastic
matrices and s is some form of matrix multiplication, and

• the paper consistently identifies stochastic matrices with points in
the unit square and the diagonal of the unit square with the unit
interval because, eventually, the problems addressed involve sets of
real numbers and linear mappings from R to R.

Assume now that u has finite support and that none of the points in
its support lie on the main diagonal. For example,
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Similarly, if S ( u ) consisted of a single point, the support of A would
collapse to a single point.

If the support of u does not include either (1, 0) or points in the
diagonal, then the mappings (x, x) -> (x, x } ( x i , yi] are linear and invertible
with fixed points that lie on the intersection of the main diagonal and the
line spanned by (1,0) and ( x i , yi ). Moreover, for all points other than
(0, 1) these mappings are contractions.

In what follows we will assume that the support of u is finite, has at
least two points, and does not contain any point on the main diagonal of
the unit square or point (1, 0). In addition we will use the following sym-
bols and definitions:

Definition 2.

• Ti is the linear mapping that ( x i , yi ), i = 0,..., n – 1, induces over the
real numbers;

• ui = xi – yi and ai = |xi– yi|, i = 0,..., n – 1;

• fi is the fixed point of Ti;

• g is the free semigroup generated by the symbols {T0 ,..., T n – 1 } .
Note: g can be homomorphically embedded in the semigroup
generated by the functions {T0 ,..., T n – 1 } ; thus, when context
demands it, each s in g will be treated as a function.

• fk is the set of all elements in g of length k;

• [t*, t*] is the smallest closed interval whose L-measure is one.

We note that:

• for each x and i, xTi = ( x – f i ) ui + fi

• [t*, t*] depends only on the points in ,u's support. It is the smallest
interval that satisfies

Equivalently, t* and t* are, respectively, the maximum and mini-
mum values that simultaneously satisfy:

and
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As a rule, [t* ,t*], is a proper subset of [0, 1]. Nevertheless, the
order-preserving linear transformation that maps [t*, t*] onto
[0, 1 ] preserves the functional form of Eq. (2.2) as well as the ui and
ai values, i = 0,..., n – 1. We can therefore assume that Eq. (2.2) has
been normalized through the transform in question, and will rewrite
it as

We shall assume therefore in what follows that unless otherwise
indicated [t*, t*] = [0, 1] and that, unless otherwise qualified, symbol /
represents [0, 1].

2.2. Main Result

Theorem 1. The solution of Eq. (2.6) is continuous singular (with
respect to the Lebesgue measure on [0, 1]) if any of the following condi-
tions holds:

(i) a0 + a1+ . . . + an–1 < 1;
(ii) a0 + a1 + . . . +an–1 = 1, and for some i, pi =ai;

(iii) (a0/P0)p 0 (a1/p1)p1... (an – 1 /Pn - 1)Pn - 1<1.

Remark 1. When either conditions (i) or (ii) earlier hold true, condi-
tion (iii) holds true as well. Indeed, if the pi's are positive constants, and
the ai's nonnegative with constant sum T, then the maximum of

occurs at the single point where

Proof. By iterating Eq. (2.6) k times we obtain:

where k i ( s ) is the number of times Ti occurs in the word s.



for all s, s e g*, the right hand term in Eq. (2.2) is bounded by d k.
Given that the sum in Eq. (2.10) cannot exceed 1, it ensues that

when the last summation is over all (k0 ,..., kn–1) such that k ( p i – e) <ki

k ( p i + e), 1<i<n–1, and k0+ ... + kn_1 =k.
By virtue of the central limit theorem, if e is kept constant and

k–> + I, this sum tends to 1.
Now let us compute an upper bound for l ( U S E gk* IS).
We observe that since for every s

Then we have:

Such constants do exist under our assumptions. Let us define the set
g* by

for all (z0, z1,..., z n – 1 ) that satisfy

Assume now that e and d are positive constants such that

while the length of Is equals
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Therefore, if B is chosen to be Is, we obtain:



where the summation is as in Eq. (2.12).

and

provided that not all ratios ai /pi equal 1. The purpose of this subsection is
to show that this proof can be extended to cover all n.

Under the circumstances at least one of the ratios is less than 1 and
at least one exceeds 1. Let L consist of all indices for which ai /pi is mini-
mum and let g be maximum value of (ai /pi)/(aj /pj ) when i ranges over L
and j over H= (0,..., n– 1} – L. Clearly, g< l. Assume that t(k) is any
unbounded increasing sequence that is o ( R k ) and note that the variance
of the number of successes in k Bernoulli experiments is of the same order
as Rk.

