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Abstract
A laser-cooled ion plasma in a Penning trap provides a rigorous realization of
a strongly coupled one-component plasma. After a brief review of the crystal
structures that have been observed in Penning traps, we summarize two recent
experiments. First we describe careful measurements of the stability of the
plasma rotation which is controlled by a rotating electric field. We then discuss
the excitation of plasma wakes produced by radiation pressure from a laser.

1. Crystalline structures in one-component plasmas

A one-component plasma (OCP) consists of a single species of charge immersed in a
neutralizing background. The thermodynamic state of an OCP is determined by a single
dimensionless parameter � known as the coupling of the plasma, where � is defined by

� ≡ 1

4πεo

e2

aW SkB T
. (1)

Here, ε0 is the permittivity of the vacuum, e is the charge of an ion, kB is Boltzmann’s constant, T
is the temperature, and aW S is the Wigner–Seitz radius, defined by 4π(aW S)

3/3 = 1/n0, where
n0 is the ion density. � is simply a measure of the potential energy between nearest-neighbour
ions divided by the ion thermal energy. Theoretical calculations for an infinite (or bulk) OCP
predict that a liquid–solid phase transition to a body-centred cubic (bcc) lattice should take
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place at � ∼ 172 [1, 2]. OCPs are thought to exist in dense astrophysical objects [3]. An
example is the outer crust of a neutron star, where the OCP consists of iron nuclei that move
about in a degenerate background of electrons with an extremely high Fermi energy. The
coupling in this system is thought to be in the range of 10–103.

Because the thermodynamic state of an OCP depends only on the dimensionless parameter
�, OCPs of low density can exist, but only at low temperatures. Trapped ions provide a good,
low-temperature realization of a strongly coupled OCP in the laboratory. Typical densities
>108 cm−3 and temperatures �5 mK result in couplings � � 300. In ion traps the trapping
fields provide the neutralizing background. In fact, Malmberg and O’Neil [4] have shown this
equivalence to be rigorously true in the Penning trap. Specifically, in thermal equilibrium the
static thermodynamic properties of a laser-cooled ion plasma in a Penning trap are identical to
those of a strongly coupled OCP of the same size (and shape). Because Penning traps use static
fields for confinement, laser-cooling large numbers of ions (>106) is routine. Laser-cooled
ions in a Penning trap therefore provide an exact laboratory realization of a strongly coupled
OCP that may be large enough to exhibit bulk properties.

How many ions are required to form a bcc lattice, the predicted structure for an infinite
OCP? This is a complicated question that depends on the shape and temperature of the plasma.
Consider, for the moment, spherically shaped plasmas. (In a Penning trap both the trap voltage
as well as the plasma rotation frequency can be used to set the shape of the plasma. See the next
two sections.) For small spherical plasmas consisting of a few thousand ions, concentric shell
structures are observed in both experiments [5] and simulations [6, 7]. The shells are sharp
near the plasma boundary and consist of a two-dimensional hexagonal lattice that is distorted
due to the conformation of the lattice to a spherical surface. Recent calculations by Totsuji et al
[8] indicate that a bcc lattice appears to be the zero-temperature minimum-energy structure
for a spherical OCP with N � 104, where N is the number of trapped ions. Experimentally,
Bragg scattering [9, 10] as well as imaging [11] of the ion fluorescence have been used, and
bcc lattices exclusively observed in approximately spherical plasmas with N � 2 × 105. The
preferred structures with 104 < N < 2 × 105 have not been experimentally investigated in a
systematic way. However, we have observed other structures (such as fcc and hcp) in addition
to bcc in this range. The observation of lattice types other than bcc in this number range may be
due to finite temperature or perhaps some unrecognized perturbation. It is interesting to note
that bcc lattices have been observed in Penning traps, but not rf (or Paul) traps. For example,
a careful investigation of a spherically shaped, laser-cooled plasma of 40 000 40Ca+ ions was
unable to observe any crystalline structure in the plasma interior [12]. In general, laser-cooling
large numbers of ions in an rf trap requires more care than in the Penning trap.

