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Abstract. This paper is a summary of the 2007 CLEAR Evaluation
on the Classification of Events, Activities, and Relationships which took
place in early 2007 and culminated with a two-day workshop held in
May 2007. CLEAR is an international effort to evaluate systems for the
perception of people, their activities, and interactions. In its second year,
CLEAR has developed a following from the computer vision and speech
communities, spawning a more multimodal perspective of research eval-
uation. This paper describes the evaluation tasks, including metrics and
databases used, and discusses the results achieved. The CLEAR 2007
tasks comprise person, face, and vehicle tracking, head pose estimation,
as well as acoustic scene analysis. These include subtasks performed
in the visual, acoustic and audio-visual domains for meeting room and
surveillance data.

1 Introduction

CLassification of Events, Activities and Relationships (CLEAR) is an interna-
tional effort to evaluate systems that are designed for perceiving people’s iden-
tities, activities, interactions and relationships in human-human interaction sce-
narios, and related scenarios. The first CLEAR evaluation workshop was held in
spring 2006 (see [23] for a complete description of CLEAR’06). It hosted a vari-
ety of tasks, evaluated on challenging, realistic scenarios, and brought together
a number of research institutions from around the world. Prompted by the suc-
cess of the first evaluation, another round was conducted from January through
April 2007, culminating with a 2-day workshop in Baltimore, MD, where system
details and results were presented and discussed. The CLEAR 2007 workshop
was colocated with the 2007 Rich Transcription (RT) workshop to provide an
opportunity for members of both the vision and speech research communities to
participate in discussions related to multimedia based evaluations.

1.1 Motivation

Many researchers, research labs and in particular a number of major research
projects worldwide – including the European projects CHIL, Computers in the



Human Interaction Loop [1], and AMI, “Augmented Multi-party Interaction”
[2], as well as the US programs VACE, “Video Analysis and Content Extrac-
tion” [3], and CALO, “Cognitive Assistant that Learns and Organizes” [4] – are
working on technologies to analyze people, their activities, and their interaction.
However, common benchmarks for such technologies are usually not available.
Most researchers and research projects use their own data sets, annotations, task
definitions, metrics and evaluation procedures. As a consequence, comparing the
advantages of research algorithms and systems is virtually impossible. Further-
more, this leads to a costly multiplication of data production and evaluation
efforts for the research community as a whole.

CLEAR was created to address this problem. Its goal is to provide a common
international evaluation framework for such technologies, and to serve as a forum
for the discussion and definition of related common benchmarks, including the
definition of tasks, annotations, metrics and evaluation procedures. The expected
outcomes for the research community from such a common evaluation forum are:

– the definition of widely adopted metrics and tasks
– greater availability of resources achieved by sharing the data collection and

annotation burdens
– the provision of challenging multimodal data sets for the development of

robust perceptual technologies
– comparability of systems and approaches
– faster progress in developing improved and robust technologies

1.2 Background

CLEAR is a collaborative effort between the US Government funded Video Anal-
ysis and Content Extraction (VACE), and the European Commission funded,
Computers in the Human Interactive Loop (CHIL) programs, but 2007 has ex-
panded this collaboration to include an evaluation task from the Augmented
Multiparty Interaction (AMI) program. As in 2006, this new round of evalua-
tions targeted technologies for tracking, identification, and analysis of human-
centered activities, on challenging multimodal databases from various meeting
and surveillance domains. As before, the evaluations were open and interested
sites not part of the initiating projects were invited to participate.

1.3 Scope and Evaluation Tasks in 2007

The CLEAR 2007 evaluation was organized in conjunction with the Rich Tran-
scription (RT) 2007 evaluation [5], their deadlines were harmonized and this
year the workshops were colocated. While the evaluations conducted in RT fo-
cus on content-related technologies, such as speech and text recognition, CLEAR
is more about context-related multimodal technologies such as person tracking,
person identification, head pose estimation, analyzing focus of attention, inter-
action, activities and events.



The evaluation tasks in CLEAR 2007 can be broken down into four categories:

– tracking (faces/persons/vehicles, 2D/3D, acoustic/visual/audio-visual)
– person identification (acoustic, visual, audio-visual)
– head pose estimation (single view data, multi-view data)
– acoustic scene analysis

These tasks and their various subtasks are described in Section 4. As in
the 2006 evaluations, part of the tasks were organized by CHIL and others
by VACE, depending on the partner that originally defined them, and on the
datasets used. The tasks were run independently in parallel, although care was
taken to harmonize task definitions, annotations and metrics wherever possible.
In contrast to 2006, the face detection and tracking task was run using the
same annotations and metrics for both the CHIL and VACE related subtasks.
In addition, the multiple object tracking metrics (see section 3), which were first
agreed on in 2006, were further harmonized, and used without exception in all
2007 tracking tracking tasks and subtasks.

1.4 Contributors

As in the previous year, many people and institutions worldwide contributed to
the success of CLEAR 2007. Again, the organizers were the Interactive Systems
Labs of the Universität Karlsruhe, Germany (UKA) and the US National In-
stitute of Standards and Technology (NIST). The participants and contributors
included: the Research and Education Society in Information Technologies at
Athens Information Technology, Athens, Greece, (AIT), the Interactive Systems
Labs at Carnegie Mellon University, Pittsburgh, PA, USA, (CMU) the Evalua-
tions and Language resources Distribution Agency, Paris, France (ELDA), the
IBM T.J. Watson Research Center, RTE 134, Yorktown Heights, USA (IBM),
the Centro per la ricerca scientifica e tecnologica at the Fundacione Bruno
Kessler, Trento, Italy (FBK-IRST), the Universitat Politécnica de Catalunya,
Barcelona, Spain (UPC), the Laboratoire d’Informatique pour la mécanique et
les sciences de l’ingénieur at the Centre national de la recherche scientifique,
Paris, France (LIMSI), Pittsburgh Pattern Recognition, Inc., Pittsburgh, PA,
USA (PittPatt), the department of Electronic Engineering of the Queen Mary
University of London, UK (QMUL), the Computer Science and Technology De-
partment of Tsinghua University, Beijing, China (Tsinghua), the Department of
Computer Science of the University of Maryland, MD, USA (UMD), the Uni-
versity of Central Florida, USA (UCF), the Institute of Signal Processing of the
Technical University of Tampere, Finland (TUT), the Breckman Institute for
Advanced Science and Tech. at the University of Illinois Urbana Champaign,
USA (UIUC), the IDIAP Research Institute, Martigny, Switzerland (IDIAP),
the MIT Lincoln Laboratory, Lexington, MA, USA (MIT), the Institute for
Robotics and Intelligent Systems of the University of Southern California, USA
(USC), the Institute for Infocomm Research, Singapore (IIR).