Let us define gk as in the previous section and let

For the same reasons as in the previous subsection we have:

Indeed, assume that we start with a set of ai's that are not identical to the
pi's and sum up to S=1. Then, P<1. Since P is continuous in its
arguments, it follows that small increases in the ai's will result in
parameters that satisfy Eq. (2.11).

2.3. Extensions of the Main Theorem

As in Nakassis(5) for n = 2, we can show that A is continuous singular
when
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Remark 2. There are situations when we have both
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We note that if s is in gk, then we have:

where by definition zi = ki — kpi , 0<i<n–1 and by virtue of our assump-
tions zi < —t(k), i e H, and z0+ . . . +zn – 1 =0.

It ensues that the expression in Eq. (2.14) is bounded from earlier by
gt(k) .Thus, we have a sequence of sets whose G-measure approaches a
positive constant (Central Limit Theorem) while the (Lebesgue measure)/
(G-measure) ratio converges to 0.

2.4. Piece-Wise Polynomial Solutions

As shown by Nakassis,(5) for n = 2, appropriate choices of the
parameters can lead to solutions G which are piece-wise polynomial. This
subsection will show how these results can be extended to cover n-point
support measures.

The cited reference shows that if the equation to solve is of the form

with a such that am = 2, then, G(x) is piece-wise polynomial of degree not
exceeding m.

We note that:

• Equation (2.15) can be thought of as a starting point for con-
structing n-term equations as in Eq. (2.6) that have continuous solu-
tions. It suffices to apply it iteratively and selectively (e.g., express
G(ax) as ( 1 / 2 ) G ( a 2 x ) + ( 1 / 2 ) G ( a ( a x – 1 ) + 1).

• The solution of Eq. (2.15) is symmetric around (1/2) and satisfies
G(x) = 1 — G( 1 — x) for all x. Thus one can use this type of substitu-
tion to obtain equations of the same form as Eq. (2.6) that result
from points both above and below the main diagonal and which
admit piece-wise polynomial solutions.

• The fact that all these apparently different equations admit the same
solution points out some of the difficulties in establishing under
what conditions the iterates of two different measures u converge to
the same measure.

The n = 2 case results can be extended to measures of finite support as
follows:



Indeed, fix for the moment all entries in c except for c0 so that c can take
exactly two values c0 = (0, c1,..., cm–1 ) and c1 = (1,c1 , . . . ,cm_1 ). Straight-
forward manipulations show that for all c we have:
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Proposition 1. If all the pi values are equal to (1/n), if all the ui

values are positive and equal to the rath root of (1/n), and if the fixed i
points fi are equally spaced (i.e., fi = i/(n– 1) for all i, i = 0,..., n— 1), then
G(x) is piece-wise polynomial and of degree not exceeding m.

Proof. Let c = (c0 ,c1,...,cm–1 ) represent a point in {0, 1} m , let t be
the positive mth root of n, and let T= 1 + t + . . . +tm–1. Let us define in
Definition 4.

Definition 4.

• w ( c ) = ( – 1 ) s where S counts the nonzero terms in c;

• N(c) = (c0 + c 1 t + . . . + c m _ 1 t m - 1 ) / T ;

• h(x) = Ec w(c)(x- N(c) ) m – 2 |x – N(c)|.

We observe that for j = 0, 1,..., m – 1,

Indeed, terms of the form tt0tt1. . . ttj-1 occur in all c for which
ci0 = ci1 = . . .= c ij-1 = 1. There are 2m–j such c and for exactly half of them
w(c) = 1 while for the other half w(c)= – 1.

It ensues that if x < 0 or x > 1 and one can dispense with the absolute
values, h(x) = 0.

We also observe that h(x) satisfies

I f ( i , c ) = t ( t ( x - f i ) + f i - N ( c ) ) m – 2 | t ( x - f i ) + f i - N ( c ) |

then X(i, c) = (x-M(i, c ) ) m – 2 | x – M ( i , c)|

where M(i,c) = fi(t–1) + N(c) =I(c0+i+ c1+ c2t + . . .+c m – 1 t m - 2 )
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But, M(i, c1) = M ( i + 1 , c0) for all i, i = 0, 1,..., n–2 while w ( c 0 ) +
w ( c 1 ) = 0. In short, when all terms w(c) X(i, c) under consideration are
added, all but two will cancel out and their sum will collapse to

But the first term corresponds to the summand of h(x) that one would
obtain if c were rotated one place to the left while the second similarly
corresponds to the summand obtained through single rotation to the left
because [1+(n–1)]/t = tm–1. It ensues that h(x) indeed satisfies Eq. (2.16)
and that its integral, H(x), is bounded, is not identically 0, is constant out-
side [0, 1], and satisfies Eq. (2.6). Under these conditions, H(x) and G(x)
differ only by a multiplicative constant and, therefore, G(x) is piece-wise
polynomial and of degree at most m.

