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Abstract
This paper presents an approach for making inferences about the intercept and slope of a linear
regression model when both variables are subject to measurement errors. The approach is
based on the principle of fiducial inference. A procedure is presented for computing
uncertainty regions for the intercept and slope that can be used to assess agreement between
two instruments. Computer codes for performing these calculations, written using open-source
software, are listed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In metrology it is often required to compare two different
methods and/or instruments for measuring some quantity of
interest. One type of comparison occurs when one method is
a reference method and the other method is calibrated against
this reference method. However, in many instances we simply
have two different methods or instruments tomeasure the same
quantity and we are interested in comparing the two methods.
The topic of assessing agreement between two methods has
been studied bymany authors. For example, Bland andAltman
[1–5] discussed the analysis of agreement between methods
of clinical measurement. Lin et al [6] compared several
measures of agreement, including mean squared deviation,
total deviation index, concordance correlation coefficient and
coverage probability, and derived the accuracy and precision
components, which can be used to identify the sources of
disagreement, of each measure. Choudhary [7] developed a
tolerance interval approach for assessing agreement between
two methods. In the metrological literature, Astrua et al [8]
discussed and compared several techniques for assessing the
degree of conformity between methods. They also pointed out
the merits and drawbacks of each technique. The approaches
included in their study were graphical procedures, procedures
based onPearson and concordance correlation coefficients, and
regression procedures. In this paper we propose a fiducial
approach for assessing the agreement between two methods.

The paper is organized as follows. In section 2we review a
simple errors-in-variables model that can be used to describe
measurement models for the two methods being compared.
Section 3 provides a fiducial solution for method comparison.
The approach is based on generalizations of fiducial inference
proposed by Fisher [9] and structural inference introduced by
Fraser [10]. Section 4 uses an example to illustrate the fiducial
solution to the agreement problem. Finally, we conclude with
some summary remarks in section 5.

2. Models and assumptions

Thecomparison is carriedout bymeasuring the samecollection
of artefacts by use of each of the methods. Let (Xi , Yi),
i = 1, . . . , n, be pairs of random variables representing the
measurements of then artefacts using twomethods. The lower-
case versions, (xi , yi), represent the corresponding realized
values. Since both Xi and Yi are affected by measurement
errors, we write

Xi = θi + εi, Yi = μi + δi, i = 1, . . . , n, (1)

where θi and μi are the expected values of Xi and Yi ,
respectively, and εi and δi are independent errors. It is assumed
that εi ∼ N(0, σ 2x ), δi ∼ N(0, σ 2y ), and at least two θs are
distinct. The total number of artefacts available is n, and each
artefact is measured by both methods under study.

Many definitions of agreement are possible. Ideally,
perfect agreement would mean that both methods yield the
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same result as long as the same artefact is being measured.
This is not a suitable concept of agreement for practical
applications. A more reasonable definition of agreement is
to require that if the same artefact is measured by each method
a large number of times (mathematically speaking, an infinite
number of times), then the average values of the two methods
are equal. Accordingly, we say that twomeasurementmethods
agreewith one another, on average, if the expected values E(X)

and E(Y ) are equal for every artefact that is measured by the
two methods. In particular, agreement between two methods
will imply that μi = θi for i = 1, . . . , n. Conversely, the
conditions μi = θi , i = 1, . . . , n, would support a claim of
agreement, on average, between the twomethods. If, however,
the relationship between the two methods is linear, that is,

μi = β0 + β1θi, i = 1, . . . , n, (2)

then the question of whether the two methods agree reduces to
assessing whether (β0, β1) = (0, 1). Experience suggests that
this linearity assumption is often a reasonable approximation
of reality. Thus the aim of this paper is to develop a procedure,
using fiducial inference methods, for testing whether or not
(β0, β1) = (0, 1), under the following errors-in-variables
regression model:

Yi = β0 + β1θi + δi

Xi = θi + εi,
(3)

and based on the n pairs of measurements (xi , yi). Our
approach will be to develop a method for constructing
confidence regions for (β0, β1) and to use these confidence
regions to assess the claim of agreement between the two
methods.

The parameters of the model in (3) are β0, β1, σx , σy

and θi , i = 1, . . . , n. One additional assumption we need to
make is that an estimate of σ 2x , denoted by S2x , and the degrees
of freedom νx associated with S2x , reflecting the amount of
information used to arrive at this estimate of σ 2x , are available.
If νx is infinity, σx is then assumed known exactly. Also, we
assume that

Wx = νxS
2
x

σ 2x
∼ χ2(νx), (4)

where χ2(ν) stands for a χ2 distribution with ν degrees of
freedom.