UKA, FBK-IRST, AIT, IBM and UPC provided several recordings of “in-
teractive” seminars, which were used for the 3D person tracking tasks, for face



detection, for the person identification tasks and for acoustic event detection.
UKA and IDIAP provided several annotated recordings for the head pose esti-
mation task. UPC and FBK-IRST provided different databases with annotated
acoustic events used for acoustic event recognition.

Visual and acoustic annotations of the CHIL Interactive Seminar data were
mainly done by ELDA, in collaboration with UKA, CMU, AIT, IBM, FBK-IRST
and UPC. Packaging and distribution of data coming from CHIL was handled
by UKA. The data coming from VACE was derived from a single source for
the surveillance data - the Imagery Library for Intelligent Detection Systems (i-
LIDS) [6]. The meeting room data was a collection derived from data collected at
CMU, the University of Edinburgh (EDI), NIST, the Netherlands Organisation
for Applied Scientific Research (TNO), and Virginia Tech (VT). The evaluation
scoring software for VACE tasks was contributed by the University of South
Florida (USF).

The discussion and definition of the invidual tasks and evaluation proce-
dures were moderated by so-called “task-leaders”. These were Keni Bernardin
(UKA, 3D person tracking), Ramon Morros (UPC, CHIL-related 2D Face track-
ing), Rachel Bowers, Martial Michel and Travis Rose (NIST, VACE-related 2D
face tracking, 2D person tracking, 2D vehicle tracking), Hazim Ekenel (UKA,
visual person identification), Djamel Mostefa (ELDA, acoustic identification),
Aristodemos Pnevmatikakis (AIT, audio-visual identification), Michael Voit and
Jean-Marc Odobez (UKA and IDIAP, head pose estimation), Andrey Temko
(UPC, acoustic event recognition). The tasks leaders were responsible for scor-
ing the evaluation submissions. For CHIL tasks, they were also centrally scored
by ELDA.

Note that original plans called for the inclusion of a person detection and
tracking task in the unmanned aerial vehicle (UAV) domain using data con-
tributed by the Defense Advanced Research Projects Agency (DARPA) Video
Verification of Identity (VIVID) [7] program. Unfortunately, the annotation of
this data proved to be too difficult to perform with the sufficient level of consis-
tency required for the purposes of this evaluation. Therefore, the UAV Person
Detection and Tracking task was eliminated from the evaluation.

The remainder of this paper is organized as follows: Section 2 first gives a brief
overview of the used data sets and annotations, followed by an introduction to
the evaluation metrics in Section 3. Section 4 then presents the various evaluation
tasks with an overview of the achieved results and discusses some of the outcomes
and potential implications for further evaluations. Finally, Section 5 summarizes
the experiences gained from the CLEAR’07 evaluation.

Further details on the tasks definitions and data sets can be found in the
evaluation plans available on the CLEAR webpage [8].



2 Evaluation Corpora

2.1 CHIL Interactive Seminars

The CHIL-sponsored evaluation tasks of 3D person detection, person identifica-
tion, face detection and tracking, and acoustic event recognition were carried out
using the CHIL Interactive Seminar database. This database features recordings
of small seminars with 3 to 8 participants, recorded at 5 different CHIL sites
with greatly varying room characteristics. The “lecture-type” Seminar database
still used in CLEAR’06 [23], figuring recordings of a lecturer in front of an au-
dience, and focused towards single person analysis were dropped completely in
favor of the multiple person scenario. A minimum common sensor setup in the
recording rooms guaranteed a certain level of standardization to ease algorithm
development and testing. The visual sensor setup includes 4 fixed cameras with
overlapping views installed in the room corners and one fisheye ceiling camera.
The audio setup includes at least three 4-channel T-shaped microphone arrays
and at least one MarkIII 64-channel linear microphone array on the room walls,
as well as several close-talking and table top microphones. All data is synchro-
nized, with highest priority on the audio channels which can be used for acous-
tic source localization and beamforming. A detailed description of the recording
rooms, sensors, scenarios and procedures is given in [19]. A total of 25 seminars
were recorded in 2006, which were separated into 100 minutes of development
and 200 minutes of evaluation data (see Table 1).

Table 1. CHIL Interactive Seminar data used in CLEAR’07

Site Development Evaluation

AIT 1 Seminar (20m segment) 4 Seminars (2x 5m segments each)

IBM 1 Seminar (20m segment) 4 Seminars (2x 5m segments each)

IRST 1 Seminar (20m segment) 4 Seminars (2x 5m segments each)

UKA 1 Seminar (20m segment) 4 Seminars (2x 5m segments each)

UPC 1 Seminar (20m segment) 4 Seminars (2x 5m segments each)

For the person identification task, the same development and evaluation sem-
inars were used, but the training and test segments were chosen from different
time points to better suit the requirements of the task, as explained in Sec-
tion 4.5. All video recordings are provided as sequences of single JPEG images
at 640x480, 768x576, 800x600 or 1024x768 pixels resolution and at 15, 25 or
30fps, depending on the recording site and camera. The audio recordings are
provided as single channels sampled at 44.1kHz, 24 bits per sample, in the WAV
or SPHERE formats, depending on the recording sensor. In addition, information
about the calibration of every camera, the location of every sensor, the record-
ing room dimensions, and a few empty room images for background modeling
are supplied for each seminar. The development and evaluation segments are



(a) AIT (b) UKA (c) FBK-IRST

(d) IBM (e) UPC

Fig. 1. Scenes from the 2007 CHIL Interactive Seminar database

annotated, providing 3D and 2D head centroid locations, face bounding boxes,
facial features such as the eyes and nose bridge, and audio transcriptions of
speech and other acoustic events. Fig. 1 shows example scenes from the 2007
Interactive Seminar database.

