

An Integrity Verification Scheme for DNS Zone file based on Security Impact

Analysis

Ramaswamy Chandramouli
NIST, Gaithersburg, MD 20899

(mouli@nist.gov)

Scott Rose

NIST, Gaithersburg, MD 20899
scott.rose@nist.gov

Abstract

The Domain Name System (DNS) is the world’s

largest distributed computing system that performs the
key function of translating user-friendly domain names
to IP addresses through a process called name
resolution. After looking at the protection measures
for securing the DNS transactions, we discover that
the trust in the name resolution process ultimately
depends upon the integrity of the data repository that
authoritative name servers of DNS use. This data
repository is called a zone file. Hence we analyze in
detail the data content relationships in a zone file that
have security impacts. We then develop a taxonomy
and associated population of constraints. We also
have developed a platform-independent framework
using XML, XML Schema and XSLT for encoding
those constraints and verifying them against the XML
encoded zone file data to detect integrity violations.

1. Introduction

The domain name system (DNS) is the world’s

largest distributed computing system that enables
access to any resource in the Internet by translating
user-friendly domain names to IP Addresses. The
process of translating domain names to IP Addresses
is called Name Resolution. A DNS name resolution is
the first step in the majority of Internet transactions.
The DNS is in fact a client server system that provides
this name resolution service through a family of
servers called Domain Name Servers. The hierarchical
domain space is divided into administrative units
called zones. A zone usually consists of a domain (say
example.com) and possibly one or more sub domains
(projects.example.com, services.example.com). The
authoritative data needed for performing the name
resolution service is contained in a file called the zone
file and the DNS servers hosting this file are called the
authoritative name servers for that zone. The DNS
clients that make use of the services provided by
authoritative name servers could be of two types. One
type is called a stub resolver that formulates and sends

a query every time it receives a request from an
application that requires Internet service (e.g., a
browser). The other type is called a caching (also
called recursive/resolving) name server that caches the
name resolution responses it has obtained from
authoritative name servers and thus able to serve
multiple stub resolvers.

The zone file hosted on an authoritative name
server consists of various types of records called
Resource Records (RRs). Associated with each DNS
resource record is a type (RRtype). The code for these
RRtypes is assigned by an international organization
called Internet Assigned Names Authority (IANA). An
RR of a given RRtype in a zone file provides a
specific type of information. Some of the common
RRtype codes are: NS, MX and A. An NS RR in a
zone file gives the fully qualified domain name
(FQDN) of the host that is considered the name server
for that zone. For example, an NS RR in the zone file
of the zone example.com gives the information that
the host ns1.projects.example.com is a name server for
the domain projects.example.com. Similarly an MX
RR gives the host name for a mail server for the zone.
An A RR gives the IP address for a host in a domain
within the zone. A zone file generally consists of
multiple RRs of a given RRtype with some exceptions
(e.g., there can be only SOA RR in a zone file). It can
also have multiple RRs for the same domain name and
same (or different) RRtype (e.g., multiple name
servers or mail servers for a domain say
services.example.com).

The DNS infrastructure consists of many different
types of DNS servers, DNS clients and transactions
among/between these entities. The most important
transaction in DNS is the one that provides the core
service of DNS (i.e., name resolution service) and is
called the DNS Query/Response. A DNS
Query/Response transaction is made up of a query
originating from a DNS client (generically called a
DNS resolver) and response from a DNS name server.
The response consists of one or more RRs. These RRs
may be served from its own zone file (for an
authoritative name server) or from a cache of RRs
obtained from other name servers (for a

caching/resolving/recursive name servers). In this
way, the DNS basically serves as a global, distributed
database. Name servers (serving zone files) each
contain a small portion of the global domain space,
and clients issue queries using a domain name and a
desired RRtype.

The DNS Query/Response transaction, just like
any other Internet-based transaction, is subject to
several types of attacks such as spoofing and man-in-
the-middle attacks. DNS is especially vulnerable to
these types of attacks because the basic
Query/Response transaction uses UDP as the
transport. This makes it easier for an attacker to
intercept DNS message packets and alter any of the
information contained therein. An attacker could
redirect Internet traffic from a host (or collection of
hosts) in this manner. To provide protection from
these attacks, it is necessary to verify that a DNS
response has originated from an authentic source (the
responding name server is indeed the one that is
supposed to respond), the response is complete and
has not been tampered with on transit (integrity of the
response is maintained). The protection requirements
of origin authentication and integrity verification are
needed not only for responses originating from
authoritative name servers but also from the cache of
resolving/recursive name servers.