In addition to spherically shaped plasmas, we have also studied the crystal structures
formed in planar plasmas in a Penning trap [13]. Here the observed structure depends
sensitively on the thickness and density of the plasma. For example, if the number of ions
is not too great (� a few thousand), the plasma rotation frequency can be lowered to where
the ions form a single plane, perpendicular to the rotation (and magnetic field) axis. In this
case a two-dimensional hexagonal lattice is observed. As the plasma rotation frequency is
increased, the ions are compressed radially. At some point it is energetically favourable for
the ions to form two planes rather than one. When this occurs we observe two rhombic planes.
With further increases in the plasma rotation frequency the rhombic planes undergo a structural
phase transition to hexagonal planes. Eventually the system forms three rhombic planes and the
pattern repeats. For �10 planes the experimentally observed lattice types and structural phase
transitions agree well with theoretical calculations [13–15] for the minimum-energy structures
of a zero-temperature OCP that is infinite in two dimensions and harmonically confined in the
third dimension.
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2. Stability of the plasma rotation

Recently there has been a great deal of interest in using a rotating electric field perturbation to
control the global E × B rotation of plasmas in Penning traps [16–18]. For crystallized
ion plasmas, phased-locked control of the plasma rotation has been demonstrated [18].
This has important implications for atomic clocks [19] and for quantum computation with
trapped ions [20]. In this section we discuss the limits to phase-locked control due to the
application of a small torque produced by the radiation pressure of a weak laser beam.
On long timescales we observe a small constant creep of the crystal orientation relative
to the frame of the rotating electric perturbation. On short timescales the creep occurs
in sudden angular jumps or ‘slips’ of the crystal orientation spaced by intervals when the
crystal orientation is phase-locked or ‘stuck’ relative to the rotating perturbation. Creep and
stick–slip behaviour similar to that observed here is found in many different and diverse
systems: familiar examples include earthquakes [21] and studies of friction between two
surfaces [22, 23]. Many of these systems, including the study presented here, exhibit a power-
law distribution of the slip amplitudes, which may be indicative of an underlying critical
point [24, 25].

In this work [26] we store ∼15 000 9Be+ ions in the NIST cylindrical Penning trap.
Figure 1(a) shows the experimental setup [13, 18]. The 9Be+ ions were confined radially
by a uniform magnetic field B = 4.465 T (cyclotron frequency �c/2π = 7.608 MHz) in
the ẑ direction and axially by an electrostatic potential of V0 = 500 V. The trap potential is
quadratic near the trap centre and given by mω2

z (z
2 − r2/2)/(2e), where the axial frequency

ωz/2π = 565 kHz for 9Be+. Here r and z denote the cylindrical radius and axial coordinate. In
a quadratic trap, cold ion plasmas are spheroidal in shape (i.e. an ellipse of revolution) described
by an aspect ratio α ≡ Zo/Ro, where 2Zo is the axial extent of the cloud at r = 0 and the
equation Z(r) = ±α

√
R2

o − r2 describes the boundary of the plasma [27, 28]. Due to the axial
magnetic field and the radial components of the ion space charge and trap electric fields, the
ion crystal rotates at a frequency ωr about the trap symmetry (ẑ) axis. At low temperatures the
ion density is determined by ωr according to no = 2εomωr (�c − ωr )/e2. In addition to 9Be+

ions, ions of greater mass (‘heavy ions’) such as BeH+ and BeOH+ are created by reactions
with 9Be+ ions and background neutral molecules. For the work discussed here, typically 20–
50% of the plasma consisted of heavy impurity ions. These ions are sympathetically cooled
to temperatures similar to that of the 9Be+ ions and, due to the rotation, centrifugally separate
to larger radii, where they crystallize.

