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Here we describe a simple mechanical procedure for compiling a quantum gate network into the natural
gates �pulses and delays� for an Ising quantum computer. The aim is not necessarily to generate the most
efficient pulse sequence, but rather to develop an efficient compilation algorithm that can be easily imple-
mented in large spin systems. The key observation is that it is not always necessary to refocus all the undesired
couplings in a spin system. Instead, the coupling evolution can simply be tracked and then corrected at some
later time. Although described within the language of NMR, the algorithm is applicable to any design of
quantum computer based on Ising couplings.
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Quantum computers �1� have generated considerable in-
terest in recent years due to their apparent ability to perform
computations that are intractable on any classical computer.
Although the construction of a general purpose quantum
computer capable of solving real problems remains a chal-
lenge, preliminary results have been demonstrated in several
systems �2�, most notably nuclear magnetic resonance
�NMR� �3–6� and trapped ions �7–10�. When implementing
simple quantum algorithms on devices with a small number
of qubits, it is perfectly possible to design an implementation
“by hand.” With larger systems, however, this approach be-
comes impractical, and it is desirable to automate the pro-
cess. Here we describe a simple procedure that allows a se-
quence of abstract quantum logic gates �the most common
device-independent description of a quantum algorithm� to
be compiled into a sequence of pulses and delays, which are
the natural gates on an Ising quantum computer.

By an Ising quantum computer, we mean a system with a
background Hamiltonian

H/� = 2��
i

�iIz
i + ��

i�j

Jij2Iz
i Iz

j , �1�

where, following NMR notation �11�, Iz=�z /2 is the angular
momentum operator in the z direction, �i is the precession
frequency of the ith qubit, and Jij is the Ising coupling
strength between pairs of qubits; here we assume that all the
n�n−1� /2 Ising couplings in an n-qubit system are of signifi-
cant size. This Hamiltonian arises naturally in NMR systems,

where the qubits correspond to spin-half particles and the
scalar J coupling takes the Ising form within the weak cou-
pling limit, but also occurs more generally. It can be simpli-
fied by working in a multiply rotating frame, where the
frame used to describe each qubit rotates at the Larmor pre-
cession frequency �i, so that the effective Hamiltonian con-
tains only the coupling terms. We also assume that the sys-
tem can be controlled by the application of arbitrary single-
qubit gates to any qubit or group of qubits. In an NMR
system, these single-qubit gates would be implemented using
resonant rf pulses, with individual qubits being distinguished
by their unique Larmor frequencies. We refer to these single-
qubit gates as pulses whether or not they are implemented in
this way.

It is well known that any quantum algorithm can be
implemented using only single-qubit and two-qubit gates,
such as controlled-NOT �CNOT� gates �12,13�. Furthermore,
the CNOT gate can itself be decomposed in terms of �single-
qubit� Hadamard gates and a controlled-�z gate, which con-
verts �11� to −�11�, while leaving other states unchanged.
Finally, a controlled-�z is essentially equivalent to a 90° evo-
lution under an Ising coupling, differing only by single-qubit
z rotations �5�. These are most conveniently handled not by
rotating the qubit, but rather by rotating its reference frame,
a method usually known as abstract reference frames �14�.
Similar techniques can be used to implement more general
controlled phase-shift gates, which are useful for building
such gates as the controlled square-root-of-NOT �5�. Thus,
arbitrary quantum circuits can be constructed out of pulses
and controlled evolutions under the Ising Hamiltonian. Here
we simply assume that a circuit comprising only single-qubit
gates and controlled phase-shift gates is available.

In order to achieve the desired evolutions it is necessary
to sculpt the Hamiltonian into a more suitable form, in which
only the desired couplings of the required strength are
present. This is easily achieved by using spin echoes. Spin
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echoes are widely used in conventional NMR experiments
�11� to refocus undesirable single-spin interactions, but they
can also be used to effectively rescale Ising coupling terms
within a Hamiltonian.

