
spectrum estimation problem. Before
we begin, here’s a short refresher
about two elements we introduced
previously, windowing1 and convolu-
tion.2 As we noted in those install-
ments, a convolution is an integral
that expresses the amount of overlap
of one function as it is shifted over an-
other. The result is a blending of the
two functions. Closely related to the
convolution process are the processes
of cross-correlation and autocorrela-
tion. Computing the cross-correlation
differs only slightly from the convolu-
tion; it’s useful for finding the degree
of similarity in signal patterns from
two different data streams and in de-
termining the lead or lag between
such similar signals. Autocorrelation
is also related to the convolution; it’s
described later. Windowing, used in
extracting or smoothing data, is typi-
cally executed by multiplying time-
domain data or its autocorrelation
function by the window function. A
disadvantage of windowing is that it
alters or restricts the data, which, of
course, has consequences for the spec-
tral estimate. In this installment, we
continue our discussion, building on
these concepts with a more general
approach to computing spectrum es-
timates via the FFT.

Spectrum Estimation’s
Central Problem 
The periodogram, invented by
Arthur Schuster in 1898,3 was the
first formal estimator for a time se-
ries’s frequency spectrum, but many
others have emerged in the ensuing
century. Almost all use the FFT in
their calculations, but they differ in
their assumptions about the missing
data; that is, the data outside the ob-
servation window. These assumptions
have profound effects on the spectral
estimates. Let t be time, f be fre-
quency, and x(t) a real function on the
interval –� < t < �. The continuous
Fourier transform (CFT) of x(t) is de-
fined by 

,

–� � f � �, (1)

where . If we knew x(t) per-
fectly and could compute Equation 1,
then we could compute an energy
spectral density function

E(f ) = |X(f )|2,  –� � f � �, (2)

and a power spectral density function
(PSD) by

–� � f � �. (3)

But we have only a discrete, real time
series

xj = x(tj), with tj = j�t,
j = 0, 1, …, N – 1, (4)

defined on a finite time interval of
length N�t. We saw in Part I1 that
sampling x(t) with sample spacing �t
confined our spectral estimates to the
Nyquist band 0 � f � 1/2�t. We used
the FFT algorithm to compute the dis-
crete Fourier transform (DFT)

k = 0, 1, …, N/2, (5)

which approximates the CFT X(f ) at
the Fourier frequencies 

, k = 0, 1, ..., N/2. (6)

We then computed periodogram esti-
mates of both the PSD and the ampli-
tude spectrum by

, k = 0, 1, …, N/2,

, k = 0, 1, …, N/2. (7)

We also saw that we could approximate
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the CFT and the frequency spectrum
on a denser frequency mesh simply by
appending zeroes to the time series.
This practice, called zero padding, is
just an explicit assertion of an implicit
assumption of the periodogram
method—namely, that the time series
is zero outside the observation window.
Frequency spectrum estimation is a
classic underdetermined problem be-
cause we need to estimate the spectrum
at an infinite number of frequencies us-
ing only a finite amount of data. This
problem has many solutions, differing
mainly in what they assume about the
missing data. 

Before considering other solutions
to this problem, let’s reconsider one of
the examples from Part I1 (specifically,
Figure 1b), but make it more realistic
by simulating some random measure-
ment errors. More precisely, we take
N = 32, �t = 0.22, and consider the
time series 

tj = j�t, j = 0, 1, 2, …, N – 1, 

xj = x(tj) = sin[2�f0(tj + 0.25)] + �j, (8)

with f0 = 0.5, and each �j a random
number drawn independently from a
normal distribution with mean zero
and standard deviation � = 0.25. This
new time series is plotted together
with the original uncorrupted series in
Figure 1a. Both series were zero
padded to length 1,024 (992 zeroes
appended) to obtain the periodogram
estimates given in Figure 1b. It’s re-
markable how well the two spectra
agree, even though the noise’s stan-
dard deviation was 25 percent of the
signal’s amplitude.

The Autocorrelation Function 
After the periodogram, the next fre-
quency spectrum estimators to emerge
were Richard Blackman and John

Tukey’s correlogram estimators.4

They’re based on the autocorrelation
theorem (sometimes called Wiener’s
theorem), which states that if X(f ) is
the CFT of x(t), then |X(f )|2 is the
CFT of the autocorrelation function
(ACF) of x(t). Norbert Wiener defined
the latter function as5

,

–� < � < �, (9)

in which the variable � is called the lag
(the time interval for the correlation of
x(t) with itself), and x*(t) is the com-
plex conjugate of x(t). Thus, if we
could access x(t), we could compute
the PSD in two ways: either by Equa-
tion 3 or by 

. (10)

But again, we have access to only a
noisy time series x0, x1, …, xN–1, so to
use the second method, we need esti-
mates for �(�) evaluated at the discrete
lag values 

�m = m�t,  m = 0, 1, …, N – 1. (11)

Because we’re working with a real time
series, and �(�–m) = �(�m), we don’t need
to worry about evaluating �(�) at neg-
ative lags. 

Because �(�) is a limit of the average
value of x* (t)x(t + �) on the interval
[–T, T ], the obvious estimator is the
sequence of average values

,

m = 0, 1, …, N – 1. (12)

This sequence is sometimes called the
unbiased estimator of �(�) because its
expected value is the true value—that
is, �{ �̂(m�t)} = �(m�t). But the data
are noisy, and for successively larger
values of m, the average �̂m is based on
fewer and fewer terms, so the variance
grows and, for large m, the estimator
becomes unstable. Therefore, it’s
common practice to use the biased
estimator 
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,

m = 0, 1, …, N – 1, (13)

which damps those instabilities and has
a smaller total error (bias + variance)
than does the unbiased estimator. (Bias
is the difference between the estimator’s
expected value and the true value of the
quantity being estimated.) Figure 2a
gives plots of both estimates for the
times series that Equation 8 defines. 