2.2 VACE Related Datasets

Table 2. Evaluation data

Data Raw data Training Evaluation

Multi-Site Meetings 160GB 50 Clips (Face) 45 Clips (Face)

i-LIDS Surveillance 38GB 50 Clips (Person) 50 Clips (Person)

i-LIDS Surveillance 38GB 50 Clips (Moving Vehicle) 50 Clips (Moving Vehicle)

The evaluation data were assembled using two databases, multi-site meetings
and surveillance data (Table 2). The surveillance data originate from the 2006
Imagery Library for Intelligent Detection Systems (i-LIDS) [6], distributed by
the United Kingdom’s Home Office via collaboration with NIST. All videos are in
MPEG-2 format using either 12 or 15 I-frame rate encoding. The annotations are
provided in ViPER (the Video Performance Evaluation Resource tool) format
[16, 18]. The Multi-Site Meetings are composed of datasets from different sites,
samples of which are shown in Fig. 2:



1. CMU (10 Clips)
2. EDI (10 Clips)
3. NIST (10 Clips)
4. TNO (5 Clips)
5. VT (10 Clips)

(a) CMU (b) EDI (c) NIST

(d) TNO (e) VT

Fig. 2. Scenes from Multi–Site Meetings

Sample annotations for the moving vehicle and the person tracking in surveil-
lance tasks are shown in Figs. 3 and 4.

2.3 Other Datasets

In addition to the above described databases, some tasks were carried out using
other datasets more suited to their requirements. The Head Pose Estimation
task was performed on two databases: One recorded at UKA, using 4 corner
cameras with overlapping views of the room, and one extracted from the AMI
Meeting database, featuring single views of a meeting table. These databases and
their annotations are explained further in Section 4.6. For the Acoustic Event
Recognition task, although development and evaluation was mostly based on
the CHIL Interactive Seminar database, 2 databases of isolated acoustic events,
recorded at UPC and ITC, which were also used in the CLEAR 2006 evaluation,
were included in the development set. More details are given in Section 4.7.

3 About Tracking Metrics

The reason tracking metrics are specifically presented here is because these same
metrics were used in many of the CLEAR tasks, including 3D visual, acousic and



Fig. 3. Sample annotation for vehicle. MOBILE objects are marked by black boxes.
STATIONARY objects are marked by white boxes. The shaded region indicates where
mobile vs. stationary is ambiguous.

audio-visual person tracking, face tracking, and 2D person and vehicle tracking.
As opposed to other tasks, such as face identification, for which well known and
widely accepted metrics exist, there is yet no common standard in the tracking
community for the evaluation of multiple object trackers. Most measures are de-
signed with the characteristic of a specific domain in mind (e.g. merges and splits
in 2D visual tracking, coming from the tradition of 2D foreground blob analysis),
and are not suited for application to other domains (such as e.g. acoustic track-
ing, 3D tracking, etc). For the first CLEAR evaluation in 2006, an effort was
undertaken to harmonize the metrics used in the different tracking tasks under
consideration in the CHIL and VACE communitites. The resulting metrics, the
Multiple Object Tracking Precision (MOTP ) and the Multiple Object Tracking
Accuracy (MOTA), should for the first time offer a general framework for the
evaluation of multibody trackers in all domains and for all modalities. The MOT
metrics are only briefly sketched in the following. For a detailed explanation, the
reader is referred to [11, 14, 22]. The metrics used in the person identification,
head pose estimation and acoustic event recognition tasks are described together
with the respective task descriptions in Section 4.

3.1 The MOT Tracking Metrics

The Multiple Object Tracking (MOT ) metrics build upon a well defined proce-
dure to calculate the basic types of errors made by multiple object trackers over
a tracking sequence: Imprecisions in the estimated object locations, failures to
estimate the right number of objects, and failures to keep a consistent labeling of
these objects in time. Given that for every time frame t a multiple object tracker



Fig. 4. Sample annotation for a person in surveillance.

outputs a set of hypotheses {h1 . . . hm} for a set of visible objects {o1 . . . on}, let
ct be the number of object-hypothesis correspondences made for frame t and di

t

be the distance between object oi and its corresponding hypothesis. Let further
gt be the number of objects and fpt, mt and mmet be the number of false posi-
tives, misses, and track ID mismatch errors made for frame t. Then the MOTP
is defined as:

MOTP =

∑
i,t d

i
t∑

t ct
(1)

and the MOTA as:

MOTA = 1−
∑

t (mt + fpt +mmet)∑
t gt

(2)

For the distance di
t between an object and a tracker hypothesis, various mea-

sures can be used without changing the general framework. For the CLEAR 3D
person tracking tasks, e.g., the euclidian distance on the ground plane between
annotated and tracked object centroids was used, whereas for the 2D face, person
and vehicle tracking tasks, the spatial overlap between annotated and tracked
bounding boxes, Gi

t and Di
t, was used.

di
t =
|Gi

t ∩Di
t|

|Gi
t ∪Di

t|
(3)



4 CLEAR 2007 - Evaluation Tasks and Results

The CLEAR tasks can be broken down into four main categories: tracking tasks,
identification tasks, head pose estimation and acoustic event recognition. Table 3
shows the different CLEAR 2007 tasks.

Table 3. CLEAR’07 tasks

Task name Organizer Section Database

Tracking

3D Person Tracking (A,V,AV) CHIL 4.1 Interactive Seminars
2D Face Det. & Tracking (V) CHIL/VACE 4.2 Int. Sem./Multi-Site Meetings
2D Person Tracking (V) VACE 4.3 Surveillance Data
2D Vehicle Tracking (V) VACE 4.4 Surveillance Data

Person Identification (A,V,AV) CHIL 4.5 Interactive Seminars

Head Pose Estimation (V) CHIL/AMI 4.6 Seminars1, AMI Meetings

Acoustic Event Recognition CHIL 4.7 Int. Sem., Isolated Events

4.1 3D Person Tracking

The objective of the 3D person tracking task is to estimate the trajectories on
the ground plane of the participants in CHIL Interactive Seminar recordings
(see Fig. 5). As in the previous evaluation, it is broken down into 3 subtasks:
Visual, acoustic and multimodal tracking. For all subtasks, the MOTP and
MOTA metrics described in Section 3 are applied, evaluating both localization
precision and tracking accuracy. The database for evaluation consisted of 200
minutes of recordings from 5 different CHIL sites and included the streams from
4 corner cameras and a panoramic ceiling camera, from at least 12 audio channels
coming from 3 T-shaped microphone arrays, and from at least 64 more audio
channels captured by a MarkIII microphone array. The scenes figured 3 to 8
seminar participants engaged in natural interaction, and were cut out as 5 minute
segments from various points inside the seminars, such that they did often not
include the starting phase, where persons enter the room. Trackers therefore had
to be capable of acquiring person tracks at any point in the sequence, of adapting
their person models, and had to automatically cope with the variability of all
CHIL rooms without room specific tuning.