In practice, the established method, such as a standard
or a reference method, is often used as variable X. In such a
situation, it is reasonable to assume the existence of an estimate
of σ 2x and its associated degrees of freedom.

3. Generalized fiducial inference

Statistical procedures based on fiducial inference have been
developed for various applications in metrology, for example,
see [11–14]. In this approach a probability distribution,
called the fiducial distribution, for the parameters of interest
conditional on the data is obtained based on the structural
equation that relates the measurements with model parameters
and error processes whose distributions are fully known. Once

obtained, the fiducial distribution can often be used to make
inferences about the parameters of interest.

We use a simple example to illustrate the basic ideas
of fiducial inference. Suppose Y ∼ N(μ, 1). We write
Y = μ + Z, where μ is the parameter of interest and Z ∼
N(0, 1). If y is a realized value of Y corresponding to the
realized value z of Z, then we have μ = y − z. Of course
Z is not observable. Nevertheless, the fact that we know the
distribution from which z was generated helps us determine
a set of values of μ that we consider plausible. We can use
the probabilities associated with Z to infer the probabilities
for μ. The process of transferring the relationship μ = y − z

to the relationship μ = y − Z is what constitutes the fiducial
argument. The fiducial distribution of μ is the distribution
of the random variable μ̃ = y − Z with y fixed. That is,
μ̃ ∼ N(y, 1). The random variable μ̃ is called the fiducial
quantity (FQ) for μ. The fiducial distribution is similar to the
posterior distribution in the Bayesian framework. A central
value of this fiducial distribution may be used as the estimated
value of μ and the spread of the fiducial distribution may be
used to compute an uncertainty interval for μ.

To obtain a joint fiducial distribution for β0 and β1, we
rely on a two-stage procedure for constructing the FQ [15].
The procedure is outlined below.

Let ξ = (ξ1, ξ2) and ξ1 be the parameter of interest. If

1. ξ̃1(ξ2) is a FQ for ξ1 given that ξ2 is known and
2. ξ̃2 is a FQ for ξ2,

then ξ̃1(ξ̃2) is a FQ for ξ1.
The first step of the above procedure is to obtain a FQ

for the parameter of interest ξ1 assuming that the nuisance
parameter ξ2 is known. The resulting FQ for ξ1 would depend
on ξ2. The next step is to obtain a FQ for ξ2 and use this FQ to
replace ξ2 in the FQ for ξ1 obtained in the first step.

To apply this procedure in our errors-in-variables
regression problem, we first obtain a FQ for β = (β0 β1)

t

assuming θi , i = 1, . . . , n, are known. Since this FQ depends
on θ = (θ1, . . . , θn), we denote it by β̃θ . Next we obtain a FQ
for θ and denote it by θ̃. The desired FQ for β is then given by

β̃ = β̃θ̃ .

Under the assumption of known θi , the errors-in-variables
regression model in (3) reduces to the ordinary linear
regression model, and the following results are well known
from the standard regression analysis. Let Bθ = (B0 B1)

t

denote the least-squares estimator of β in the model

Yi = β0 + β1θi + δi .

Then
Bθ ∼ N(β, σ 2y Vθ ), (5)

where

Vθ =
(

n
∑n

i=1 θi∑n
i=1 θi

∑n
i=1 θ2i

)−1

= 1

Dθ

( ∑n
i=1 θ2i − ∑n

i=1 θi

− ∑n
i=1 θi n

)
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and Dθ = n
∑n

i=1 θ2i − (
∑n

i=1 θi)
2. From (5) we can write

Bθ = β + σyTθΦ, (6)

where Φ is a bivariate standard normal random variable and
Tθ is the Cholesky factor of Vθ ; that is,

TθT t
θ = Vθ .