To provide these security services of data origin
authentication and integrity verification to DNS
responses, IETF has proposed a set of security
extensions to DNS collectively called DNSSEC
through a series of RFCs [8,9,10]. These DNSSEC
specifications call for generating a digital signature
(stored in a new RRtype called RRSIG) for every
RRset in a zone (a set of RRs of a given RRtype is
called an RRset) using a private key associated with
the zone and then publishing the corresponding public
key (stored in a DNSKEY RR). This will then enable a
recipient of the DNS response (i.e., the DNS resolver
on the client side) to verify the integrity of the RRs in
a response using the public key and the signature of
RRsets (contained in a RRSIG RR) sent along with it
in the DNS response. For discussion purposes, we will
call the RRs of these additional types as DNSSEC RRs
and the original RRs as simply DNS RRs.

However, these new types only provide the ability
for clients to authenticate the origin of the DNS data
(i.e. the authoritative source for the zone data) and the
integrity of the data in transit. This is to counter an
attacker redirecting Internet traffic by altering the data
in a DNS response in transit, or in the cache of a
caching, recursive name server. There is no guarantee
that the data is correct, or even useful to the client. It
is still possible, as with any human generated input,
that the original data is incorrect in some way. In

order for DNSSEC to be effective and the data to be
usable by clients, the original DNS data must be
correct.

This original data is the one found in zone files of
authoritative name servers. The overall trust in DNS
depends upon the integrity of the zone file data. The
integrity of zone file data, in the context of this paper,
pertains to the content satisfying certain relationship
constraints. It has nothing to do with the traditional
concept of file integrity which is verified by matching
an archived hash with the hash of the file generated on
the fly. Therefore, to discover the exact consequences
of the zone file integrity on the trust of DNS name
resolution service, it is necessary to perform a detailed
analysis of the zone file content relationships. Hence
the first of two major contributions of this paper is to
perform this analysis and develop a taxonomy and
associated population of zone file integrity constraints.
The second major contribution of this paper is to
develop a framework for verifying a zone file for
satisfaction of these constraints and
detecting/identifying violations of these integrity
constraints. Towards this objective, we developed a
schema of the zone file using XML Schema [12]. We
call this schema – “Zone File Schema”. The associated
XML encoded Zone file is called “XML encoded
Zone File Data”. The integrity checks (procedural
statement of constraints) needed for any zone file are
encoded as XSLT [13] constraints. The XSLT
constraints are based on the Zone File Schema and can
be applied to verify the integrity of any XML encoded
zone file whose structure is based on Zone File
Schema. A useful by product of this framework is the
ability to programmatically generate zone files using
XSLT transforms on the integrity-checked XML
encoded zone file data.

The overall organization of this paper is as
follows. A brief description of the common data
structure of any RR and information and functionality
provided by the original DNS RRs and DNSSEC RRs
are given in section 2. Section 3 builds up the case for
integrity verification of DNS based on analysis of data
content relationships that have security impacts.
Section 4 presents the taxonomy and a set of
associated integrity constraints. Sections 5 and 6
describe the framework for automated integrity
verification of DNS zone file. Specifically, in section
5, we deal with the development of an XML Schema
for the zone file and an XML encoding of an example
zone file that corresponds to this schema. Based on the
XML Schema, XSLT constraints that encode the
various integrity constraints (from section 4) are
developed in section 6. This section also illustrates the
process of applying these constraints against the XML
encoded zone file and generating integrity violation

messages. Comparison with related work is given in
section 7. Section 8 provides conclusions and scope
for future work.

2. Structure and Functionality of RRs in
the Zone File

Before we delve into the integrity requirements of
the zone file, it is necessary to look at the common
data structure for all RRs of the zone file as well as the
functionality provided by RRs of each RRtype. We
include in our integrity analysis the additional
RRtypes from DNSSEC specification and hence we
look at the functionality of both DNS RRs and
DNSSEC RRs.

2.1 Resource Record (RR) Structure

The generic structure of any resource record (RR)

in the zone file consists of the following fields:
• Owner name
• Time-to-Live (TTL)
• Class
• RRtype
• RDATA

Out of the 5 fields listed above, the first four are
atomic fields (contain only one data item) while the
last field (i.e., RDATA) is a composite field consisting
of multiple data items. The number and names of
individual data items in the RDATA field for an RR
depends upon the RRtype of the RR. The following
are a subset of RRs from the zone file for our example
zone example.com.
example.com 86400 IN SOA ns1.example.com
(2005010200 2h 20M 4W12h 2h30M)
(RR1)
example.com 86400 IN NS ns1.example.com
(RR2)
example.com 86400 IN MX 10 mail1.example.com
(RR3)
ns1.example.com 86400 IN A 192.168.0.3
(RR4)
mail1.example.com 86400 IN A 192.168.0.4 … (RR5)
An RR is often identified by its RRtype. Hence the
first RR above (i.e., RR1) is called an SOA RR, the
second one NS RR, the third one an MX RR etc.