The ACF we have just described is
sometimes called the engineering auto-
correlation to distinguish it from the
statistical autocorrelation, which is de-
fined by 

,

where . (14)

The individual r̂m are true correlation
coefficients because they satisfy

–1 � r̂m � 1, m = 0, 1, …, N – 1. (15) 

Correlogram PSD Estimators 
Once we’ve established the ACF esti-
mate, we can use the FFT to calculate
the discrete estimate to the PSD. More
precisely, the ACF estimate is zero
padded to have M lags, which gives
M/2 + 1 frequencies in the PSD esti-
mate, which we can then compute by
approximating Equation 10 with

,

k = 0, 1, …, M/2. (16)

Zero padding in this case is an explicit
expression of the implicit assumption
that the ACF is zero for all lag values
� > (N – 1)�t. We must assume that
because we don’t know the data out-
side the observation window. Assum-
ing some nonzero extension for the
ACF would amount to an implicit
assumption about the missing ob-
served data. 

Figure 2b plots the correlograms

corresponding to the biased and un-
biased ACF estimates, shown in Fig-
ure 2a. The negative sidelobes for the
unbiased correlogram show dramati-
cally why most analysts choose the bi-
ased estimate even though its central
peak is broader. The reason for this
broadening, and for the damped side-
lobes, is that the biased ACF, Equa-
tion 13, can also be computed by
multiplying the unbiased ACF, Equa-
tion 12, by the triangular (Bartlett) ta-
pering window 

, 

k = 0, 1, 2, …, N – 1. (17)

Recall that we observed the same sort
of peak broadening and sidelobe sup-
pression in Part I’s Figure 10 when we
multiplied the observed data by a
Blackman window before computing
the periodogram. 

Notice that the biased correlogram
estimate plotted in Figure 2b is identi-
cal to the periodogram estimate plot-
ted in Figure 1b. The equality of these
two estimates, computed in very dif-
ferent ways, constitutes a finite dimen-
sional analogue of Wiener’s theorem
for the continuous PSD. 

Figure 2b’s two PSD correlograms
aren’t the only members of the class of
correlogram estimates. We can obtain
other variations by truncating the ACF
estimate at lags � < (N – 1)�t and by
smoothing the truncated (or untrun-
cated) estimate with one of the taper-
ing windows defined in Part I’s
Equation 11. Most of those windows
were originally developed for the cor-
relogram method; they were then
retroactively applied to the perio-
dogram method when the latter was
resurrected in the mid 1960s. In those
days, people often used very severe
truncations, with the estimates being
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set to zero at 90 percent or more of the
lags. Not only did this alleviate the
variance instability problem, but it also
reduced the computing time—an im-
portant consideration before the in-
vention of the FFT algorithm, and
when computers were much slower
than today. 

The effect of truncating the biased
ACF estimate is shown in Figure 3,
where mmax is the largest index for
which the nonzero ACF estimate is re-
tained. More precisely, 

(18)

It’s clear that smaller values of mmax
produce more pronounced sidelobes
and broader central peaks than larger
values. The peak broadening is ac-
companied by a compensating de-
crease in height to keep the area under
the curve invariant. PSD is measured
in units of power-per-unit-frequency
interval, so the peak’s area indicates its
associated power.

Figure 4 shows the effect of tapering
the truncated ACF estimates used in
Figure 3 with a Hamming window 

,

m = 0, 1, 2, …, mmax. (19)

The sidelobes are suppressed by the ta-
pering, but the central peaks are fur-
ther broadened. This loss in resolution
is the price we must pay to smooth the
sidelobes and eliminate their negative
excursions. 

Tapering the biased ACF estimates
with the Hamming window amounts
to twice tapering the unbiased esti-
mates; we can obtain the former from
the latter by tapering them with the

Bartlett window, Equation 17. Figure
5 shows the effect of a single tapering
of the unbaised estimates with the

Hamming window, Equation 19.
Note that the sidelobes are not com-
pletely suppressed, but they’re not as
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Figure 3. Three correlogram estimates for Equation 8 computed from the biased
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pronounced as in Figure 3, in which
the tapering used the Bartlett win-
dow. However, the central peaks are
also slightly broader here. This is yet
another example of the trade-off
between resolution and sidelobe
suppression.

This particular example contains
only a single-sinusoid, so it doesn’t
suggest any advantage for the taper-
ing and truncation procedures, but
they weren’t developed to analyze a
time series with such a simple struc-
ture. Their advantages are said to be
best realized when the signal being
analyzed contains two or more sinu-
soids with frequencies so closely
spaced that sidelobes from two adja-
cent peaks might combine and rein-
force one another to give a spurious
peak in the spectrum. But of course, if
two adjacent frequencies are close
enough, then the broadening of both
peaks might cause them to merge into
an unresolved lump. 

M uch ink has been used in de-
bating the relative merits of the

various truncation and windowing
strategies, but none of them have
proven to be advantageous, so correlo-
gram estimates are beginning to fall
out of favor. For the past 30 years or so,
most researchers  have concentrated on
autoregressive spectral estimates,
which, as we shall see in Part 4, give
better resolution because they make
better assumptions about the the data
outside the window of observation.
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Figure 5. Three correlogram estimates for the time series generated by Equation 8.
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