We applied an electric field perturbation rotating about the ẑ axis at a frequency ωrp to
control ωr [18]. The rotating perturbation applies a torque on the radial boundary of the
plasma by creating a small-amplitude travelling wave. (In our experiment the travelling wave
is excited on the non-fluorescing heavy ions.) The torque due to this wave is then transferred
to the plasma’s interior through the strong inter-particle forces, which act to bring the plasma
to the same rotation frequency as ωrp [27]. We observe similar stick–slip motion with both
dipolar and quadrupolar rotating fields. However, most measurements, including those we
report here, were taken with a dipolar rotating field. The radial binding force of the trap is due
to the Lorentz force produced by the plasma’s rotation through the magnetic field. Therefore,
changing ωr changes the radial binding force of the trap and provides a sensitive way to
adjust the plasma shape (or aspect ratio) and structural phase of the plasma. In this work,
ωr ≈ ωrp = 2π × 22.8 kHz, which produced a disc-shaped plasma consisting of five axial
planes and a bcc-like crystal structure in the plasma’s centre [13]. Because ωr � �c, the ion
motion in a direction perpendicular to the magnetic field is determined principally by E × B

guiding-centre dynamics [7].
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Figure 1. (a) Schematic illustration of the cylindrical Penning trap and the top-view imaging
system. The side-view imaging system is not shown. (b) Strobed top-view image of a five-axial-
plane 9Be+ ion crystal with a bcc structure, similar to those used in this study. (c) Side-view image
(unstrobed) of the same ion crystal. The diameter (2rBe) of the 9Be+ ions is 495 µm. Ions of
greater mass are located at r > rBe but do not fluoresce in the laser beam. The rotation axis is
indicated in (b) and (c).

The main cooling-laser beam (λ = 313 nm) was directed along the z axis. This beam was
focused to a ∼0.5 mm waist at the ion crystal and had a power of ∼50 µW. A second cooling
beam (⊥ beam in figure 1(a)), derived from the same laser, was directed perpendicularly to ẑ
and had a ∼70 µm waist and ∼1 µW power. Both the perpendicular and parallel cooling lasers
were required to form a well defined crystal in the disc-shaped (or planar) plasmas discussed
here. The ⊥ beam is usually directed through the nominal radial centre (r = 0) of the crystal in
order to minimize its applied torque while providing a low Doppler-cooling temperature [29].
In this experiment, though, we offset the ⊥-beam position slightly (5–30 µm) from the plasma
centre to produce a torque on the 9Be+ ions in the same direction as the plasma rotation [30].

A series of lenses formed side- and top-view images of the ion fluorescence, with viewing
directions respectively perpendicular and parallel to the magnetic field, on either an intensified
charge-coupled-device (CCD) camera, or on an imaging photomultiplier tube. The resolution
of the optical systems was ∼4 µm, while typical interparticle spacings were ∼15 µm. By
detecting the ions’ fluorescence synchronously with the rotating perturbation drive, images of
the individual ions which make up the Coulomb crystals were obtained. Such an image is
shown in figure 1(b) where the intensified CCD camera was used in the top-view position and
strobed synchronously with the rotating perturbation drive. The image was accumulated over
a 40 s period. The ion positions are well localized in the plasma centre; however, at larger
radii they are blurred.

To investigate the blurring we used the imaging photomultiplier tube in the top-view
position to record the positions and detection times of the fluorescence photons. Runs consisted
of 125 ms intervals of data recorded each second over long periods of time (up to 5000 s).
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Figure 2. Crystal orientation θcry in the frame of the rotating perturbation for two data runs with
different ⊥-beam torques. The torque is greater in run 2. The lines are from a linear regression fit.
The inset shows a magnified plot of the first 60 s of data.

Images similar to those in figure 1(b) were created for each 125 ms interval by constructing
two-dimensional histograms of the ion fluorescence in the frame of the rotating perturbation.
The orientation θcry of the central crystallized region in the rotating frame was determined
(modulo π due to the bcc crystal’s bilateral symmetry) with an uncertainty of ∼0.002π rad.

In figure 2 we plot θcry(t) for two runs that differ mainly in the amount of ⊥-beam
torque. Over long timescales the ⊥-beam torque produces a slightly faster rotation (a rotational
‘creep’) of the 9Be+ crystal relative to the rotating perturbation. For example, in run 2,
	ω ≡ ωr −ωrp ≈ 2π × 8 mHz. Over shorter timescales, as shown in the figure 2 inset, much
of this crystal rotation takes place with sudden jumps in θcry , ‘slips’, whose timescale is too fast
to be captured by the top-view diagnostic. Let 	θcry denote the angular displacement between
two successive measurements of θcry . The statistics of 	θcry consists of two components:

(1) a normal distribution (from measurement error) centred about zero with a width of
∼0.002π , and

(2) a tail reaching out to large positive values that contains the infrequent large slips.