Let us now analyze the semantics of each of the 5
fields in the above RRs. The semantics of the first
field (owner name) depends upon the RRtype (just like
RRDATA field except that this is an atomic field). In
SOA, NS and MX RRs (RR1, RR2 & RR3 above), the
owner name field contains the name of the domain. In
the case of an A RR (RR4 & RR5), the owner name
field contains the name of the host. The second field
TTL provides the remaining duration in seconds that

the RR can be considered valid. This field serves as a
countdown timer by caching clients . When the TTL
reaches zero, the given RR is considered invalid for
the zone, and the client must re-query the authoritative
name server for the zone to refresh this RR in its
cache. This is to ensure that caches contain the most
current version of the zone data. The third field Class
contains the code IN which stands for Internet. The
value of this field is common for all RRs in the zone
file. The fourth field is the RRtype. As already alluded
to, the code for RRtypes should be one of the valid
IANA assigned values. The fifth field (RDATA field)
contains more than one data item in some of the RRs
(e.g., SOA RR, MX RR) and only a single data item in
some other RRs (e.g., NS RR). In the example SOA
RR (RR1 above), the data items shown are: The serial
number (a sort of version number for the zone file),
refresh interval in hours, retry interval in minutes,
expiry duration in weeks and hours and minimum TTL
in hours and minutes. In the case of the MX RR (RR3
above) there are two data items in RDATA field. The
second data item contains the name of the mail host
while the first data item denotes the priority associated
with that host. The RDATA field in an NS RR
contains only one data item and that is the name of a
host (represented by its Fully Qualified domain Name
or FQDN) that acts as the name server. The detailed
semantics of each these fields in a DNS RR can be
obtained from RFC 1035[4].

3. The Need for Zone File Integrity
Checking as a Security Measure

In order to make a case for integrity checking of

the zone file for improving the security of DNS, we
need to take a look at the major transactions of DNS,
their vulnerabilities, existing countermeasures and
their limitations. The three major transactions in the
DNS are:

• DNS Query/Response: This involves all name
resolution queries and their associated responses.

• Zone Transfer: Transactions involving periodical
refresh of the contents of zone files in secondary
authoritative name servers from primary
authoritative name servers.

• Dynamic Update: Update of zone file data in real
time by special clients such as DHCP servers or
Internet Multicast Address Servers.
The above transactions are vulnerable to all the

threats associated with any Internet-based transactions.
These threats include IP spoofing, modification of the
messages in transit and replay attacks. It must be
remembered here that eavesdropping on a DNS
transaction is not deemed a threat since the DNS data

by its nature is not reckoned as confidential. To
counter the identified threats, DNS requires the
security services of data origin authentication and
message integrity. To provide these services, IETF has
issued two different types of specifications consisting
of protection mechanisms that provide these security
services.
• DNSSEC specifications specified through a series

of RFCs given in [8,9,10], provide data origin
authentication and message integrity for DNS
Query/Response transaction using digital
signatures (asymmetric cryptography). The
mechanics of providing protection through
implementation of DNSSEC has already been
briefly described in section 1.

• TSIG specifications contained in RFC 2845 [6] ,
provide data origin authentication and message
integrity for zone transfers and dynamic update
transactions through hash-based message
authentication codes (HMACs).
The rationale for two different solution

approaches for providing the same security services is
the following: Zone Transfers and Dynamic Updates
involve hosts from the same administrative domain (a
single enterprise or two enterprises with prior business
relationship –e.g., an enterprise and its ISP) and hence
a solution based on a shared secret (hash key) is
possible. On the other hand a DNS Query/Response
transaction can involve any arbitrary pair of DNS
resolver and DNS name server located anywhere in
the world. Hence it requires a scalable solution using a
public key/private key pair. In TSIG, the message
authentication codes are generated dynamically for
every transaction, whereas the digital signatures in
DNSSEC are generated and stored permanently in the
zone file of the authoritative name servers. The zones
whose zone file contains digital signatures are called
signed zones while DNS zones that do not contain
security information are called unsigned zones. The
DNS name server that hosts signed zones are called
DNSSEC-aware name servers while DNS resolvers
that can verify the digital signatures sent as part of the
response are called DNSSEC-aware resolvers.

Regardless of the fact that a zone is signed or
unsigned (i.e., implemented or not implemented
DNSSEC), it has been found that the content of the
zone file does have a great bearing on the overall
security ofDNS. This is not surprising since DNSSEC
and TSIG specifications can only ensure that the
message has originated from the legitimate source and
that it has not been tampered with during its passage
over the communication network. The overall trust in
the name resolution service provided by DNS rests
with the quality of data in the zone file. If this quality

is less than desirable, any transaction-level protection
will not enhance this trust. The data content
relationships (we will use the acronym DCR) and their
associated security impacts are described in the
following paragraphs:

(DCR 1): The presence of certain RRs reveals
sensitive information needed for launching targeted
attacks: The HINFO RR is generally used to carry
information about a host such as the O/S name,
version and its latest installed patch. This information
could be potentially used to launch targeted attacks on
such hosts. Depending upon whether the attacked host
is a DNS name server, mail server or web server, the
adverse consequences of such attacks could be
different.