Some notable changes to the CLEAR’06 tracking task should be mentioned
here:

1 For this task, a number of interactive seminars were recorded and annotated in
2006. These seminars, however, were not part of the dataset used for the tracking
and identification tasks.



Fig. 5. Example screenshot of a 3D person tracking system running on Interactive
Seminar data (Image taken from [15]).

– First of all, the single person tracking scenarios (lecture scenarios) were
dropped completely. Only scenarios involving the tracking of multiple per-
sons were considered.

– The acoustic subtask was extended and required trackers to automatically
detect segments of speech in addition to performing localization. This means
that segments of silence or noise were now included in the evaluation data.
Segments containing cross-talk, though, were still considered as “don’t care”
segments.

– The multimodal subtask was redefined and the conditions A and B from
CLEAR’06 were dropped. The goal in this evaluation was to audio-visually
track the last known speaker. This implies that the tracking target has to be
determined acoustically, tracked audio-visually, segments of silence have to
be bridged using only the visual modality, and the target has to be switched
automatically when a new speaker becomes active. The defined task cannot
be solved well using monomodal trackers. This change in the task definition
was made to achieve a better balance of the modalities and to better show
the advantages of multimodal fusion.

Fig. 6 shows the results for the visual subtask. A total of 7 systems from 4
sites participated. Various approaches, such as particle filters, Kalman filters, and
heuristic-based trackers were represented and a variety of features, gained from
the multiple views, were used. These include foreground segmentation support
maps, person colors, body or face detections, edge contours, etc. The best per-
forming system in terms of accuracy (78.36%) was a particle filter based tracker



0.00%20.00%40.00%60.00%80.00%100.00%MOTA 050100150200250 MOTP (mm)MOTA 59.66% 59.56% 59.62% 69.58% 54.94% 30.49% 78.36%MOTP (mm) 92 91 141 155 222 168 147AIT Prim AIT Cont FBK UKA Prim UKA Cont UPC Prim UPC Cont
Fig. 6. 3D Person Tracking – Visual subtask. The light bars represent the MOTA in
percent and the dark dots represent the MOTP in mm

using as sole feature a 3D voxelized foreground support map, computed from the
various views. The most performant system in terms of precision (91mm) was
based on the intelligent tracking and combination of detected faces in the 2D
views. According to the runtime information provided in the system descriptions,
almost all these systems performed at close to realtime.

-20.00%0.00%20.00%40.00%60.00%80.00%100.00%A-MOTA 050100150200250300 MOTP (mm)A-MOTA 1.45% -5.22% 45.18% 23.39% 30.37% 48.04% 54.63% 41.17%MOTP (mm) 257 256 208 223 210 152 140 168AITPrim AITCont FBKPrim FBKSec FBKThird TUT UKA UPC
Fig. 7. 3D Person Tracking – Acoustic subtask

Fig. 7 shows the results for the acoustic subtask. A total of 8 systems from 5
sites participated. The approaches were based on the computation of the Gener-
alized Cross-Correlation (GCC-PHAT) between microphone pairs or of a Global
Coherence Field (GCF or SRP-PHAT) using the information from all arrays.
While some systems still tackled speech segmentation and localization sepa-
rately, others did use a combined approach. The most performant system over-
all was a Joint Probabilistic Data Association Filter (JPDAF) - based tracker,
which performed speech segmentation by thresholding localization uncertainties.



It reached a precision of 140mm and an accuracy of 54.63%. Most systems proved
to be capable of realtime or close to realtime operation.

0.00%20.00%40.00%60.00%80.00%100.00%MOTA 050100150200250 MOTP (mm)MOTA 10.85% 34.12% 58.49% 50.78% 38.39% 42.28%MOTP (mm) 107 134 151 159 138 117AIT Prim FBK UKA Prim UKA Cont UPC Prim UPC Cont
Fig. 8. 3D Person Tracking – Multimodal subtask

Fig. 8 shows the results for the multimodal subtask. A total of 6 systems
from 4 sites participated. These systems are a combination of the visual and
acoustic trackers presented earlier. Almost all systems perform modality fusion
by postprocessing the outputs of the monomodal trackers and combining at
the decision level. The only exception is the lead system in terms of accuracy
(58.49%), which fused the audio and visual information at the feature level to
initiate, update, and terminate person tracks.

In general, the biggest challenge facing visual tracking systems in the CLEAR
scenarios is still the reliable detection of persons in various poses, with partial oc-
clusions, from a variety of viewing angles, in natural uncontrolled environments.
Compared to systems presented in 2006, the approaches were much more ad-
vanced this year, fusing far more features and more types of detectors to achieve
higher robustness. The best MOTA score improved from 62.79% to 78.36%,
despite the much higher variability caused by the inclusion of more recording
sites (for comparison, the best system from 2006, UKA Cont [12, 13], achieved
only 54.94% MOTA on the 2007 data). Similarly, the challenge on the acoustic
side relies on the proper detection and segmentation of speech in the presence
of irregular, non-uniform noise sources, reverberation and crosstalk. While the
best acoustic performance seems to have dropped from 64% in 2006 to 54.63%
in 2007, one must remember that the task this year involved also the automatic
segmentation of speech, while last year systems were only evaluated on manu-
ally annotated segments of clean speech. On the whole, scores for all systems
were much higher, showing that basic difficulties previously encountered could
be overcome to some extent. Undoubtedly, though, a great deal of work must
still be done to further increase the robustness of acoustic systems. On a last
note: The best multimodal MOTA score for 2007, 58.49%, can not be directly
compared to the best 2006 multimodal scores (37.58% for condition A, 62.20%



for condition B), as the task definitions, and therefore the goals and difficulties
for trackers differ. Also, the 2007 multimodal scores cannot be directly compared
to the 2007 monomodal visual or acoustic scores for the same reasons. At the
very least, one can observe that an early fusion of audio-visual features seems to
bear some advantages, as shown by this year’s best performing system. Only the
scoring of monomodal acoustic trackers on periods of silence, just as in the mul-
timodal task, could clearly show the advantages gained by the addition of visual
features2. The problem of objectively measuring the advantages of multimodal
fusion, especially in natural, application-near scenarios such as in CLEAR, still
poses some difficult questions that must be investigated.