The basic procedure, which is based on the concept of an
average Hamiltonian, is easily understood and is exemplified
by Fig. 1. The coupling between qubits 0 and 1 evolves for
the entire period �0, so that the average coupling strength
experienced by these qubits is equal to the underlying cou-
pling strength J01. The coupling from qubit 0 to qubit 2 is
partially refocused by applying a pair of NOT gates �180°
pulses� to one of the two qubits involved. The effect of these
NOT gates is to reverse the coupling evolution �15,16� for a
period of length �2, so that it appears that the coupling has
evolved only for a time �2=�0−2�2. Alternatively �and
equivalently� the situation can be described as if the coupling
had evolved for the whole time �0 but with a reduced cou-
pling strength J02� = ��2 /�0�J02. In the same way the coupling
between qubits 0 and 3 has been rescaled by a factor of
�3 /�0, with �3=�0−2�3. The effective coupling strengths be-
tween other pairs of qubits can be worked out in a similar
way. Clearly J12� = ��2 /�0�J12 and J13� = ��3 /�0�J13, by analogy
with the couplings to qubit 0. The last problem is to calculate
the net evolution for the coupling between qubits 2 and 3,
where NOT gates are applied to both qubits, and a little
thought shows that the scaling factor is �23/�0 with a net
evolution time �23=�0−2��3−�2�.

The standard approach to date has been to use refocusing
networks to sculpt the underlying Ising Hamiltonian into
some ideal form, usually retaining only a small number of
coupling interactions. In particular, efficient refocusing
schemes are known �15,16� to retain any one coupling in an
extended network. There are, however, some limitations on
the average Hamiltonians that can be achieved. For example,
consider a system of three coupled spins, with a Hamiltonian
containing three coupling terms: it is possible to keep any
one of these terms while refocusing the other two, but it is
not possible to keep two terms while refocusing the third. If
such an average Hamiltonian is desired it is usually neces-
sary to implement the two Hamiltonians sequentially. De-
signing evolution networks in large systems can become a
complex business.

Our compilation algorithm provides an alternative ap-
proach for designing pulse sequences on Ising quantum com-
puters with large numbers of spins. The aim is not to gener-
ate the most efficient pulse sequence, but rather to develop a

simple algorithm that can be easily implemented in large
spin systems. The key observation is that it is not, in fact,
necessary to implement the exact Ising coupling evolutions
shown in the network. In particular, it is not always neces-
sary to refocus all the undesired Ising couplings in a spin
system. Instead the coupling evolution can simply be
tracked, and their values corrected at some appropriate time.
This is because single-qubit gates applied to one qubit com-
mute with couplings that do not involve this qubit. Thus, it is
only necessary to achieve the “correct” evolution for those
qubits to which single-qubit gates are applied. Furthermore,
since single-qubit gates applied to different qubits all com-
mute with one another, two or more “simultaneous” single-
qubit gates can in fact be applied sequentially in any order.

The first stage is to redraw the network so that single-
qubit gates are applied sequentially, rather than in parallel.
Simultaneous gates can be applied in any order; the simplest
approach is to apply them from top to bottom. We refer to the
qubit to which a single-qubit gate is applied as the target
qubit, and any other qubits as control qubits. It is not neces-
sary that evolution periods generate any particular coupling
evolution between the control qubits, but these additional
evolutions must be tracked through the circuit.

Couplings are tracked by recording the net evolution
angle �modulo 360°� generated for each of the n�n−1� /2
couplings at all significant points in the network, where the
change in the evolution angle is given by

�	ij = �Jij�� , �2�

and Jij� is the average coupling strength between qubits i and
j during a time period �. It is essential that all the coupling
angles involving a target qubit have the correct value as de-
fined by the gate network before applying a single-qubit gate
to the target. This is easily achieved by applying NOT gates to
the control spins, thereby changing the average coupling
strengths, so that all the couplings reach the desired angle in
the same evolution time. When the single-qubit gate is ap-
plied to the target qubit, all coupling angles to this qubit are
reset to zero. Couplings between control qubits are simply
tracked throughout the process.

This procedure can be clarified by considering a concrete
example, and here we consider the implementation of the
quantum circuit shown in Fig. 2 on the Ising quantum com-
puter depicted in Fig. 3. The circuit is based on the algorith-
mic benchmark of Knill et al. �14�, but the coupling
strengths shown in the Ising computer were chosen at ran-
dom. The key values in an Ising computer are the coupling
angles achieved between pairs of qubits, and these will be
considered at the points marked with lower case letters in
Fig. 2.