 (DCR 2): Large parameter values in the RDATA
portion of certain RRtypes could result in either no
answers or obsolete (unusable) answers resulting in
denial of service: For example the “refresh” data item
in the RDATA field of a SOA RR specifies the
frequency with which secondary authoritative name
servers should initiate zone transfers in order to keep
their zone file contents in synch with the primary
authoritative name servers. Similarly the “retry” data
item in the same field of the same RR tells the
frequency with which the secondary name server
should make retry attempts in case a refresh attempt is
unsuccessful. The “Expiry” data item in the same
RDATA field denotes the time duration after which
the secondary name server should make no more
attempts at refresh but instead lets its zone file
contents expire. Large value for the data items
discussed above (i.e., “refresh”, “retry” and ”expiry”)
could result in mismatch of data between secondary
name servers (that provide fault tolerance) and
primary name server resulting in serving either a
empty response or obsolete response to those DNS
resolvers querying the secondary name servers. This
content-related phenomenon is called a “zone drift”.
Frequent occurrences of zone drift could potentially
result in denial of service to DNS resolvers using those
secondary name servers. Zone drift could also occur
due to mismatch of data between authoritative name
servers (primary or secondary) and the cache of
caching (resolving) name servers resulting in the same
denial of service situations for data served directly
from the cache . This occurs due to large value of the
TTL field in any RRset (or large value of MinTTL
data item of a SOA RR's RDATA field if used as the
default value by some RRsets). It is obvious that if this
value is large, the RRs in the cache will not expire for
quite a length of time during which there is the
possibility that the data in the authoritative name
servers to have changed.

(DCR 3): A different set of security impacts occur
if the values of the data items discussed above are
mirror images of the situation discussed above – i.e.,
the parameter values in RDATA field of certain RRs
are small For example if the “refresh” value in SOA
RR is very small, the secondary authoritative name
server will be performing frequent zone transfers from
the primary authoritative name server. As another
example, if the “MinTTL” data item in a SOA RR is
small, those RRs that have used this default value will
expire much more quickly in the cache of the caching
name server. Hence the DNS resolver will have to
make more frequent queries to the authoritative name
servers instead of relying on its cache. From this
scenario it is clear that having a small value for
“refresh”, “retry”, ”expiry” and “MinTTL” data items
in the RDATA field of a SOA RR will result in more
frequent queries to primary and/or secondary
authoritative name servers and has the potential to
degrade performance (by increasing query response
time). This situation is called “zone thrash”. Some
software may have timeout parameters for obtaining
network connection (in this case it is the DNS name
resolution service that provides the IP address for a
specific application service) and if the response time
for DNS Query/Response transaction exceeds this
limit, time out will result.

 (DCR 4): Missing or ill-formed associative RRs
results in inaccessibility of Internet domains/services:
Access to certain domains and/or services require two
RRs (or RRsets) in the zone file to be retrieved. The
first RR (RRset) will only provide the FQDN of the
domain/service (e.g., NS and MX RRs that provide the
FQDN (e.g., ns1.example.com) of the name server and
mail server respectively for a domain). The second RR
(RRset) then provides the IP address for the retrieved
FQDN through an A/AAAA RR (host to IP Address
mapping RR). The second RR (i.e., A/AAAA RR) is
called the associative RR since it provides the actual
network address (IP address) to reach the host
providing a specific service that is referenced in the
first RR (NS or MX RR). If the associative RR either
contains an invalid IPv4 /IPv6 address or the RR itself
is missing, then the host providing the internet-based
service becomes inaccessible and hence is tantamount
to denial of service.

(DCR 5): Incorrect parameter values in the zone
file’s digital signature records (RRSIG RRs) will
render the DNSSEC security service non-usable: The
RDATA field in the digital signature record (RRSIG
RR) contains several data items whose correct value
ensures that the signature can be cryptographically
verified. These data items include: the DNSSEC
algorithm code (the code for the public key algorithm
used in signing and verifying signatures), type

covered, original_TTL, labels, signature inception &
expiry times and the signer name. For example, if the
signature is not currently valid (current date is not
between signature inception and expiry dates), then a
DNSSEC-aware resolver will not use it to validate the
integrity of the RRset covered by the signature. Yet
another example is a situation where the signer name
in the RDATA portion of an RRSIG RR does not
match with the owner name in the corresponding
DNSKEY RRs (correspondence established based on
equality of a key tag ID value), in which case the
resolver will be unable to fetch the correct public key
for signature verification and will reject the response.
The overall effect of the above two example scenarios
is that the security services (data origin authentication
and message integrity) enabled through DNSSEC
implementation become non-usable.

