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Abstract—This paper addresses turbo-coded non-coherent FH M-
FSK ad hoc networks with a Poisson distribution of interferers 
where multiple access interference can be modeled as symmetric 
α-stable (SαS) noise and α is inversely proportional to the path 
loss exponent. The Bayesian Gaussian metric does not perform 
well in non-Gaussian (α≠2) noise environments and therefore an 
optimum metric for Cauchy (α=1) noise and a generalized 
likelihood ratio (GLR) Gaussian metric requiring less side 
information (amplitude, dispersion) are presented. The 
robustness of the metrics is evaluated in different SαS noise 
environments and for mismatched values of the interference 
dispersion and channel amplitude in an interference-dominated 
network with no fading or independent Rayleigh fading. Both the 
Cauchy and GLR Gaussian metric exhibit significant 
performance gain over the Bayesian Gaussian metric, while the 
GLR Gaussian metric does so without the knowledge of the 
dispersion or amplitude. The Cauchy metric is more sensitive to 
the knowledge of the amplitude than the dispersion, but generally 
maintains better performance than the GLR Gaussian metric for 
a wide range of mismatched values of these parameters. 
Additionally, in an environment consisting of non-negligible 
Gaussian thermal noise along with multiple access interference, 
increasing the thermal noise level degrades the performance of 
the GLR Gaussian and Cauchy metric while for the observed 
levels both maintain better performance than the Bayesian 
Gaussian metric.  

Keywords-soft decision metrics, symmetric α-stable noise, non-
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I.  INTRODUCTION 
It was shown in [1] that multiple access interference in a 

spread spectrum (SS) network with a Poisson distribution of 
interferers using the same modulation and power has a 
symmetric α-stable (SαS) distribution where α is inversely 
proportional to the path loss exponent. This work was extended 
in [2] to include the effects of fading and shadowing for a 
frequency hopping (FH) network and in [3] interference was 
analyzed in a direct sequence (DS) network with variable 
coherent modulation.  Non-coherent receivers for uncoded 
systems in α-stable noise were given in [2, 4]. Our previous 
work [5] derived soft decision metrics for a general case of 
coded orthogonal signaling in SαS noise. This paper focuses 
on the performance of these metrics in a turbo-coded FH ad 

hoc network, including fading channels, and investigates the 
robustness of the metrics to imperfect side information. 

II. SYSTEM MODEL 
A turbo-coded FH SS ad hoc network with a Poisson 

distribution of interferers using the same modulation and power 
is considered. User hops are synchronized (non-synchronized 
hopping would just scale the dispersion of the multiple access 
interference [1]) and one symbol is transmitted per hop. 
Information bits are binary encoded, transmitted using M-FSK, 
and detected non-coherently using soft decision decoding. The 
output of the ith correlator, 0≤i≤M-1, is modeled as 
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where all vectors are two-dimensional, representing the in-
phase and quadrature components, ai is the amplitude of the 
received signal (including fading, if present), R is the 
transmitter-receiver distance, m is the path loss exponent, Ni is 
Gaussian thermal noise with variance 2σ N , Yi is the multiple 
access interference at the output of the demodulator, modeled 
as additive SαS noise where α=4/m for m>2 (i.e., free space 
path loss excluded) [1,2]  and Si is the desired signal given by 
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where θi is the relative phase of the signal, and the i'th 
frequency is modulated. 

Multiple access interference, modeled as SαS noise, can be 
characterized by two parameters: the characteristic exponent α, 
that is a function of the path loss exponent, and dispersion γ 
that is a function of the path loss exponent and the 
fading/shadowing statistics [2]. For non-fading environments 
the dispersion is given by [2] 
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while for fading environments [2] 
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where λ is the density of the interferers in the network per unit 

area, q is the number of hopping bins, ∫
∞ −−=
0

1z de)Γ( xxx x  is 

the gamma function, E[⋅] is the expectation operator and A is 
the random fading amplitude. For example, given a path loss 
exponent of four, multiple access interference is modeled as 
S1S noise and the dispersion for the non-fading case is given 
by qMλπγ =  while for unit power Rayleigh fading 

qM2πλπγ = . 

