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Abstract

Biometric fusion, acquisition and combination of multi-
ple pieces of evidence of identity, can achieve higher accu-
racy of biometric recognition than using a single biomet-
ric. However, fusion increases the cost or throughput of the
system since it requires acquisition and processing of more
samples. We document a procedure for contingent fusion.
That is, two biometrics are fused only if verification on the
first presented biometric is rejected. We present results of
this approach for both decision and score level fusion, and
examine the combination of two different algorithms, two
different modalities, and two different instances of a bio-
metric. We conclude that contingent fusion results in com-
parable accuracy and lower cost as measured by processing
time per sample than always fusing two pieces of evidence
of the same identity.

1. Introduction
Several studies [1, 2, 3] have shown that consolidating

information from multiple biometric sources can signifi-

cantly enhance the accuracy of a biometric system. Further,

employing multiple sources can alleviate problems with

noisy data, high failure to enroll rates, and can make it more

difficult for an intruder to violate the systems. Multiple bio-

metric sources can be any combination of multiple sensors

(e.g. optical or solid state), multiple biometric traits (e.g.

finger, iris), multiple representations (e.g. 3D and infrared

face), multiple instances (e.g. left and right index fingers),

multiple samples of the same biometric (e.g. frames of a

video sequence of face), or multiple matching algorithms

[4]. Information from these sources can be integrated at the

feature, score, or decision level.

Biometric fusion improves the accuracy of a biometric

recognition system, and it is necessary in cases like missing

biometrics (like amputated fingers), but often leads to ad-

ditional cost in complexity, processing time, or resources.

For example, fusing multiple traits of biometric or multi-

ple representation of a biometric, usually requires deploy-

ment of different sensors, which obviously adds to the com-

plexity of the system. Having to capture two different bio-

metrics (e.g. face and finger) increases the capture time per

user. Besides, recent evaluations of fingerprint recognition

algorithms [5] have shown that the most accurate finger-

print recognition systems can correctly verify a claim of

identity with a false non-match rate of 0.01 or better at a

false match rate of 0.001. In these cases, fusion could in-

crease the cost without tangible improvement in accuracy.

Although there are many publications on how to fuse bio-

metrics [1, 2, 3], to our knowledge, there are no studies ad-

dressing the question of when to fuse biometrics. In this pa-

per, we address the latter question by proposing contingent

fusion. We focus on the concept of conditionally combining

information from another biometric source or matching al-

gorithm to maximize improvement in accuracy while min-

imizing the increase in cost. We study cost versus perfor-

mance for multi-instance, multi-algorithm, and multi-modal

contingent fusion and compare them with both singular no-

fusion case and the always-fuse case. For each of these

cases, we perform quality-based fusion as well. We quan-

tify cost as transaction and processing time per sample and

performance as false match rate of the fused system.

The rest of the paper is organized as follows: we pro-

pose the concept of contingent fusion in section 2, present

experimental results in section 3, and follow with some con-

clusions in section 4.

2. Contingent fusion
The contingent fusion scenario we proposed is a two-

stage process: two independent biometric tests are com-

bined by disjunctive (OR) rule. An identity claim is ac-

cepted if the first test is passed so only those who were re-

jected in the first test are subject to the second test. That is,

a false non-match can only happen if both biometric tests

result in a false non-match. Furthermore, false match is the

complement of the probability that neither test1 nor test2
results in a false match [6].

To calculate the total false non-match rate (FNMRT ) and

false match rate (FMRT ) of the fused system, let FNMRi
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and FMRi denote false non-match rate and false match rate

of testi respectively where i = 1, 2. Therefore

FNMRT (τ1, τ2) = FNMR1(τ1) . FNMR2(τ2) (1)

FMRT (τ1, τ2) = 1 − (1 − FMR1(τ1)) . (1 − FMR2(τ2))
(2)

It is obvious that FNMRT is lower and FMRT is higher than

for either test alone.