There are some rare but not impossible data
scenarios that could result in subversion of DNSSEC
security services. For example, in the case of a key
compromise, the authoritative name servers will
perform an emergency key rollover and re-sign RRsets
in the zone file with the new key (thus new signatures
– RRSIG RRs). However if the TTL value and
signature validity duration (difference between
signature expiry and inception dates/times) for RRsets
are set high, these RRsets will not expire in the cache
of caching name servers. Taking advantage of this
scenario, it is possible for an attacker to introduce
bogus records signed with the compromised key into
those caches essentially misdirecting those stub
resolvers that depend upon those caching name
servers, thus effectively subverting the protection
provided by DNSSEC.

(DCR 6): Absence of multiple RRs of certain
RRtypes representing critical services: Certain critical
services such as name resolution and email
transfer/access need to be hosted on multiple servers
to provide fault tolerance. Hence there should be
multiple RRs for RRtypes representing those services.
Specifically multiple RRs should be present for NS
and MX RRtypes associated with a domain.

(DCR 7): Ambiguous Data – Needs Policy for
Interpretation: Certain data content scenarios are low
risk from the point of security but nonetheless needs
policies for proper usage of their underlying RRs.
Examples of such scenarios are multiple IP addresses
for a given host (i.e., multiple A RRs for a given host
identified by a FQDN) and multiple mail servers with
the same priority code (i.e., multiple MX RRs with the
same priority code).

The DNS zone file content scenarios together
with their associated security impacts are summarized
in Table 1.

4. Zone File Integrity Constraints – A
Taxonomy and Associated Set

In order to avoid the zone file content scenarios

described in the last section and consequently mitigate
their security impacts, it is necessary to formulate
integrity constraints and develop a scheme for
verifying these constraints given zone file. Before
actually formulating the constraints, we looked at the
landscape of constraints that have security impact and
arrived at the following taxonomy.
• Single RR constraints (ICType1)
• Intra RRtype constraints (ICType2)
• Inter RRtype constraints (ICType3)

Single RR (ICType1) constraints specify the
requirements that one or more field values within a
single RR must satisfy. Since the semantics of the
fields vary based on RRtype, these constraints are
different for different RRtypes. For example, every
A/AAAA resource records must have a valid
IPv4/IPv6 address in its RDATA. The RR may be
syntactically correct, but if it contains an invalid
IPv4/IPv6 address in the RDATA field, it will cause
an error on the client side, even though the DNS
transaction succeeded.

Intra RRtype (ICType2) constraints specify the
relationship between values of fields among RRs of
the same RRtype. This constraint type also includes
cardinality constraints (i.e., the number of RRs of a
given RRtype that are allowed in the zone file). An
example is the case where there are multiple A RRs
with the same owner name (semantically stands for a
host – FQDN) but different IP addresses.

Inter RRtype (ICType3) constraints specify the
relationship between values of different fields among
RRs of dissimilar RRtypes that share a relationship in
some manner. For example, the Mail Exchange RR
(MX RR) contains the FQDN of a mail server for the
zone. Somewhere, there should be a corresponding
Address (A RR) record with the IP address of that
mail server. Otherwise, a client will never be able to
reach the mail server (as it does not have an IP address
found in the DNS).

Based on the field deployment experiences, IETF
documents relating to best practices and threat analysis
[5,7], we formulated a set of 25 integrity constraints
that the zone file in a DNSSEC-aware name server
should satisfy. The description of the 25 zone file
integrity constraints and the security impact(s)
associated with each of them is given in Table 2.

5. Modeling and Encoding of Zone File
using XML Schema and XML

As part of our effort to develop a platform-neutral
framework for checking the integrity of a zone file, we
develop a representation of the structure of the zone
file using XML Schema language. Specifically we
develop an XML Schema that can express the
structure of each RRtype in the DNS zone file. Since
the structure of RRs of various RRtypes differs only in
the RDATA field we first treat the common fields
collectively as an entity. In XML Schema an entity is
modeled as an element with associated set of attributes
and/or sub elements. In our schema we will call this
entity RRHeader. Hence we create an element by
name RRHeader with the common field names as
attributes of that element. The element RRHeader will
thus have owner name, TTL, class and RRtype as
attributes. The XML Schema definition of the element
RRHeader is as follows:
<xs:element name="RRHeader"
type="RRHeaderType"/>
<xs:complexType name="RRHeaderType">
<xs:attribute name="Owner" type="xs:string"
use="required"/>
<xs:attribute name="TTL" type="xs:integer"
use="optional"/>
<xs:attribute name="CLASS" type="xs:string"
use="required"/>
<xs:attribute name="RRType" type="valid_RR"
use="required"/>
</xs:complexType>
Since the composition of the RDATA field varies with
RRtype, we model the RDATA field for each RRtype
by a separate element. The definition of RDATA field
for NS(name server) and MX (mail server) and A (IP
address) RRtypes in XML Schema is given as follows:

<xs:complexType name="NS_RDATAType">
 <xs:sequence>
 <xs:element name="NSHost" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="MX_RDATAType">
 <xs:sequence>
 <xs:element name="Priority" type="xs:integer"/>
 <xs:element name="MXHost"
type="xs:string"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="A_RDATAType">
 <xs:sequence>
 <xs:element name="IPAddress" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

A RR of any given RRtype is composed of the
common fields and RDATA field and hence the XML
Schema element definition for an RR of a given

RRtype should be a concatenation of a RRHeader
element and the specific element that describes the
RDATA for that RRtype. For example the MX
element that models an MX RR should contain the
common RRHeader element and MX_RDATA
element and is defined as follows:

<xs:element name="MX" type="MXType"/>
<xs:complexType name="MXType">
 <xs:sequence>
 <xs:element ref="RRHeader" maxOccurs="1"/>
 <xs:element ref="MX_RDATA"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Finally the XML Schema for the entire zone file is
represented as the collection of elements representing
the various RRs in the zone file as follows:

<xs:element name="Zone_File_Schema"

type="ZoneFileSchemaType"/>
<xs:complexType name="ZoneFileSchemaType">
 <xs:sequence>
 <xs:element ref="SOA" maxOccurs="1"/>
 <xs:element ref="NS" maxOccurs="unbounded"/>
 <xs:element ref="MX" maxOccurs="unbounded"/>
 <xs:element ref="A" maxOccurs="unbounded"/>
 <xs:element ref="HINFO"
 m axOccurs="unbounded"/>
 <xs:element ref="CNAME"
 maxOccurs="unbounded"/>
 <xs:element ref="DNSKEY"
 maxOccurs="unbounded"/>
 <xs:element ref="RRSIG"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

A subset of the XML encoded zone file data (that
contains NS, MX and A RRs) that corresponds to the
XML Schema we just described is given below:

Table 1 - Zone File Content Scenarios and Security Impacts

Data Content Relationships (DCRs) Security Impact (SI)
DCR Code Description SI Code Description

DCR1 Unnecessary RRs SI1 Information availability for Launching
targeted attacks

DCR2 Large Parameter Values SI2 Empty/Obsolete Response (Zone
Drift) – Potential Denial of Service

DCR3 Small Parameter Values SI3 Slow Response/Time Outs (Zone
Thrash) – Potential Denial of Service

DCR4 Missing/Ill-formed Associative
RRs

SI4 Inaccessible Internet Domain/Service
– Denial of Service

DCR5 Incorrect parameter values in
digital signatures

SI5

SI6

Non-usability of a security service

Security Service bypassed

DCR6 Absence of multiple RRs for
critical services

SI4 Inaccessible Internet Domain/Service
– Denial of Service due to low fault

tolerance

DCR7 Ambiguous Data SI7 Low/Marginal Risk of Denial of
Service mainly due to lack of a policy

for interpreting response at the
Resolver

Table 2 - Zone File Integrity Constraints and Security Impact Codes

Constraint
Code

Constraint
Type

Description Security Impact Code
(due to constraint
violation)

ZFC1 ICType1 SOA RDATA refresh value be between 2-12 hours SI2 – if too large
SI3 – if too low

ZFC2 ICType1 SOA RDATA retry value is a fraction of refresh
value.

SI2 – if too large
SI3 – if too low

ZFC3 ICType1 SOA RDATA expiry value is between 2-4 weeks SI2
ZFC4 ICType1 SOA RDATA Min TTL value is between 5min-

1week
SI2 – if too large
SI3 – if too low

ZFC5 ICType1 RRSIG TTL is greater than 30 seconds SI3
ZFC6 ICType1 A/AAAA RDATA contains valid IPv4 /IPv6

address
SI4

ZFC7 ICType1 DNSKEY RDATA has protocol field set to 3 SI5
ZFC8 ICType1 DNSKEY RDATA has algorithm field code set to

IANA assigned value
SI5

ZFC9 ICType1 RRSIG RDATA has validity period greater than 0 SI5
ZFC10 ICType1 RRSIG is currently valid (current time between

inception time and expiration time)
SI5

ZFC11 ICType1 RRSIG original TTL field must have the same
value its TTL should be at the time of its
generation.

SI5

ZFC12 ICType2 Zone contains no HINFO RRs SI1
ZFC13 ICType2 Zone contains 2 or more NS RRs for a domain SI4
ZFC14 ICType2 Zone does not contain 2 or more MX RRs having

same priority field value
SI7

ZFC15 ICType2 Zone does not contain two or more A RRs with
same owner name

SI7

ZFC16 ICType2 Zone contains no CNAME Chains SI7
ZFC17 ICType3 Every NS RR has target name that is an owner

name for an A/AAAA RR
SI4

ZFC18 ICType3 Every MX RR has target name that is an owner
name for an A/AAAA RR

SI4

ZFC19 ICType3 RRSIG TTL value should be the same value as the
TTL of the RRset the RRSIG covers

SI5

ZFC20 ICType3 RRSIG “signer” field should be the owner name of
the DNSKEY RR used to validate the signature.