In this example

Tθ = 1√
Dθ

⎛
⎜⎜⎜⎝

√∑n
i=1 θ2i 0

− ∑n
i=1 θi√∑n
i=1 θ2i

√
n − (

∑n
i=1 θi)

2∑n
i=1 θ2i

⎞
⎟⎟⎟⎠ . (7)

Equation (6) is a structural equation, which relates the
observable random variable Bθ to the model parameters β, σy

and the error process TθΦ, whose distribution is fully known
(a bivariate normalwithmean 0 and a known covariancematrix
Vθ ). Consequently, if σy is known, a FQ for β can be obtained
by solving (6) for β and replacing Bθ with its corresponding
realized value bθ . If σy is not known, we need to replace it by
a FQ. The FQ for σy can be obtained in two different ways. If
S2y , obtained from replicate measurements or other means, is
available and considered to be an estimator of σ 2y such that

Wy = νyS
2
y

σ 2y
∼ χ2(νy), (8)

then (8) is a structural equation and can be used to obtain a FQ
for σy as

σ̃y = sy√
Wy/νy

, (9)

where sy is the realized value of Sy . If such an estimator is not
available, we can use the residuals from the least-squares fit to
estimate σy . Specifically, let

S2θ =
∑n

i=1(Yi − B0 − B1θi)
2

n − 2 ;

then S2θ is independent of Bθ and

Wr = (n − 2)S2θ
σ 2y

∼ χ2(n − 2).

A FQ for σy can be obtained as

σ̃y = sθ√
Wr/(n − 2) . (10)

Together with (6), we obtain a FQ for β with θ fixed as

β̃θ = bθ − σ̃yTθΦ, (11)

where σ̃y can be either (9) or (10).
The above development accomplishes the first stage of

the construction. For the second stage we need to obtain a FQ
for θ. From (4) a FQ for σx is obtained as

σ̃x = sx√
Wx/νx

. (12)

From (3) we can write

Xi = θi + σxZi,

where Zi are independent standard normal random variables.
Together with (12), this leads to a FQ for θi given by

θ̃i = xi − sx√
Wx/νx

Zi. (13)

Finally, let
θ̃ = (θ̃1, . . . , θ̃n);

a FQ for β is given by

β̃ = bθ̃ − σ̃yTθ̃Φ. (14)

The FQ in (14) allows us to generate realizations from the
proposed fiducial distribution of β. A single realization of β̃
may be generated as follows.

1. Generate Zi ∼ N(0, 1), i = 1, . . . , n andWx ∼ χ2(νx).
2. Compute θ̃i , i = 1, . . . , n, as in (13).
3. Obtain bθ̃ = (b0 b1)

t , the least-squares solution of yi =
b0 + b1θ̃i and the residual mean squared error s2θ̃ .

4. Compute σ̃y as in (9) or in (10) (need to generate Wy ∼
χ2(νy) orWr ∼ χ2(n − 2)).

5. Compute Tθ̃ as in (7).
6. Generate Φ ∼ N(0, I2).
7. Compute β̃ as in (14).

Aprogram for generating realizations of β̃, based onR software
[16], is listed in the appendix.

Once the realizations of β̃ are obtained, we can use them
to construct a 1 − γ fiducial region for β. Let β̃1, . . . , β̃M

be the M independent realizations of β̃. Let β̂ and S denote,
respectively, the mean vector and covariance matrix computed
from β̃i , i = 1, . . . , M . Let di be the Mahalanobis distance
[17, p 595], of β̃i from β̂, which is given by

di = (β̃i − β̂)tS−1(β̃i − β̂) (15)

and let d1−γ denote the 1 − γ quantile computed from the
collection of di , i = 1, . . . , M . A 1− γ fiducial region for β
may then be taken to be the region defined by the equation

(β − β̂)tS−1(β − β̂) � d1−γ . (16)

A program for constructing fiducial regions for β is provided
in the appendix.

One possible approach for assessing agreement between
the twomethods is based onwhether or not the point (β0, β1) =
(0, 1) is contained in the fiducial region. However, this is
equivalent to testing the null hypothesis (β0, β1) = (0, 1).
That is, we assume that the two methods are in agreement
to begin with. In this situation, we are determining whether
there is evidence to conclude disagreement. This may not be
desirable in practice. An alternative approach for assessing
agreement can be based on the following idea: if (β0, β1) is
not ‘too different’ from (0, 1), then, for practical purposes, the
twomethods are equivalent. Tomake this idea precise, a region
with (0, 1) as the centre is specified. If (β0, β1) is within this
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β0

β 1

0

1
Δ =β0+ (β1−1)θU

−Δ = β0 +(β1−1)θU
−Δ = β0+(β1−1)θL

Δ =β0 + (β1− 1)θL

Figure 1. The equivalence region for (β0, β1) determined by the
maximum allowable difference �.

region then the methods are regarded as in agreement. We call
this region the equivalence region. The equivalence region
is specified by the user. It can be an ellipse, parallelogram,
rectangle, or a region of some other appropriate shape. The
way we use the fiducial region in this method is as follows. If
the 1−γ fiducial region that we construct is completely inside
the equivalence region then we have established agreement.
Note that the equivalence region needs to be specified at the
time of problem formulation and especially before the fiducial
region is obtained.