The first part of the circuit is simple: the system begins
with all coupling angles set to zero, and the first single-qubit
gate has no effect, so that at point �a�, all coupling angles are
0°. By point �b�, it is necessary that the coupling angle be-
tween qubits 0 and 1 be increased to 90°, while all other
coupling angles to qubit 1 �which is the target of the next
single-qubit gate� remain at zero; all further couplings can
simply be tracked. This can be achieved by evolving under
the coupling Hamiltonian for a time 1/2J01=11 905 
s with

FIG. 1. An example of rescaling couplings between four qubits.
The solid blocks indicate NOT gates �180° pulses�.
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NOT gates applied to qubits 2 and 3 at the middle and end of
the coupling periods, acting to completely suppress the cou-
plings from these qubits to qubit 1. The couplings from the
other control qubits �2 and 3� to qubit 0 are also suppressed,
but the coupling between qubits 2 and 3 will evolve for the
whole coupling time, and thus achieve a coupling angle of
144°. The next step, at point �c�, is to apply a single-qubit
gate to qubit 1; at this point all coupling angles involving this
qubit are reset to zero, while leaving all other angles un-
changed. Thus, the three coupling angles involving only con-
trol qubits still have the values 	02=0°, 	03=0°, and 	23
=144°. These �and further� evolutions are summarized in
Table I.

The first interesting point in the algorithm occurs at �d�.
At this stage, the algorithm requires the coupling angles to
qubit 2 to be set correctly; that is, 	02=0°, 	12=90°, and
	23=0°. Allowing for the current values of the coupling
angles, and recalling that coupling angles are defined modulo
360°, the additional evolution required is �02=0°, �12=90°,
and �23=216°. Considering these evolutions individually, the
coupling times required are �02=0 
s, �12=8621 
s, and
�23=17910 
s. Clearly the last coupling requires the longest
time, so that all the desired coupling angles can be achieved
by evolving under the full coupling Hamiltonian for
8955 
s, with two couplings, J02 and J12, being �respec-
tively� totally and partially refocused. Thus, NOT gates
should be applied to qubit 0 at the middle and end of the
coupling period, while the first NOT gate is applied to qubit 1

after a time �12+ ��23−�12� /2=13266 
s, with the second
NOT gate applied at the end. The remaining coupling angles
can then be calculated by noting that J03 is completely refo-
cused, J13 evolves for the same time as J12, giving an angle
of 76°, and J01 evolves for a net time of 9288 
s, giving an
additional coupling angle of 70°.

At point �e�, a single-qubit gate is applied to qubit 2, so
that all coupling angles involving this qubit are reset to zero.
The couplings at point �f� are then set using the same method
as was used for �d�. This time the limit coupling is J13 which
requires a time of �13=32200 
s to acquire an additional
coupling angle of �13=284°. The coupling J03 is completely
refocused by applying NOT gates to qubit 0 at the middle and
end of this coupling period, while the coupling J23 must be
partially refocused by applying the first NOT gate to qubit 2
after a time of 19832 
s. The remaining couplings are
tracked as usual, and their values are shown in Table I. The
complete sequence of refocusing pulses and single-qubit
gates is shown in Fig. 4. Note that the evolution times de-
picted are those calculated above, which include the effects
of rounding errors; exact calculations would give slightly
different times.

As discussed above, this algorithm is not necessarily in-
tended to produce the most efficient pulse sequence, but it is
still necessary to check that the simplicity of implementation
is not achieved at an excessive cost either in pulse sequence
length or in the number of pulses required. Clearly the com-

FIG. 2. An example quantum circuit, based on the algorithmic
benchmark of Knill et al. �14�. White squares indicate 90y

° pulses
�pseudo-Hadamard gates�, while black circles connected by control
lines are Ising coupling gates with a target angle of 90° between the
coupled qubits.

FIG. 3. An example Ising quantum computer, described by in-
dicating the strengths of the Ising couplings �measured in hertz�
between all pairs of qubits; these couplings were chosen arbitrarily.

TABLE I. Coupling evolution angles �measured in degrees, and
rounded to the nearest degree� between every pair of qubits at vari-
ous points in the initial part of the circuit shown in Fig. 2. Coupling
angles indicated in boldface are coupling angles to target qubits that
must be set correctly; other angles are simply being tracked as part
of the algorithm.