SI5

ZFC21 ICType3 The RRSIG type covered field should have the
correct RRtype value corresponding to the RRset it
covers

SI5

ZFC22 ICType3 The RRSIG labels value should match the number
of labels in the RRset owner name it covers

SI5

ZFC23 ICType3 Primary server in SOA RDATA also appears in
RDATA of NS RR

SI7

ZFC24 ICType3 NS RDATA target name should not be the owner
name of a CNAME RR

SI7

ZFC25 ICType3 MX RDATA target name should not be the owner
name of a CNAME RR

SI7

<?xml version="1.0" encoding="UTF-8"?>
<Zone_File_Schema
xmlns:xsi="Zone_File_Schema.xsd">
<NS>
<RRHeader Owner="example.com" TTL="86400"
 CLASS="IN" RRType="NS"/>
 <NS_RDATA>
 <NSHost>ns2.example.com</NSHost>
 </NS_RDATA>
</NS>
<MX>
<RRHeader Owner="example.com" TTL="86400"
 CLASS="IN" RRType="MX"/>
 <MX_RDATA>
 <Priority>10</Priority>
 <MXHost>mail.example.com</MXHost>
 </MX_RDATA>
 <MX_RDATA>
 <Priority>10</Priority>
 <MXHost>mail2.example.com</MXHost>
 </MX_RDATA>
<MX_RDATA>
 <Priority>20</Priority>
 <MXHost>mail3.example.com</MXHost>
 </MX_RDATA>
</MX>
<A>
<RRHeader Owner="ns" TTL="86400" CLASS="IN"
 RRType="A"/>
 <A_RDATA>
 <IPAddress>192.192.249.1</IPAddress>
 </A_RDATA>

The complete XML Schema of the zone file and
an XML encoded zone file data that corresponds to
this schema for the zone example.com is given in the
authors’ website.

6. Zone File Integrity Constraints in XSLT
& Zone File Validation

The next step in our DNS zone file integrity

verification framework is to encode the integrity
constraints (ZFC1 through ZFC25 in section 4) in
XSLT. Due to lack of space here, we just illustrate the
development of XSLT encoding for two constraints
one from each of the types ICType2 and ICType3.
Constraint ZFC14 states that there should not be two
mail hosts with the same priority. This is a ICType2
constraint and encoded as follows:
<xsl:for-each select="/Zone_File_Schema/MX">
<xsl:variable name="Owner"
 select="./RRHeader/@Owner"></xsl:variable>
 <xsl:for-each select="./MX_RDATA">
 <xsl:variable name="Priority"
 select="./Priority"></xsl:variable>
 <xsl:variable name="MXHost"
 select="./MXHost"></xsl:variable>

 <xsl:variable name="EqualPriorityServers"
select="count(/Zone_File_Schema/MX[./RRHeader/@
Owner = $Owner]/MX_RDATA/Priority[text () =
$Priority])">
 </xsl:variable>
 <xsl:if test="$EqualPriorityServers > 1">
Violation: More than one Mail Server with Priority:
<xsl:value-of select="$Priority"/> in the domain
<xsl:value-of select="$Owner"/>. One of them is:
<xsl:value-of select="$MXHost"/>
 </xsl:if>
 </xsl:for-each>
</xsl:for-each>

Constraint ZFC17 is an ICType3 constraint that
checks whether every name server host (in a NS RR)
has a corresponding address record (in an A/AAAA
RR). The XSLT encoding of this constraint is as
follows:
<xsl:for-each select="/Zone_File_Schema/NS">
 <xsl:variable name="Owner"
 select="./RRHeader/@Owner"></xsl:variable>
 <xsl:for-each select="./NS_RDATA">
 <xsl:variable name="NSHost"
 select="./NSHost"></xsl:variable>
 <xsl:variable name="ARecords"
select="count(/Zone_File_Schema/A[./RRHeader/@O
wner = $NSHost])">
 </xsl:variable>
 <xsl:if test="$ARecords = 0">
Violation: The name server host: <xsl:value-of
select="$NSHost"/> in the domain <xsl:value-of
select="$Owner"/> does not have an A RR.