Appendix A graphically shows a more detailed analysis of the results for the
CLEAR 2007 3D person tracking task, for the audio, visual and multimodal
subtasks.

4.2 2D Face Detection and Tracking

The purpose of this task is to measure the accuracy of face tracking for meeting
and lecture room videos. The objective is to automatically detect and keep track
of all visible faces in a video sequence, estimating both their position and their
extension (see Fig. 9).

Fig. 9. Example screenshot for the face tracking task on Interactive Seminar data
(Image taken from [20]).

2 While the scoring of such trackers on silence-only periods is useful for diagnostic
purposes in determining the contribution from audio tracking to the multimodal
task, it is not representative of a real-world task.



The task was evaluated on two databases, the CHIL Interactive Seminars
and the VACE Multi-Site Meetings. While for the Multi-Site Meeting database,
detection and tracking could only be performed separately in the multiple cam-
era views, the Interactive Seminar database offered exact calibration information
between views, allowing to use 3D geometric reasoning about scene locations of
faces to increase accuracies (this was not exploited by any of the participating
systems, though). In both cases, the overall performance is computed as the
average of 2D tracking performances across all views. Face sizes in the CLEAR
databases are extremely small (down to 10x10 pixels), faces are rarely oriented
directly towards a camera, lighting conditions are difficult and faces are often
occluded, making standard skin color segmentation or template matching tech-
niques unusable. Thus, the difficulty of the dataset drives the development of
innovative techniques for this research field.

In contrast to CLEAR’06, the task was better harmonized, with respect to the
CHIL and VACE datasets, notably concerning the annotation of face extensions,
the definition of visible faces, and the metrics used. Faces are considered visible if
of the three annotated features, the left eye, the right eye and the nose bridge, at
least two are visible. They are regarded as “don’t care” objects, which are ignored
in scoring, if only one feature is visible. As for all tracking tasks in CLEAR’07, the
MOT metrics were adopted, using the overlap between annotated and tracked
face bounding boxes as distance measure.

0.00%20.00%40.00%60.00%80.00%100.00%
MOTA 33.07% 68.81%MOTP (overlap) 0.66 0.68AIT PittPatt
Fig. 10. 2D Face Tracking – CHIL Interactive Seminar database

2D Face Tracking on the CHIL Interactive Seminar Database The
results for face tracking on the Interactive Seminar database are shown in Fig. 10.



As in 2006, two sites participated on this dataset. The best system used a 3-
stage algorithm consisting of a frame-based face detection step, a motion-based
tracking step, and a subsequent track filtering step. It reached a precision of 68%
overlap and an accuracy of 68.81%. These results are slightly better than those in
2006 (best MOTP : 0.64, best MOTA: 68.32%), although in 2006 tracking errors
resulting from track ID switches were not counted, and in 2007 the conditions
were more challenging due to an increase in the amount of seminar participants
involved.

2D Face Tracking on the Multi-Site Meeting Database The results on
the Multi-Site Meeting database appear in Fig. 11. 5 systems from 3 different
sites participated in the evaluation. The leading system here also used a 3-
stage approach consisting of face detection using a hierarchical multi-view face
detector, particle filter-based tracking, and filtering of the resulting tracks. It
reached scores of 70% MOTP and 85.14% MOTA.

Fig. 11. Face tracking in meeting room

For both datasets, the main difficulties still stemmed from very small or
hardly identifiable faces, extreme views of faces, and blurred or highly com-
pressed video. Another important factor is that the quality of annotations is
also affected by these same problems. A fair portion of false positives can (for
example) be attributed to cases where faces are tracked in extreme poses in
which none of the facial features were clearly visible, and were therefore an-
notated as invisible. The converse also holds for ambiguous cases which were
judged visible based on facial feature annotations, but only contain fractions of
a face, resulting in a miss by the tracker. In both cases, better guidelines for the



annotation of “don’t care” faces, and some form of rating for the difficulty of the
underlying video sequence may reveal a much higher performance of presented
tracking systems than the actual numbers suggest.

For all VACE-sponsored tasks, a unified evaluation methodology was applied,
as task definitions, annotations and metrics were very similar. This methodology
should be briefly mentioned here: Each participating site electronically submitted
system output for scoring using the USF DATE software3. Submissions were
evaluated using a batch process that involved two main stages: a data validation
step, followed by application of the metrics.

Fig. 12. Person tracking in surveillance video

To run the scoring software, it was verified that the submissions were com-
pliant with the Viper Document Type Definition [16, 18] and would successfully
be parsed. This required normalization of all submissions to complete validation
of their data. In the following cases, sites were notified and asked to resubmit
corrected files:

– Wrong object types: this occurred when submissions contained custom key-
words for objects.

– No object in submission: either the submission file contained no object at
all, or no object relevant to the task being scored was present in the file.

– Using a 2006 index file: cases where submitted files matched CLEAR 2006
index files.

3 USF DATE is USF (University of South Florida) DATE (Detection and Tracking
Evaluation).



– Incomplete submission: when a submitted system output was not complete,
such as a malformed XML file.

– Not a Viper file: some submissions were not in Viper format.

Each submission was evaluated against the ground truth using the metrics de-
scribed in Section 3. In cases where the submission could not be scored due to
limitations in USF DATE, the clip was marked as being problematic. Finally,
the set of all clips that were successfully scored for all submissions was used
to obtain the MOTA and MOTP scores, i.e. the same clips were used in these
calculations for all submissions, and scores were calculated only with respect to
the objects retained in the test set.

4.3 2D Person Tracking

The purpose of this task it is to track persons in a surveillance video clip. The
annotation of a person in the Surveillance domain comprises the full extent of
the person (completely enclosing the entire body including the arms and legs).
Specific annotation details about how a person is marked appear in the guide-
lines document [21]. The person tracking in surveillance video results appear in
Fig. 12.