An equivalence region can be constructed based on the
maximum allowable difference of the two equivalent methods.
If the maximum allowable difference is� then |μi − θi | must
be less than or equal to � for all i = 1, . . . , n in order for
the two methods to be regarded as in agreement. To develop
an equivalence region for a given value of �, we determine a
region such that if (β0, β1) is in this region, then

|μi − θi | = |β0 + (β1 − 1)θi | � �, i = 1, . . . , n. (17)

Suppose that the values θi , i = 1, . . . , n are expected to
lie in a known interval [θL, θU]. The region determined by
the inequalities in (17) is the same as that determined by the
following two inequalities:

− � � β0 + (β1 − 1)θL � �

− � � β0 + (β1 − 1)θU � �.

The points in the (β0, β1) plane that satisfy these
two inequalities belong to a parallelogram having the vertices
(−�, 1), (�(θL +θU)/(θU−θL), 1−2�/(θU−θL)), (�, 1) and
(−�(θL + θU)/(θU− θL), 1 + 2�/(θU− θL)). A parallelogram
with θL < 0 and θU > 0 is shown as the shaded region in
figure 1.

–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3

0.
9

1.
0

1.
1

1.
2

β0

β 1

Figure 2. Realizations from the fiducial distribution of (β0, β1), a
95% fiducial region for (β0, β1) and an equivalence region.

4. Examples

The examples are taken from [8]. Comparison studies were
carried out for two angle-measuring instruments. The standard
uncertainties for both instruments have been determined to be
0.1′′. The comparisons were based on the angle measurements
of 8-sided and 12-sided polygons. Since the analysis is
identical for both polygons, we present only the results
corresponding to the 8-sided polygon. Deviations (in seconds)
from the nominal value of the angles of the 8-sided polygon,
measured by the two instruments, are given below:

x:− 0.11 0.25 −2.00 −0.76 1.92 0.88 −0.18 0.01
y:− 0.22 0.31 −2.00 −0.81 1.92 0.90 −0.20 0.10
We use the program listed in the appendix to generate

100 000 realizations from the proposed fiducial distribution of
(β0, β1). We use σ̂x = σ̂y = 0.1′′. Since no information was
given in [8] concerning the degrees of freedom associated with
σ̂x and σ̂y , we assume, for illustration only, infinite degrees
of freedom for them. Figure 2 displays these realizations.
Also, a 95% fiducial region for (β0, β1) and an equivalence
region are shown. The equivalence region is obtained from
θL = −2′′, θU = 1.92′′ and � = 0.28′′. The maximum
allowable difference is chosen to be the expanded uncertainty
of the difference, i.e. 2

√
0.12 + 0.12. This value of� is chosen

just for illustration. In practice, the user will have to take the
specific application into consideration before deciding how
to pick the maximum allowable difference. Since the 95%
fiducial region is completely inside the equivalence region, we
conclude that the two instruments are in agreement.

A larger fiducial region will result if finite degrees of
freedom associated with σ̂x and/or σ̂y are used. Figure 3 plots
three fiducial regions corresponding to three different sets of
values on σ̂x , σ̂y , νx and νy used in the analysis. The inner
ellipse corresponds to σ̂x = σ̂y = 0.1′′ and νx = νy = ∞.

418 Metrologia, 45 (2008) 415–421



Fiducial approach for assessing agreement between two instruments

–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

β0

β 1

Figure 3. 95% fiducial regions for (β0, β1) based on different
uncertainty estimates used and an equivalence region.