We define cost as the average processing time per user

as did Wein et al. in [7]. Although legitimate users can be

correctly accepted at either the first or second test, those

rejected at the first test will require additional processing

time to perform the second test. Legitimate users falsely

rejected by both tests will also require additional processing

time for secondary (often by human) inspection. Therefore,

the overall average processing time per legitimate user can

be modeled as:

C(τ1, τ2) = c1+c2.FNMR1(τ1)+c3.FNMRT (τ1, τ2) (3)

where c1, c2, and c3 are transaction and processing time

per sample for test1, test2, and secondary inspection respec-

tively, and τi is threshold value for testi, i = 1, 2, but the

procedure can be generalized to i ≥ 3. By defining the cost

function in terms of time, instead of the FNMRT only, we

are able to factor in the time requirements involved with ac-

quiring and processing one or both biometrics per user. Ide-

ally, one would like to have both time per user and FMRT

as low as possible, but realistically one has to find a balance

between the two. Since the FMRT is bounded by FMR1, the

threshold for test1 (τ1) should be set high enough to ensure

acceptable FMRT . However, forcing τ1 to be large results in

higher FNMR1 which means an increase in cost C(τ1, τ2).
Plots of Figure 1 show the trade-offs of FNMRT and FMRT

vs. the two thresholds of test1 and test2 where test1 is veri-

fying the right index finger and if rejected, left index finger

of the same person is presented to the same matching algo-

rithm (test2). Scores of the right and left index fingerprints

are added together and the claim of identity is accepted if

the sum of scores are bigger than the operating threshold

and rejected otherwise. (This is multi-instance contingent

sum fusion as explained in section 2.1 ).

Transaction and processing time per image consists of

non-biometric (average time users take to position them-

selves by the sensor plus the acquisition time) and biomet-

ric time (average time matching algorithms take to process,

compute quality score if applicable, and match an image).

That is,

c = cnon−biometric + cbiometric (4)

where

cnon−biometric = tplacement + tacquisition (5)

and

cbiometric = textraction + tmatching + tquality (6)

Both biometric and non-biometric costs are different for dif-

ferent modalities, different algorithms, and might even dif-

fer based on the quality of the biometric sample, for ex-

ample an intelligent matching algorithm might invoke some

image enhancement procedures for poor quality images. In

this paper we assume that biometric processing time is the

same for all images of the same modality regardless of their

quality.

Usually the non-biometric time (equation 5) is much

larger than the biometric time (equation 6). It takes about

five seconds per finger to capture a digital image of a fin-

gerprint [7]. We estimate average time users need to po-

sition themselves by a sensor as two seconds, and hence

non-biometric cost per user (i.e. cnon−biometric in equation

5) as 7 seconds. According to [5], template generation and

match time for fingerprint images are different for differ-

ent vendors, but mostly about half a second. Computing

quality values for fingerprint images takes about 0.3 (for

flat impressions of fingerprints) to 0.5 (for rolled impres-

sions of fingerprints) second [8]. Therefore, biometric cost

cbiometric in equation 6 is estimated as 0.5 second for a

typical matcher when quality is not computed and 1 sec-

ond when quality of the image is computed by NFIQ for

quality-based fusion. That means we estimated the average

total non-biometric and biometric cost of a typical matcher

per fingerprint as 7.5 seconds if quality is not computed,

and 8 seconds for quality-based fusion scenarios.

For face recognition systems, we assume a total of 20

seconds non-biometric and biometric time as it may take

more time for users to position themselves in front of a cam-

era than a fingerprint scanner, plus capture time and biomet-

ric processing time might be longer than fingerprint.

We chose c3, the time a human needs to check the claim

of identity for the user rejected by both tests, to be 15 min-

utes. Although we chose values for c1, c2, c3 deliberately to

be representative of real operational systems, nevertheless,

these numbers are just estimates. In an operational scenario,

c1, c2, c3 should be tailored to the intended application, as

these values will have a big effect on the cost vs. FMRT

tradeoff conclusions.

Our performance measure involves comparing the trade-

off between the FMRT and the transaction and processing

time per user. Each scenario in our model involves solving

an optimization problem in which we attempt to

minimize C(τ1, τ2) (7)

subject to FMRT ≤ f

where C(τ1, τ2) and FMRT are defined in equations 3 and

2 respectively, and f is the maximum allowable false match



rate. This is achieved by surveying the two thresholds τ1

and τ2 (used at the first and second tests) to get the low-

est cost while still maintaining an acceptable overall false

match rate. (False match rate is a measure of security and

what constitutes acceptable false match rate is application

dependent.)

We consider three cases for the two biometric tests:

1. Multi-instance fusion - two different instances of the

same biometric (i.e. right and left index fingerprints),

2. Multi-algorithm fusion - two different matching algo-

rithms of the same biometric (i.e. fingerprint),

3. Multi-modal fusion - two different biometric traits (i.e.

face and fingerprint).