4.4 2D Vehicle Tracking

Fig. 13. Vehicle tracking in surveillance video

The goal of the moving vehicle task is to track moving vehicles in a given
video clip. For the annotation, only vehicles that have moved at any time during



the clip are marked. Vehicles are annotated at the first frame where they move.
For specific details see [21].

For this evaluation task, the vehicle has to be moving and must be clearly
visible (i.e., should not be occluded by other objects). In the i-LIDS dataset
there are regions where vehicles are not clearly visible due to tree branches or
where the sizes of vehicles are very small. These regions are marked accordingly
(as “don’t care” regions). The vehicle tracking in surveillance video results are
summarized in Fig. 13.

4.5 Person Identification

The person identification task in the CLEAR evaluation was designed to mea-
sure the performance of visual and acoustic identification systems operating un-
der far-field4 conditions in realistic meeting and seminar scenarios (see Fig. 14).
The task was that of closed set identification and was evaluated on the CHIL

Fig. 14. Example screenshot of a face identification system running on Interactive
Seminar data (Image taken from [17]).

Interactive Seminar database. Only corner camera views and the MarkIII mi-
crophone array channels were available. For each participant to be identified,
training, validation and testing data was provided. The training data consisted

4 The “far-field” condition implies that only fixed microphones placed on the room
table or walls are to be used, as opposed to close talking or lapel microphones, which
are worn directly by the users. This causes for a significantly lower signal to noise
ratio, making the task much more challenging.



of 15 and 30 second audio-visual data segments extracted from the original se-
quences. Testing was then made on segments of varying length, from 1 to 20
seconds, to measure the improvements to be achieved by temporal fusion. A
major improvement over the CLEAR’06 evaluations is that the evaluation seg-
ments were much more carefully chosen to offer a better balance between the
audio and visual modalities. Care was taken that, for each segment, at least a
certain amount of frontal unoccluded views of the head were available in addi-
tion to clean speech, eliminating the artificial bias towards the audio modality
observed in 2006. Visual annotations were also of higher frequency and accuracy,
with face bounding box, left eye and right eye labels provided every 200ms. The
evaluation set comprised 28 individuals in total (up from 26 in 2006). Figs. 15,
16 and 17 show the results for the visual, acoustic and multimodal subtasks
respectively.

 

AIT Prim AIT Cont MIT Prim MIT C1 MIT C2 MIT C3 UKA

1s test 80,1% 79,4% 59,0% 38,8% 39,9% 57,8% 84,6%

5s test 82,8% 86,2% 72,1% 54,0% 48,4% 70,1% 90,8%

10s test 85,7% 89,3% 77,2% 58,9% 54,0% 75,0% 93,3%

20s test 89,3% 91,1% 81,3% 67,0% 59,8% 82,1% 94,6%

1s test 86,2% 86,1% 66,4% 44,6% 51,7% 64,8% 89,3%

5s test 90,4% 91,3% 77,7% 57,6% 65,8% 75,9% 94,4%

10s test 92,9% 94,2% 82,6% 63,4% 71,4% 80,4% 94,6%

20s test 94,6% 94,6% 87,5% 67,0% 73,2% 86,6% 96,4%

20,0%

40,0%

60,0%

80,0%

100,0%

s train15

s train30

Fig. 15. Recognition rates for Person Identification – Visual subtask. Results are shown
for 15 and 30 second training, and for 1, 5, 10 and 20 second test segment lengths. Shown
are the Correct Recognition Rates in percent

For the visual subtask, 7 systems from 3 sites were represented. As man-
ual labels for face bounding boxes and eyes of the concerned participant for a
segment were provided, systems did not need to perform tracking, but just to
align and crop faces for recognition. Two systems did use some form of pre-
processing, though, e.g. interpolating between 200ms label gaps to obtain more
facial views. Many types of feature extraction algorithms were used, including
PCA, LDA, block-based DCT, and variants or combinations thereof. Classifica-
tion was mostly done using nearest neighbor classifers. The best results in all
train and test conditions were reached by a local appearance based approach



using only labeled faces, DCT features, and nearest neighbor classification. It
achieved 84.6% accuracy for the hardest condition in terms of data availability
(15s train, 1s test) and 96.4% for the easiest condition (30s train, 20s test). This
is a major improvement over 2006, where the best results obtained in the 30s
train, 20s test condition were 83.7%.

While some of the improvement stems from algorithm design, some part of
it must no doubt also be attributed to better labeling and segmentation of the
visual data, as decribed above. Because of the differences in the preprocessing
and classification techniques, it is difficult to directly compare the strengths of
the feature extraction algorithms. Looking at the results from both CLEAR
2006 and 2007, however, one may find that using local models of appearance
does offer some advantages over other techniques. A more thorough experimental
investigation is necessary, though, before general conclusions could be made.

 

AIT CMU
LIMSI 

Prim
LIMSI C1 MIT Prim MIT C1 MIT C2 UIUC UPC Prim UPC C1 UPC C2

1s test 79,7% 41,9% 62,4% 75,0% 28,9% 26,7% 26,1% 79,2% 79,6% 78,6% 65,8%

5s test 90,4% 69,6% 90,8% 94,9% 73,9% 68,8% 69,9% 93,3% 92,2% 92,9% 85,7%

10s test 94,6% 92,0% 93,8% 96,9% 82,1% 75,9% 76,8% 95,5% 95,1% 96,0% 83,9%

20s test 95,5% 96,4% 97,3% 98,2% 83,9% 82,1% 84,8% 98,2% 97,3% 98,2% 91,1%

1s test 84,5% 41,2% 69,4% 80,0% 36,0% 34,2% 30,2% 82,2% 85,6% 83,3% 72,2%

5s test 94,9% 78,3% 92,2% 96,2% 77,9% 74,6% 73,2% 97,3% 96,2% 95,3% 89,5%

10s test 96,9% 96,4% 95,1% 97,3% 87,1% 85,3% 83,5% 97,3% 97,8% 98,7% 87,5%

20s test 99,1% 99,1% 95,5% 98,2% 89,3% 85,7% 86,6% 100,0% 99,1% 99,1% 92,9%

20%

40%

60%

80%

100%

s train15

s train30

Fig. 16. Recognition rates for Person Identification – Acoustic subtask. Shown are the
Correct Recognition Rates in percent