III. DECISION METRICS 
Each received symbol represents log2M coded bits. A soft-

decision metric in the form of a log-likelihood ratio is 
computed at the receiver for each coded bit and is fed to a soft-
decision decoder. The log-likelihood ratio of the jth coded bit, 
cj, is defined as 
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where z=[z0 z1 … zM-1] represents outputs of the M in-phase 
and quadrature correlators, and a=[a0 a1 … aM-1]. 

Log-likelihood ratios were derived assuming an 
interference-dominated network where Gaussian thermal noise 
is negligible and multiple access interference is modeled as 
SαS noise [5].  Since closed form expressions for the 
probability density function of SαS noise exist only for α=1 
(Cauchy distribution) and α=2 (Gaussian distribution), the 
metrics were obtained assuming these noise environments. 
Note that α=2 is not applicable in modeling the multiple access 
interference [1], however it is of interest to assess the 
performance of metrics designed for Gaussian noise in a non-
Gaussian interference environment.  The following gives the 
assumed noise densities and corresponding decision metrics 
while details of the derivations can be found in [5]. 

A. Gaussian metric   
Assuming S2S (Gaussian) noise, the noise density is given 

as 
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The Gaussian metric for non-coherent detection, optimum 
in S2S noise, is given by [5] 
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where  ∫=
π2
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1)( dexI x  is the zeroth-order modified 

Bessel function of the first kind, iiw z=  and the summations 
are over M/2 signals for which cj=1 and cj=0, respectively. 

B. Cauchy metric 
Assuming S1S (Cauchy) noise, the noise density is given as 
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The Cauchy metric for non-coherent detection, optimum 
for S1S noise, can be shown to be [5] 
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where ∫ −=
2π
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22 φφsin1)( dkkE  is the complete elliptic 

integral of the second kind, 222γβ iii aw ++=  and iii wa2δ = . 

C. Generalized Likelihood Ratio Metric 
The Bayesian Gaussian and the Cauchy metric depend on 

the amplitude, a, and interference dispersion γ. While the 
Bayesian approach to eliminating the dependence does not 
appear to be tractable, even if distributions of a and γ are 
known, another approach is to use the generalized likelihood 
ratio (GLR) paradigm that maximizes the likelihood function 
with respect to the unknown parameters. The GLR Gaussian 
metric, obtained from the assumption of S2S noise by applying 
the GLR paradigm, that does not require knowledge of 
amplitude and dispersion can be shown to be [5] 
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For M=2 (10) simplifies to ( )2
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IV. SIMULATION RESULTS 
The performance of the given metrics is first evaluated in 

an interference-dominated network (negligible thermal noise) 
and different noise environments corresponding to typical 
values of the path loss exponent. The robustness of the Cauchy 
metric to mismatched values of the interference dispersion and 
the channel amplitude is also presented. Additionally, 
performance is given for an environment consisting of multiple 
access interference and thermal noise. Both independent 
Rayleigh fading and non-fading environments were 
investigated. 

Performance results are obtained through Monte Carlo 
simulations of a rate 1/2 binary parallel concatenated 



convolutional (turbo) coded BFSK FH system with constituent 
encoder generator polynomial (15,13)8. The number of 
decoding iterations for a pair of soft-input/soft-output log-MAP 
decoders is eight. The frame size is 1024 information bits. We 
present the results in terms of frame error rate (FER) versus the 
normalized interference parameter, qMRN πλ~ 2= , interpreted 
as the "expected number of interferers closer to the receiver 
than the transmitter per frequency slot" [1].  Therefore, N~  is a 
normalized measure of the interference; higher values imply 
larger distances covered by the transmission, higher interferer 
density and/or fewer hopping bins. 

A. Performance in different noise environments 
Figs. 1-3 compare performance of the decision metrics in 

an interference-dominated network with independent Rayleigh 
fading and multiple access interference modeled as SαS noise 
for path loss exponents of m=3,4 and 5, respectively. These are 
typical path loss exponent values for mobile terrestrial 
communications. We observe that the Cauchy metric yields 
better performance than the GLR Gaussian metric while both 
metrics exhibit significant performance gain over the Bayesian 
Gaussian metric for the given noise environments. The GLR 
Gaussian metric achieves this performance, unlike the other 
two metrics, without knowledge of the amplitude or dispersion. 
The advantage of the Cauchy metric over the other metrics 
increases with higher impulsiveness of the interference 
corresponding to smaller α values. The same conclusions hold 
in a non-fading environment, for which results are omitted here 
for brevity. 