3. GEOMETRIC CONSIDERATIONS

Conditions (i) and (ii) of the main theorem show that in some
instances we can deduce the singularity of G, with little or no information
other than the support of u. This section will examine the case in which the
set ITi do not overlap (i.e., each point in (0, 1) belongs to at most one IT i).
We will also assume that (0, 1) is not in the support of u so that all Ti's
are centered around xs–1, it ensues that if xs–1 were within [0, 1],
(x – e, x + e ) s – 1 would contain [0, 1] and its (G-measure would be positive.
Hence, the G-measure of (x – e, x + e) would have been positive, a contra-
diction. Therefore, if 0 < x < 1 and G(x – e) = G(x + e) for some positive e,
than x e Ok for some well chosen k.

The sixth is an immediate consequence of the fifth and of the observa-
tion that some points such as {fi | i = 0,..., n – 1} are not members of Ok

for any k and, hence are not in O*.
We note that:

• The one-step descendants of Is, { IT i s |i = 0,..., n – 1}, can be
obtained through the removal from Is of the open set Os that is in
the same relative position to IS as O is to [0, 1]. Since the Ti's are
not necessarily order preserving, it is entirely conceivable that s
maps 1 onto the lower endpoints of Is and 0 onto the upper one. In
this instance, when we traverse Is from right to left we see Os to be
in the same relative position with respect to Is as O is with respect
to I.

• The support of G is C* and is found through a Cantor type
construction.



582 Mukherjea, Nakassis, and Ratti

• While the Ok's and Ck's are linked to the initial measure u, their
limits O* and C* are fully determined from the limit of un, L.

4. AN APPLICATION

In this section, we will exploit the results in Section 3 to establish a
result on the one-to-one correspondence between probability measures on
2x2 stochastic matrices with n-point support and the weak limits of their
convolution powers. Briefly speaking, we consider the following problem:

Let u and u be probability measures such that

and

such that uk -> L, u –k –>L weakly as k-> I. Then under what conditions
on u, and u, does L = L imply u=u? Besides being a very natural and also
difficult problem in the general context, this problem has implications
in the theory of attractors and iterated function systems. For details, see

Dhar et al.(2) Theorem 2. Let u and u be two probability measures on 2x2
stochastic matrices such that

such that:

• u and u are strongly separated;

• For each i, the transforms Ti and Ti defined by Ai and Ai have the
same fixed point and

• For each i, the linear transforms induced by Ai and Ai, Ti and Ti,
are either both order preserving or both order reversing contractions
(i.e., ui and ui are of the same sign and none equals –1 [otherwise
said, (0, 1) is not in the support of either measure]).

Then, the weak limits of un and un are equal if and only if u = u.
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Proof. For the reasons pointed out by Dhar et al.(2) [Prop. 3.4] if u
and u have the same limit L, then

Let OM be a connected component of O* of maximum length. Given
that the components of Oi+1 are obtained through contraction mappings
of the components of Oi, OM must belong to both 00 and O0 . Let I ( T i ) =
(Ai, Bi) and I(Tj) = (Aj, Bj ) be the elements of C1 and C1 that about OM.
One of them must contain the fixed point (fi or fj ) of the other. Since u
and ft are strongly separated, this implies that i = j. But then, the linear
transforms Ti and Ti agree on two points (same fixed point and they both
map either 0 or 1 onto Bi) and must, therefore, be equal. If i >0, let OL

and OL be the connected components of O and O that end at Ai. They
intersect and since the components of O* cannot intersect without being
equal, in ensues that OL = OL and that Bi–1= Bi–1. Thus we can prove
that for j = 0,..., i, Tj= Tj.

This technique applies, just as well, on indices i+ 1 through n – 1, so
that Ti=Ti for i = 0,..., n-1.

Once this is established, examination of the probabilities L assigns to
the intervals ITi shows that pi = pi, i = 0,..., n – 1. Thus, u =u.
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