A total of 11 systems from 6 sites participated in the acoustic subtask. The
approaches were based on Gaussian Mixture Models (GMMs), adaptated Univer-
sal Background Models (UBMs) or Support Vector Machines (SVMs), and used
Mel-Frequency Cepstral Coefficient (MFCC) or Perceptually-weighted Linear
Predictive (PLP) features, their derivatives, or combinations thereof. Systems
also differed in the amount of microphone channels used and the way they were
fused in pre- or post-processing. The best overall results in the 15s training con-
dition were achieved by a system using PLP coefficients from one single channel
and a UBM model. It reached 98.2% for the 20s test condition. The best over-
all results in the 30s training condition came from a system using UBM-GMM
classifiers separately on 7 channels, and fusing at the decision level. It reached
100% accuracy for the 20s test condition. On the whole, it seems that PLP



features, used stand-alone or in combination with others, outperform other fea-
tures, and that adapted UBM models outperform speaker specific GMMs. It
was also observed that, contrary to expectations, pre-processing multiple chan-
nels through beamforming to produce a cleaner signal degrades performance.
The more promising path seems to be the combination of classifier outputs at
the post-decision level. In comparison with 2006, clear improvements could be
noticed only in the 15s training condition.

 

AIT MIT UIUC UKA/CMU

1s test 89,2% 65,8% 85,4% 86,7%

5s test 94,4% 84,4% 95,3% 91,7%

10s test 96,9% 85,3% 96,9% 93,3%

20s test 96,4% 89,3% 99,1% 94,6%

1s test 92,9% 72,5% 88,7% 89,9%

5s test 96,0% 89,7% 97,5% 94,4%

10s test 96,9% 91,1% 98,7% 94,6%

20s test 97,3% 95,5% 100,0% 99,1%

60,0%

70,0%

80,0%

90,0%

100,0%

s train15

s train30

Fig. 17. Recognition rates for Person Identification – Multimodal subtask. Shown are
the Correct Recognition Rates in percent

Four sites participated in the multimodal subtask. All systems used post-
decision fusion of the monomodal recognizer outputs, with different strategies
for the weighting of audio and visual inputs. The most performant system in
the multimodal case was also based on the best overall acoustic system. It used
an appearance based technique for face identification, which was not evaluated
separately in the visual subtask. For 20s test segments, it reached 99.1% and
100% accuracies for the 15s and 30s train conditions, respectively. Overall, the
perfomance of acoustic systems was quite high, such that the advantages of mul-
timodal fusion could only be observed in the 1s test condition, where the best
results improved from 79.7% and 85.6% (15s, 30s train) to 89.2% and 92.9%.
When the availability of both modalities is guaranteed, the strength of multi-
modal approaches clearly lies in the smaller amount of observations required,
more than in the accuracies to be reached.



Appendix B summarizes the best results for the person identification task
in CLEAR 2007, and shows the progress achieved since CLEAR 2006, for the
audio, visual and multimodal subtasks, and for all evaluation conditions.

4.6 Head Pose Estimation

The objective in the head pose estimation task is to continuously estimate the
pan, tilt, and roll orientations of a person’s head using using visual information
from one or more cameras.

Fig. 18. Example screenshot for the head pose estimation task on the AMI Meeting
Corpus (Image taken from [10]).

The task was subdivided into two subtasks, determined by the datasets used:
The first subtask was built on the AMI Meeting Corpus [10], and offered single
views of meeting participants interacting around a table (see Fig. 18). It con-
tained 16 one minute segments, extracted individually for 16 different subjects,
of which 10 were to be used for training, and 6 for evaluation. The task required
automatically tracking the head of one of the participants, in addition to estimat-
ing its orientation. The second subtask involved a data corpus captured in the
CHIL-UKA smart room and offered 4 synchronized and calibrated views, which
could be combined to derive head orientations in the room coordinate frame.
In contrast to the AMI database, head sizes were relatively small and manual
annotations for the head bounding box were provided, such that no tracking
was necessary. A total of 15 subjects was considered, 10 for training and 5 for
evaluation, with a 3 minute segment provided per person. For both subtasks, the



ground truth head orientations were captured with high precision using “Flock of
Birds” magnetic sensors. This constitutes a great improvement over the previous
evaluation, where only manual annotations into 45◦ pan classes were available.
The metrics used were the mean absolute pan, tilt and roll errors, as well as the
mean angular error between annotated and estimated head orientation vectors.
Figs. 19 and 20 show the mean absolute pan/tilt/roll errors for the AMI and the
CHIL corpus, respectively.

For the first subtask, 3 systems from 2 sites participated. The best systems
achieved errors rates of less than 10◦ in all dimensions. The overall most perfor-
mant system used a specially designed particle filter approach to jointly track
the head location and pose. It reached 8.8◦ pan, 9.4◦ tilt and 9.8◦ roll error.

0246810121416
Pan Err 8.8 14 13.8Tilt Err 9.4 9.2 9.5Roll Err 9.8IDIAP UKA-1 UKA-2

Fig. 19. Head Pose Estimation – AMI Meeting database

A total of 5 sites participated in the second subtask. The best error rates were
remarkably low, even compared to the previous subtask, although face sizes in
this database were notably smaller. This is due in part to the availability of
several camera views for fusion, but undoubtedly also to the availability of head
bounding box annotations, which allow for optimal head alignment. Only two
systems attempted location and pose tracking jointly, while the best perform-
ing systems relied on the manual annotations. The best overall system relied
on a special person-independent manifold representation of the feature space,
constructed by synchronizing and embedding person-specific submanifolds, and
estimated head poses using a k-nearest neighbor classifier. It reached error levels
as low as 6.72◦ pan, 8.87◦ tilt and 4.03◦ roll.
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Fig. 20. Head Pose Estimation – CHIL database