Results indicate that in an S1S noise environment with 
independent Rayleigh fading and FER=0.02, for example, the 
use of the Cauchy metric enables, approximately, over 70% 
longer transmission distances compared to the GLR Gaussian 
metric and an order of magnitude longer than the Bayesian 
Gaussian metric. Increasing the transmission distance, and 
thereby decreasing the number of hops in a multihop ad hoc 
network, translates into increased network capacity when the 
power is kept fixed. 

B. Robustness to mismatched side information 
The results above assume perfect knowledge of the signal 

amplitude and interference dispersion for the Cauchy and 
Bayesian Gaussian metrics. The robustness of the Cauchy 
metric to fixed mismatched values of the dispersion and 
amplitude are presented in Figs. 4 and 5 for an interference-
dominated network with S1S noise and independent Rayleigh 
fading. In Fig. 4, mismatched values of the dispersion are given 
as multiples of the actual dispersion. In Fig. 5, the effect of 
substituting the average channel amplitude for the 
instantaneous amplitudes in the metrics is shown.  

We observe in Fig. 4 that for a wide range of mismatched 
values of the dispersion the Cauchy metric still outperforms the 
other metrics. Additionally, the Cauchy metric exhibits higher 
sensitivity to an overestimate than an underestimate of the 
noise dispersion. Previous results [6] on the sensitivity of the 
turbo decoder to mismatched values of the signal-to-noise ratio 
(SNR) in an additive white Gaussian noise (AWGN) channel 
indicate less sensitivity of the decoder to overestimating than 

underestimating the SNR. Given that the dispersion is inversely 
proportional to SNR in an AWGN channel our results are in 
agreement with the findings in [6]. 

Figure 1.  Performance in S(α=4/3)S noise with fading 

Figure 2. Performance in S(α=1)S noise with fading 

Figure 3. Performance in S(α=4/5)S noise with fading 



Figure 4.  Performance of the Cauchy metric for fixed mismatched values of 
dispersion in S(α=1)S noise with fading  

Figure 5.  Performance of the Cauchy metric for fixed mismatched values of 
dispersion and amplitude in S(α=1)S noise with fading 

Although the Cauchy metric exhibits performance 
degradation when the average value of the channel amplitude is 
applied instead of the instantaneous value, as seen in Fig. 5, it 
still outperforms the other metrics. Furthermore, the 
combination of mismatched dispersion values and use of the 
average channel amplitude does not add significant 
performance loss. This observation indicates a higher 
sensitivity of this metric to the channel amplitude than to the 
interference dispersion. 

C. Performance in interference and thermal noise 
Performance in an environment consisting of Gaussian 

thermal noise in addition to multiple access interference 
modeled as Cauchy noise is given in Fig. 6 for the non-fading 
case. The thermal noise level is varied according to γ2σδ 2

N=  
in order to observe its influence on the performance of the 
metrics. The dispersion value used for the input to the decoder 
is γ (dispersion of the multiple access interference). Results 
indicate that increasing the thermal noise level relative to the  

Figure 6.  Performance in an environment with S(α=1)S noise and thermal 
noise 

multiple access interference degrades the performance of the 
Cauchy and GLR Gaussian metric, but both maintain an 
advantage over the Bayesian Gaussian metric. However, the 
performance advantage of the Cauchy metric over the GLR 
Gaussian metric decreases as the thermal noise level increases, 
which is expected as the overall noise and interference 
becomes more Gaussian. 

V. SUMMARY 
Performance of soft decision decoding metrics is evaluated 

for a turbo-coded FH ad hoc network with a Poisson 
distribution of interferers in both fading and non-fading 
environments. The GLR Gaussian and Cauchy metric exhibit 
significant performance gain over the Bayesian Gaussian 
metric for the observed noise environments. As opposed to the 
other two metrics, the GLR Gaussian metric achieves this 
performance without knowledge of the dispersion or amplitude. 
It was shown that the Cauchy metric maintains a performance 
advantage over the GLR Gaussian metric for a wide range of 
mismatched values of the dispersion and amplitude.  
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