The last step in our integrity verification
framework is to apply the XSLT constraints against
the XML encoded zone file data. We used the public
domain XSLT processor Xalan[11]. Referring our
subset of XML encoded zone file, we find that there
are two MX RRs with the same value for priority data
item of RDATA field. Applying the XSLT encoding
of constraint ZFC14, the XSLT processor generated
the following output.Violation: More than one Mail
Server with Priority: 10 in the domain example.com.
One of them is: mail.example.com
Violation: More than one Mail Server with Priority: 10 in
the domain example.com. One of them is:
ns.example.com

As an example of ICType3 constraint violation,
we find in the XML encoded zone file that there is no
A/AAAA RR corresponding to a name server host
ns2.example.com specified in the NS RR. The
application of the XSLT encoded constraint ZFC17
detected this and generated the following violation
message:
Violation: The name server host: ns2.example.com in
the domain example.com does not have an A RR.

7. Comparison with Related Work

In spite of its security implication and its overall

impact on the trust of the name resolution service, the
authors were surprised to find that there is very little
published work or commercial-grade software for
integrity verification of DNS zone files. Most of the
earlier work on checks (such as the DNS MIB
extensions) focused on the resolvers and name servers,
not the zone data that makes up the DNS. The only
public domain framework and toolkit that we are
aware at this time that performs integrity checking on
DNS zone files is the Integrity Checker Tool (written
in Java) developed at NIST [3]. This web-enabled tool
can perform integrity checks on both DNSSEC-aware
and non DNSSEC-aware zones, but requires access to
a DNS name server for some tests. Mice&Men [2]
have a tool that performs similar checks, but not for
DNSSEC-aware zones (as of the time of writing).
There are also some perl scripts called "DNSSEC
Walker" [1] that checks RRSIG validation for every
RRset in a zone, but not the integrity of DNS RRs.
The framework described here enables performance of
these integrity checks even before generating the zone
file that is hosted on the authoritative name server.
The integrity-checked XML encoded zone file data
can then used to generate the zone file using XSLT
transforms. Additionally it is possible to encode an
existing zone file for a zone using our XML Schema.
The encoded file can then be checked for satisfaction
of our set of constraints, modified to satisfy the
constraints if they do not, and the zone file can then be
regenerated from it using XSLT transforms and then
reloaded back into the authoritative name server for
the zone. The three operations – XML-encoding of the

existing zone file, integrity verification using XSLT
constraints and transformation of the integrity-checked
XML file back to the zone file format can all be
integrated into a single software task. The estimate of
the overall latency involved in the task can then be
used to adjust certain timing parameters (e.g., TTL) in
the zone file so that the overall continuity of
operations of the DNS name server is not affected.

8. Conclusions & Scope for Future Work

In this paper we have considered integrity

constraints pertaining to RRs from a single zone file.
There are some integrity constraints that need to be
satisfied across zone files in the case of DNSSEC-
aware name servers. For example the DS RR in a
parent zone should refer to one of the valid keys
(DNSKEY RR) in the child zone. Thus we have to
deal with two XML files – one is the encoding of zone
file for the child zone and the other for the parent
zone. Our framework can handle this task since XSLT
constraints can be formulated to refer to any number
of XML documents within a single constraint. We
intend to make use of this feature to verify whether the
delegation function (signature of a valid public key of
the child by the parent through a DS RR) has been
properly implemented across a parent-child zone pair.
Repeated application of this type of integrity check
will enable identification of valid authentication
chains. This identification will then facilitate
verification of trust anchors in DNS resolvers for their
usefulness in verifying signatures in signed responses
coming from a specific zone.

9. References

[1] DNSSEC Zone Walker from Simon Josefsson.,
http://josefsson.org/walker/
[2] Mice and Men Tool, http://www.miceandmen.com
[3] NIST DNSSEC project home page: http://www-
x.antd.nist.gov:8080/dnssec/main.html
[4] RFC 1035, “Domain Names – Implementation and
Specification”,
http://www.ietf.org/rfc/rfc1035.txt?number=1035
[5] RFC 1912,” Common DNS Operational and
Configuration Errors”,
http://www.ietf.org/rfc/rfc1912.txt?number=1912
[6] RFC 2845,” Secret Key Transaction Authentication for
DNS (TSIG)”,
http://www.ietf.org/rfc/rfc2845.txt?number=2845
[7] RFC 3833, “Threat Analysis of the Domain Name
system (DNS”,”
http://www.ietf.org/rfc/rfc3833.txt?number=3833

[8] RFC 4033, “DNS Security Introduction and
Requirements”,
http://www.ietf.org/rfc/rfc4034.txt?number=4033
[9]RFC 4034, “Resource Records for the DNS Security
Extensions”,
http://www.ietf.org/rfc/rfc4034.txt?number=4034
[10]RFC 4035, “Protocol Modifications for the DNS
Security Extensions”,
http://www.ietf.org/rfc/rfc4035.txt?number=4035
[11] Xalan, http://xml.apache.org/xalan-j/
[12] XML Schema, http://www.w3.org/XML/Schema
[13] XSLT, http://www.w3.org/Style/XSL/