4.7 Acoustic Event Recognition

As in 2006, the 2007 CLEAR evaluations featured an acoustic event recognition
task, in which non-speech noises occuring in a seminar scenario were to be iden-
tified. A definite change compared to 2006, is that classification of pre-segmented
events was not considered anymore. Instead, evaluation was performed on the
CHIL Interactive Seminar database, on the same segments as used in the 3D
Person Tracking, Person Identification, and 2D Face Tracking tasks. This is a
major extension to the previous evaluation, where only one full-valued seminar
was considered, aside from isolated event databases. In addition to classifica-
tion, systems had to automatically detect acoustic events, possibly overlapped
with speech or other acoustic events. 12 event classes were considered, including
“door knock”, “steps”, “chair moving”, “paper work”, “phone ring”, “applause”,
“laugh”, etc. The recognition of the “speech” and “unknown” classes was not
evaluated. For development, one seminar was taken per recording site, as well
as the 2 isolated event databases from 2006. The test data was chosen from the
remaining seminars and comprised 20 five minute segments from 4 sites, for a
total of 6000 seconds, of which 36% were classified as acoustic events of interest,
11% as silence, and 53% as speech or “unknown” events. The Interactive sem-
inars offered a challenging testbed, as 64% of acoustic events in the evaluation
data were overlapped with speech and 3% were overlapped with other acoustic
events. Two new metrics were defined for this evaluation, the AED − ACC,
measuring event detection accuracy, and the AED − ER, measuring how pre-
cisely the temporal boundaries of acoustic events are found. They are defined as
follows:

AED −ACC =
(1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

,



where

Precision =
number of correct system output AEs

number of all system output AEs

Recall =
number of correctly detected reference AEs

number of all reference AEs

and β is a weighting factor that balances precision and recall. In this evalu-
ation, the factor β was set to 1.

(AED − ER) =

∑
all seg dur(seg) ∗ (max(NREF , NSY S −Ncorrect(seg)))∑

all seg dur(seg) ∗NREF (seg)

where, for each segment seg (defined by the boundaries of both reference and
hypothesized AEs): dur(seg) is the duration of seg, NREF (seg) is the number
of reference AEs in seg, NSY S(seg) is the number of system output AEs in seg
and Ncorrect(seg) is the number of reference AEs in seg which correspond to
system output AEs in seg. Notice that an overlapping region may contribute to
several errors. The results of the Acoustic Event Recognition task are shown in
Fig. 21.

0.0%5.0%10.0%15.0%20.0%25.0%30.0%35.0%40.0%AED-ACC 0.00%40.00%80.00%120.00%160.00%200.00% AED-ERAED-ACC 5.5% 26.3% 22.9% 14.7% 36.3% 23.0%AED-ER 177.51% 111.33% 170.49% 139.06% 99.49% 136.70%AIT FBK-IRST IIR TUT UIUC UPC
Fig. 21. Acoustic Event Recognition – site-independent systems. The light bars repre-
sent the AED −ACC and the dark dots represent the AED − ER

Six sites participated in the evaluation. From the presented systems, 5 are
Hidden Markov Model (HMM) or Gaussian Mixture Model (GMM) based, and
one is based on Support Vector Machines (SVMs). Half of the systems use mul-
tiple microphones, and the other half (including the best performing system)
use only a single microphone. As can be seen, the overall scores are quite low,



showing that there is still much room for improvement in spontaneous meet-
ing room AED. The best system reached just 36.3% accuracy and almost 100%
AED−ER error. An analysis revealed that, on average, more than 71% of errors
occur in overlapped segments as, e.g, low-energy acoustic classes, such as “chair
moving”, “paper work” or “steps”, proved difficult to detect in the presence of
speech. In occurence, the “step” class accounted for 40% of all acoustic events
in the test data. Leaving out segments of overlap, the error rate of most systems
would be around 30–40%. No doubt, more research is necessary to overcome the
problems caused by overlap. One direction that was not explored could be to
build AED systems as a set of isolated recognizers. Other improvements could
be expected from the more efficient use of multiple microphones to better isolate
events, or from audio-visual analysis.

5 Summary

This paper summarized the CLEAR 2007 evaluation, which started early in
2007 and was concluded with a two day workshop in May 2007. It described
the evaluation tasks performed in CLEAR’07, including descriptions of metrics
and used databases, and also gave an overview of the individal results achieved
by the evaluation participants. Further details on the individual systems can
be found in the respective system description papers in the proceedings of the
evaluation workshop.

The goal of the CLEAR evaluation is to provide an international framework
to evaluate multimodal technologies related to the perception of humans, their
activities and interactions. CLEAR has been established through the collabo-
ration and coordination efforts of the European Union (EU) Integrated Project
CHIL - Computers in the Human Interactive Loop - and the United States (US)
Video Analysis and Content Extraction (VACE) programs. After a succesful first
round in 2006, the evaluations were launched again with new challenging tasks
and datasets, better harmonized metrics, and with the inclusion of a new head
pose estimation task, sponsored by the European Augmented Multiparty Inter-
action (AMI) project. The CLEAR 2007 workshop took place in May, after more
than half a year of preparations, where large amounts of data were collected and
annotated, task definitions were redefined, metrics were discussed and harmo-
nized, evaluation tools were developed, and evaluation packages were distributed
to participants all over the world. In CLEAR’07, seventeen international research
laboratories participated in 13 evaluation subtasks.

An important contribution of the CLEAR evaluations on the whole, is the
fact that they provide an international forum for the discussion and harmo-
nization of related evaluation tasks, including the definition of procedures, met-
rics and guidelines for the collection and annotation of necessary multimodal
datasets.

Another important contribution of CLEAR and the supporting programs is
also the fact that significant multimedia datasets and evaluation benchmarks
have been produced over the course of several years, which are now available



to the research community. Evaluation packages for the various tasks, including
datasets, annotations, scoring tools, evaluation protocols and metrics, are avail-
able through the Evaluations and Language Distribution Agency (ELDA)[9] and
NIST.

While we consider CLEAR’06 and ’07 as a great success, we think that the
evaluation tasks performed - mainly tracking, identification, head pose estima-
tion and acoustic scene analysis - do yet only scratch the surface of automatic
perception and understanding of humans and their activities. As systems ad-
dressing such “lower-level” perceptual tasks are becoming more mature, we ex-
pect that further tasks, addressing human activity analysis on higher levels, will
become part of future CLEAR evaluations.
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Fig. 22. 3D Person Tracking – Visual subtask: Radar Charts
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Fig. 23. 3D Person Tracking – Acoustic subtask: Radar Charts
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Fig. 24. 3D Person Tracking – Multimodal subtask: Radar Charts



Appendix B: Progress Charts for Person Identification

Fig. 25. Person Identification – Visual subtask: Progress Chart

Fig. 26. Person Identification – Acoustic subtask: Progress Chart



Fig. 27. Person Identification – Multimodal subtask: Progress Chart
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