The middle ellipse corresponds to σ̂x = σ̂y = 0.1′′ and νx =
νy = 10. The outer ellipse corresponds to σ̂x = 0.1′′, νx = ∞
and σ̂y computed from the residual mean squares error with
8−2 = 6degrees of freedom. All threefiducial regions contain
(0, 1). This reveals that the approach, based on whether (0, 1)
is within the fiducial region, is not a desirableway for assessing
agreement. A large, and hence not informative, fiducial region
that includes the point (0, 1) does not provide evidence of
agreement. Nor does it provide evidence of disagreement.
On the other hand, the approach based on comparing the
fiducial region with an equivalence region provides a useful
procedure for assessing agreement; it requires that agreement
be demonstrated. Figure 3 shows that only the inner fiducial
region is completely inside the equivalence region, indicating
that the quality of the uncertainty estimates does affect the
conclusion of the analysis in this example.

Given �, the vertices of the equivalence region
constructed using the maximum allowable difference depend
only on the range θU − θL and the mid-range (θL + θU)/2
of θi , i = 1, . . . , n. If such information is available either
from the previous studies or from other requirements and
considerations, they may be used to derive the equivalence
region.

The smallest rectangle that contains the fiducial region
may also be obtained to aid in assessing agreement. This
rectangle is formed by the two vertical and two horizontal
tangent lines of the elliptical fiducial region. The two vertical
tangent lines result in a fiducial interval for β0 and the two
horizontal tangent lines result in a fiducial interval for β1.
These intervals provide a convenient information on how
(β0, β1) differs from (0, 1). For this example, the projected
fiducial intervals for β0 and β1 are (−0.1246, 0.1219) and
(0.8897, 1.1189), respectively.

5. Conclusion

In this paper we have provided an approach for making
inference on the intercept β0 and slope β1 of a linear regression
model with both X and Y subject to measurement errors.
Specifically, we have provided procedures for constructing
uncertainty regions for (β0, β1) that can be used to assess
agreement between two methods. The approach is based on
fiducial inference. Recent research results [15, 18] show that,
under certain regularity conditions, fiducial inference is a valid
statistical method with good operating characteristics.

We described a fiducial recipe based on a two-stage
construction of a fiducial quantity. This recipe is particularly
useful in the general calibration problems. The statistical
issues related to the fiducial inference of general calibration
problems will be discussed in forthcoming papers.
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Appendix

We list two R functions that were used in this paper. The first
one is an R function fab that generates realizations from the
fiducial distribution of (β0, β1).

fab <- function(X, Y, ux, dfx, uy=NA,
dfy=NA, nrun=10000) {

# this program generates nrun realizations
# from the joint fiducial distribution of
# (beta0, beta1) of the following model
# Y_i = beta0 + beta1*theta_i + epsilon_i
# X_i = theta_i + delta_i
# epsilon_i ˜ N(0, sigma_yˆ2)
# delta_i ˜ N(0, sigma_xˆ2)
# dfx * uxˆ2/sigma_xˆ2 ˜ chiˆ2(dfx)
# dfy * uyˆ2/sigma_yˆ2 ˜ chiˆ2(dfy)
#
# input
# X, Y - measurements
# ux - estimate of sigma_x
# dfx - degrees of freedom for ux
# use negative number for infinity
# uy - estimate of sigma_y (optional)
# dfy - degrees of freedom for uy
# nrun - number of desired realizations
#
nobs = length(X)
if (dfx < 0) Wx = ux
else Wx = ux/sqrt(rchisq(nrun, dfx)/dfx)
Ei = matrix(rnorm(nobs*nrun), ncol=nobs)
Ei = t(Wx * Ei)
thetai = X - Ei
out = apply(thetai, 2,
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function(x, y){lsfit(x, y)}, y=Y)
out = unlist(out)
names(out) = NULL
Acoef = out[seq(from=1, by=9+4*nobs,

length=nrun)]
Bcoef = out[seq(from=2, by=9+4*nobs,

length=nrun)]
# if uy is not provided, use residual
# mean squares
if (is.na(uy) | is.na(dfy)) {

Ti = (1:(nobs*nrun))
for (i in (1:nrun))

Ti[(1+(i-1)*nobs):(i*nobs)] =
(3+(i-1)*(9+4*nobs)):
(3+(i-1)*(9+4*nobs)+nobs-1)

Resid = matrix(out[Ti], ncol=nrun)
sse = apply(Resid, 2,

function(x){sqrt(sum(xˆ2))})
sigmaY = sse/sqrt(rchisq(nrun, nobs-2))