We combine scores of test1 and test2, for each above

mentioned case, according to the following fusion schemes:

1. Decision level fusion: If test1 rejects the first sample

(i.e. flat impressions of right index), the other sample

(i.e. flat impressions of left index or face) is presented

to test2 which either accepts or rejects the claim of

identity solely based on the second sample. (For the

multi-algorithm case the same impression of right in-

dex finger is presented to both tests.)

2. Sum score fusion: If test1 rejects the first sample (i.e.

right index), the other sample (i.e. left index or face)

is presented to test2. (Again for the multi-algorithm

case the same impression of right index finger is pre-

sented to both tests.) Final decision (accept or reject

the identity claim) is based on the sum of scores

sfused = s1 + s2 (8)

where si is score produced by testi and i = 1, 2. Kittler

et al. [1] have shown that sum fusion, though very sim-

ple, is a reasonable way of combining genuine scores

of multiple tests when appropriate score normalization

is applied [10].

3. Quality based log likelihood fusion: We used NIST

Fingerprint Image Quality (NFIQ) [8, 9] to compute

quality values for fingerprint images. Then we empir-

ically computed genuine and impostor distribution for

each of the five levels of NFIQ, which are shown in

Figure 2. Scores of test1 and test2 are combined by

likelihood ratio, where the fused score is

Sfused = log
m1(s : q = j)
n1(s : q = j)

+ log
m2(s : q = k)
n2(s : q = k)

(9)

mi(s : q = j) and ni(s : q = j) are genuine and

impostor probability density functions of testi, (i =
1, 2) of samples with quality j, empirically computed,

Figure 1. Surface plots of (a)FNMR and (b)log(FMR) of the

multi-instance decision level fused system vs. thresholds of test1
and test2. The higher the thresholds the lower the FMRT , but the

higher FNMRT .

while j, and k = 1, . . . , 5 correspond to the qualities of

the first sample (presented to test1) and second sample

(presented to test2) respectively. Note that q = 1 is the

highest quality level and q = 5 is the lowest.

In each case, we iterate over all possible threshold values

of test1 and test2 and choose the minimum cost (equation

3) for each FMRT≥0.0001, which are plotted for the above

mentioned cases. We used commercial fingerprint and face

matching algorithms and data collected at operational envi-

ronments.

We now discuss each of these cases in more detail.

2.1. Multi-instance contingent fusion

In this scenario, we fuse multiple instances of a biomet-

ric i.e. left and right index fingerprints. The right index fin-



Figure 2. Genuine and impostor distributions of NFIQ five quality

levels.

gerprint of a user is presented to test1 and if rejected, the left

index fingerprint image is presented to test2. The most com-

mon use-case of this scenario is an access control scenario

like [12].

Since the same matching algorithm is being used for

test1 and test2, c1 and c2 of equation 3 are equal. Therefore,

the cost of multi-instance contingent fusion can be written

as:

CC(τ1, τ2) = c1 + c1 . FNMR1(τ1) + c3 . FNMRT (τ1, τ2)
(10)

which is much smaller than the cost for always fusing two

instances,

CA(τ1, τ2) = 2c1 + c3 . FNMRT (τ1, τ2) (11)

where c1 = 8 seconds for quality-based log likelihood ra-

tio fusion scheme and 7.5 seconds for all the other fusion

schemes, as explained in section 2, CC is the cost for con-

tingent fusion and CA is the cost for always fusing two in-

stances.

Figure 3 shows cost vs. FMRT for the single-instance

case (when only one fingerprint is authenticated), always

performing both tests and sum fusing the scores, and three

contingent fusion schemes explained in section 2. For

FMRT of 0.001, contingent fusion reduces the cost by 50%

for single-instance and 30% for always-sum fusing right

and left index fingers. Furthermore, as shown in Table 1,

contingent fusion systems’ FNMRT at FMRT = 0.001 is an

order of magnitude smaller than single-finger case. Perfor-

mance is quite comparable for quality based contingent log

likelihood ratio and contingent sum fusion schemes which

agrees with Jain et al. [11] findings.