Angle a b c d e f g

0,1 0 90 0 70 70 70 70

0,2 0 0 0 0 0 276 276

0,3 0 0 0 0 0 0 0

1,2 0 0 0 90 0 78 78

1,3 0 0 0 76 76 0 0

2,3 0 144 144 0 0 90 0

FIG. 4. Sequence of refocusing pulses used to implement the
circuit shown in Fig. 2 on the Ising quantum computer shown in
Fig. 3. White squares indicate 90y

° pulses as before, while white
rectangles indicate NOT gates. These single-qubit gates are assumed
to be instantaneous. The evolution periods are drawn approximately
to scale, and the lengths of some periods �measured in microsec-
onds� are indicated.
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plexity of a pulse sequence will depend on details of the
circuit being implemented and the range of coupling
strengths in the experimental system. It is, however, simple
to consider some limiting situations.

Any portion of a circuit in a system of n qubits can be
classified according to the number p of target qubits in-
volved, which obviously lies between the extreme values of
1 and n. Using our algorithm, this section will be divided
into at most p separate sections, each of which will require
2�n−2� refocusing pulses; in total, the implementation will
require less than 2np pulses. Using the Hadamard matrix
approach will require between 1 and p refocusing periods
�depending on exactly which couplings have to be con-
trolled�, each of which will contain approximately n2 refo-
cusing pulses �16�. The relative efficiency of our algorithm
against the Hadamard algorithm will depend on the number
of refocusing periods required by the latter. In a system such
as that shown in Fig. 3, where all the coupling strengths are
different, it will not be possible in general to combine differ-
ent evolution periods, and so the Hadamard approach will
require about pn2 pulses. Thus, our algorithm will normally
use fewer pulses than previous methods. The time required to
implement a set of gates is another important consideration,
but once again will vary greatly from network to network. It
is easy to see that pulse sequences produced by our algo-
rithm will in the worst case take p times longer than those
produced by current methods, although it seems likely that
the relative performance will be better than this in real situ-
ations.

It is possible to imagine a large number of ways in which
this algorithm could be extended, resulting in simpler or
shorter pulse sequences. Here we confine ourselves to some
particularly simple extensions, all of which can be easily
implemented. Firstly, we note that it is not in fact necessary
to place our pairs of NOT gates at the end of the coupling
period, as shown in Fig. 1. Instead, the pair of refocusing
gates can be placed at any point within the coupling period
without affecting the net coupling to the target spin �the po-
sition will, of course, affect the net couplings to other control
spins�. In particular, we can choose to place the first NOT gate
at the beginning of a coupling period, and if this period is
preceded by one with a NOT gate at the end then two of the
four NOT gates can be canceled.

Secondly, as described so far, it has been necessary to set
coupling evolution angles to a target spin to the correct value
modulo 360°; thus qubit pairs can, in principle, be required
to undergo evolutions of up to 360° to achieve the desired

angle. This is, however, excessive. We note that

exp�− i�2Iz
jIz

k� = exp�− i��Iz
j + Iz

k�� �3�

so that a 180° coupling evolution on a pair of qubits is
equivalent to a 180° frame rotation applied to both qubits.
Thus, it is never necessary for qubits to undergo an evolution
through more than 180°, as any additional evolution can be
achieved through frame rotations.

Thirdly, we note that, in addition to partly refocusing cou-
pling periods, NOT gates can also be used to negate the sign
of an Ising coupling. If a pair of NOT gates is applied to a
control qubit at the beginning and end of an evolution period,
then the evolution of the Ising coupling will be reversed
throughout this period. If NOT gates are already applied to
the qubit during this period to partially refocus a coupling,
then two of the four NOT gates can be canceled, so that there
will be no overall increase in the number of gates. Combined
with the previous observation, we note that any desired evo-
lution can be achieved using a coupling evolution in the
range ±90°. This allows the implementation time to be re-
duced by a factor of around four, at the cost of a small
increase in the number of NOT gates.

Finally, we note that it is possible to combine the tradi-
tional approach and our algorithm to produce hybrid
schemes. For example, it might be useful to compile portions
of a network independently of any larger computation, in
effect treating them as subroutines. To do this, it is necessary
to ensure that all the couplings in the system have correct
evolution angles at the end of the subroutine, not just those
involving the final target qubit. This can be achieved by end-
ing the network with a conventional refocusing period. If,
however, the whole network is compiled together, then this
final refocusing period will normally not be required. Com-
putations usually end with measurements on some of the
qubits in the computational basis, and these eigenstates com-
mute with the Ising Hamiltonian. The results obtained from
measurements of these qubits are, therefore, independent of
their coupling angles, and it is not necessary to refocus cou-
plings to them.
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