}
# if uy and dfy are provided
else {

if (dfy < 0) sigmaY = uy
else sigmaY = uy/sqrt(rchisq(nrun,

dfy)/dfy)
}
sT = apply(thetai, 2, sum)
sT2 = apply(thetai, 2,

function(x){sum(xˆ2)})
tempT = sqrt(nobs*sT2 - sTˆ2)
Z1 = rnorm(nrun)
Z2 = rnorm(nrun)
beta0 = Acoef - sigmaY*sqrt(sT2)*Z1/tempT
beta1 = Bcoef - sigmaY*(-sT*Z1/sqrt(sT2) +

sqrt(nobs - sTˆ2/sT2)*Z2)/tempT
list(beta0=beta0, beta1=beta1)
}

The function has seven mandatory and optional
arguments:

1. Measurements for x.
2. Measurements for y.
3. Value of Sx , the estimate of σx .
4. Degrees of freedom associated with S2x . Use negative
number for infinity.

5. Value of Sy , the estimate of σy . This is optional. If it is not
provided, the residualmean squares from the least-squares
fit will be used as the estimate of σ 2y .

6. Degrees of freedom associated with S2y . This is optional.
7. Number of fiducial samples desired. The default is 10 000.

The output contains the desired number of samples from
the fiducial distribution of (β0, β1). With this function,
the following commands may be used to generate 100 000
realizations for the example in section 4:

> X = c(-0.11, 0.25, -2.00, -0.76,
1.92, 0.88, -0.18, 0.01)

> Y = c(-0.22, 0.31, -2.00, -0.81,
1.92, 0.90, -0.20, 0.10)

> fs = fab(X, Y, 0.1, -1, 0.1, -1, 100000)

The output fs consists of two components: beta0 and
beta1. Once the fiducial samples are obtained, we may use
the following R function fregion to compute a 95% fiducial
region for (β0, β1).

fregion <- function(fs, gamma=.95, n=200) {
# generate n points on a 100*gamma%
# fiducial region based on fiducial
# samples in fs
#
Z = cbind(fs[[1]], fs[[2]])
mean.vector = apply(Z, 2, mean)
cov.mat = cov(Z)
dval = quantile(mahalanobis(Z,

mean.vector, cov.mat), gamma)
a = mean.vector[1]
b = mean.vector[2]
ct = cov.mat
angle = atan(-2*ct[1,2], (ct[2,2] -

ct[1,1]))/2
temp = 2*dval*(ct[1,1]*ct[2,2] -

ct[1,2]ˆ2)
am = sqrt(temp/(ct[2,2] + ct[1,1] -

2*ct[1,2]/sin(2*angle)))
an = sqrt(temp/(ct[2,2] + ct[1,1] +

2*ct[1,2]/sin(2*angle)))
major = max(am, an)
minor = min(am, an)
if(am < an) angle = angle - pi/2
phi = seq(from=0, to=2*pi, length=n)
rr = sqrt(majorˆ2/(1 + ((major/minor)ˆ2

- 1) * (sin(phi - angle))ˆ2))
xx = rr * cos(phi) + a
yy = rr * sin(phi) + b
XY = list(x=xx, y=yy)
XY

}

Figure 2 in section 4 was produced using the following
commands:

> plot(fs$beta0, fs$beta1,
xlab=expression(beta[0]),
ylab=expression(beta[1]))

> fellipse = fregion(fs)
> lines(fellipse, col=2)
> polygon(c(-0.28, -0.006, 0.28, 0.006),

c(1, 0.857, 1, 1.143),
density=0, col=4)

The first command plots the realizations. The second
command calls fregion to compute 200 points on a 95%
fiducial region based on the fiducial samples fs. The third
command plots the fiducial region in red colour. The fourth
command adds the equivalence regionwith vertices (−0.28, 1),
(−0.006, 0.857), (0.28, 1) and (0.006, 1.143), in blue colour,
to the plot.

The vertical and horizontal tangent lines of the fiducial
region are obtained from the calculated values in function
fregion. Specifically, the β0-coordinates of the two vertical
tangent lines are
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a - sqrt(minorˆ2 * sin(angle)ˆ2 +
majorˆ2 * cos(angle)ˆ2)

and

a + sqrt(minorˆ2 * sin(angle)ˆ2 +
majorˆ2 * cos(angle)ˆ2)

while the β1-coordinates of the two horizontal tangent lines are

b - sqrt(majorˆ2 * sin(angle)ˆ2 +
minorˆ2 * cos(angle)ˆ2)

and

b + sqrt(majorˆ2 * sin(angle)ˆ2 +
minorˆ2 * cos(angle)ˆ2)
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