Table 1. Multi-instance contingent fusion. FNMRT and cost are

computed at FMRT = 0.001.

fusion scheme FNMRT cost (seconds)
single-instance 0.0136 19.7

contingent decision 0.0019 9.3

contingent sum 0.0016 9.1

contingent L-ratio 0.0017 9.7

always sum 0.0016 16.5

Figure 3. Multi-instance contingent fusion

2.2. Multi-algorithmic contingent fusion

This scenario involves fusing results of two algorithms

applied to the same biometric sample (i.e. right index) pre-

sented to both algorithms. It is often the case that an ac-

curate matching algorithm takes more time to process and

compare two samples than a less accurate algorithm. The

cost associated with capture (non-biometric cost) and pro-

cess (biometric cost) for test1 is 7.5 second as explained in

section 2. However, there is no non-biometric cost for test2
(because there is no transaction involved), and since we as-

sumed test2 deploys a more accurate but slower algorithm

than test1, biometric cost of test2 is estimated at 1.5 second

(compared with half a second as mentioned in section 2),

i.e. c2 = 1.5 second.

We consider the following fusion scenarios:

1. Decision level fusion - We model decision level con-

tingent fusion by first presenting the right index sam-

ple of a user to the matching algorithm1 (test1) and

if rejected, it is presented to the matching algorithm2

(test2), which is assumed to be more accurate but

slower. Cost function for this scenario is same as equa-

tion 3 with c1 = 7.5 (which includes non-biometric

and biometric costs) and c2 = 1.5 (which is only bio-

metric cost of test2) seconds.



2. Quality-based decision fusion - We also consider the

case where fingerprint samples with NFIQ= 4, 5 are

sent directly to test2. Such poor quality samples have

a low likelihood of being recognized correctly [9] and

so tend to fail test1. Given our assumption that test2
deploys a more accurate (and often) more intelligent

algorithm, bypassing test1 for such poor quality sam-

ples will reduce the cost. Samples with NFIQ=1,2,3

are presented to test1 and if rejected to test2, with cost

function as in equation 3 with c1 = 8 and c2 = 1.5
seconds. Cost function for samples with NFIQ=4,5 is

CC(τ2) = c2 + c3.FNMRT (τ2) if NFIQ=4,5 (12)

where c2 = 9 seconds, which is 7 seconds non-

biometric cost, 0.5 second NFIQ computation, plus

1.5 extraction and match time by the slower but more

accurate matcher.

3. Contingent sum fusion - We performed contingent sum

as explained in section 2. Cost function for this sce-

nario is same as equation 3 with c1 = 7.5 (which in-

cludes non-biometric and biometric costs) and c2 =
1.5 seconds (which is only biometric cost of test2) for

both cases of contingent and always sum fusing scores.

4. Quality based log likelihood fusion - If test1 rejects

identity claim, same sample is presented to test2 and

the scores of test1 and test2 are fused according to

equation 9. Cost for this scenario is same as equation

3 with c1 = 8 and c2 = 1.5 seconds.

We compared these cases with single-algorithm case of us-

ing only one algorithm when either algorithm is used and

always performing both tests and sum fuse scores where the

cost is

CA(τ1, τ2) = c1 + c2 + c3 . FNMRT (τ1, τ2) (13)

where c1 = 7.5 and c2 = 1.5 seconds (same as multi-

algorithm contingent sum fusion).

Figure 4 shows cost vs. FMRT for all the above men-

tioned cases, and Table 2 shows FNMRT and cost at

FMRT = 0.001. Multi-algorithm fusion is not as effective

as multi-instance fusion and requires deployment and main-

tenance of two algorithms which is more costly than deploy-

ing only one algorithm. Our results suggest that the use of

the better matcher yields the best performance. An effec-

tive and successful multi-algorithm fusion depends on the

appropriate choice of matchers and their operational thresh-

olds.

2.3. Multi-modal contingent fusion

We also performed experiments when test1 and test2 are

different biometric traits i.e. face and finger. Since commer-

Table 2. Multi-algorithm contingent fusion. FNMRT and cost are

computed @ FMRT = 0.001.

fusion scheme FNMRT cost(seconds)
single-algorithm - test1 0.0136 19.7

single-algorithm - test2 0.0082 15.8

contingent decision 0.0074 14.2

quality-based 0.0078 15.1

contingent sum 0.0093 15.9

contingent L-ratio 0.0068 14.1

always sum 0.0092 17.3

Figure 4. Multi-algorithm contingent fusion

cial fingerprint matchers offer more accuracy than commer-

cial face recognition algorithms, we perform test1 on fin-

gerprint samples. Performing test1 on fingerprint decreases

the cost C by reducing FNMR1. If test1 rejects the claim of

identity presented to it, a face image is presented to test2.

Ideally we like to use face and fingerprint of the same per-

son, but due to limitation of availability of data, we matched

up fingerprint and face of different persons. Given that face

and fingerprint of a person is assumed to be independent,

matching face and fingerprint of different people should not

have any adverse effect on the results. We performed de-

cision fusion, contingent sum fusion (with z-normalization

of scores [13]), and log likelihood ratio fusion. We com-

pared the results with unimodal (fingerprint or face only)

and always-sum fusion of these biometrics. Figure 5 shows

results of such comparisons, where Table 3 shows their

FNMRT and cost at FMRT = 0.001. Cost equation for

decision and contingent sum is as in equation 3, while cost

for always fusing face and finger is as in equation 13. In all

cases c1 = 7.5, c2 = 15 and c3 = 900 seconds. The results

are quite interesting. Adding face will noticeably improve

performance of a single fingerprint verification system; it



Table 3. Multi-modal contingent fusion. FNMRT and cost are

computed at FMRT = 0.001.

fusion scheme FNMRT cost(seconds)
unimodal - finger 0.0205 25.9

unimodal - face 0.18 181.8

contingent decision 0.0042 11.8

contingent sum 0.0065 13.8

always sum 0.0067 33.5

Figure 5. Multi-modal (finger and face) contingent fusion

decreases both FNMRT and cost at a fixed FMRT . While

error rates of contingent and always-sum fusing face and

finger are comparable, contingent sum’s cost is about a third

of always-sum fusion of face and finger. Multi-modal con-

tingent decision gives the lowest error rate and lowest cost

of all multi-modal fusion scenarios studied.

3. Discussion

We find that the use of contingent fusion significantly re-

duces the average throughput time per user and FNMRT at a

fixed false match rate. All three contingent fusion schemes

(decision, sum fuse, and likelihood ratio) consistently pro-

vide better performance, in terms of both error rate and cost,

than always fusing two-biometric method. Among all, de-

cision fusion, while the simplest, seems to work almost as

well as the other two. The performance discrepancy be-

comes more apparent for lower false accept rates, but never

gets worse than being within 2 seconds of the best fusion

strategy. Likelihood ratio fusion improves throughput time

slightly, but increases the complexity of the system due to

requiring the prior knowledge of score distributions, which

if feasible, might not be robust. The advantage realized by

likelihood fusion stems from using the additional quality in-

formation to weigh the two scores differently during fusion.

Multi-instance and multi-modal fusion are more effec-

tive than multi-algorithm. An effective and successful

multi-algorithm fusion depends on the appropriate choice

of matchers and their operational thresholds.

In the single finger case (unimodal), users are either

passed, or sent to secondary inspection. For relatively low

false accept rates, the single finger method has a relatively

high processing time due to the increase in the number of

users that would be referred to secondary inspection. The

crossover in cost that occurs between the single and dou-

ble finger strategies is where the advantage of only having

to process a single finger equals the advantage of superior

identification gained by using two fingers.

More generally, using contingent fusion instead of the

two-finger strategy can reduce about 5 seconds while still

maintaining the same error rates. Better fusion strategies

can improve performance, however the use of contingent

fusion provides more substantial gains. For every fusion

scheme, the cost appears to decrease about linearly with the

log of the false match rate.

4. Conclusion
We solved the optimization problem of equation 7 empir-

ically by iterating over all possible thresholds of test1 and

test2 (τ1 and τ2) and plotting the minimum cost C(τ1, τ2)
for various FMR of the fused system, when scores are fused

at either decision or score level. We studied muti-instance,

multi-algorithm and multi-modal fusion scenarios and com-

pared unimodal, fusing two biometrics at all times, and our

proposed contingent fusion for each scenario. We found

that contingent fusion reduces the cost (measured as the

elapsed time from capturing an image until a decision is

made to accept or reject the claim of identity) and error rate

(FNMR at a fixed FMR) compared with unimodal and al-

ways fusing two biometrics. Fusing two instances of a bio-

metric (i.e. impressions of right and left index) or two traits

of biometric (i.e. impression of right index and face) works

better than fusing two algorithms, probably because they

are less correlated. Futhermore, contingent decision level

fusion works as well as contingent score level fusion and is

simpler to implement.
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