Due to the known sign of the ⊥-beam torque and the π ambiguity mentioned above, we choose
	θcry to lie in the range [0, π). To separate statistically significant slips from measurement
error we further require 0.007π � 	θcry � 0.97π . We find that statistically significant slips
account for greater than 90% of the measured change in θcry .

The ⊥-beam torque is applied to all the 9Be+ ions in the radial interior of the crystal. The
rotating perturbation,however, applies its torque on the outer radial boundary of the heavy ions.
We therefore believe the stress due to the competition between these torques is greatest in the
region of the heavy ions and anticipate that the slips of figure 2 are due to ion motion between
the radial boundary of the 9Be+ ions, rBe, and the overall radial boundary of the plasma. This
is supported by the top-view images, which show most slips occurring as approximate rigid
rotations of the 9Be+ ions, and also by simulation work [26]. Because the slips occur at a
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Figure 3. Distribution f (Aslip ), where f (Aslip ) dAslip is the frequency of slips between Aslip and
Aslip + dAslip , for the two data runs shown in figure 2. The curves are fits to a power law with a
cutoff as described in the text. The inset shows the measured power-law exponent γ versus applied
torque, as parametrized by the creep rate, for all of the data runs.

radius greater than rBe, and rBe varied from run to run, we characterize a slip amplitude Aslip

by the linear distance 	θcryrBe.
Figure 3 shows the distribution f (Aslip) of slips for the two data runs shown in figure 2.

The data were fitted to a power law [26], modified by the indistinguishability of slips that differ
by nπrBe where n is an integer. In the figure 3 inset we plot the measured power-law exponent
γ as a function of the creep rate 	ωrBe for 10 data runs with the same rotating perturbation
strength but different ⊥-beam torques. We find that γ decreases as the creep rate, a measure
of the applied ⊥-beam torque, increases. Decreases in the stick–slip exponent with increased
drive have been observed in many systems [23, 31, 32].

Most experiments exhibiting stick–slip behaviour are performed with ‘constant-velocity
driving’ where the force is applied through an effective elastic coupling [23]. The driving force
of the system is something like F(t) = K (V t − x(t)), where ‘x’ is the ‘position’ of an element
in the system (for example, the position of a bead or slider block in a chain), K is the effective
spring constant coupling the applied force to each element in the system, and V is the constant
average velocity that is imposed on the system. Stick–slip motion occurs for small V and K ,
and a critical point exists in the limit V → 0 and K → 0 [25, 31]. If a constant-velocity driving
system gets stuck, it will eventually slip again because the driving force increases linearly until
slip occurs. However, our experiment is performed under conditions more similar to ‘constant-
force driving’ since the ⊥-beam radiation-pressure force is constant in time and applied directly
to the 9Be+ ions. Models of constant-force driving show a depinning transition at a critical
force Fc and movement with constant average velocity proportional to (F − Fc)

β for F > Fc

and critical exponent β [31].
Inspection of figure 2 shows that the time intervals between successive slips (the

waiting periods) are typically many seconds. An analysis of the waiting periods shows an
approximately Gaussian distribution with mean waiting periods ranging from 4 s for the
highest ⊥-beam torques to 12 s for the lowest ⊥-beam torques. These waiting periods are
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long compared to any known dynamical timescales due to internal modes of the system. In
constant-force driving, if the system gets stuck for such a long period, it should permanently
stick, which is not what we observe. One possibility is that the slips could be excited by a
perturbation. By deliberately modulating the amplitude of the cooling and torquing lasers we
have established that the amplitude noise present in these beams is not high enough to trigger
slips. While determination of the exact cause of the slips will require further experimental
work, molecular-dynamics simulations [26] indicate that the slips could be triggered by a
rearrangement of a small number of heavy ions in the vicinity of a lattice defect. Possible
causes of ion rearrangement include thermal fluctuations and collisions with neutral (room-
temperature) background atoms. Once started, a slip eventually stops because the driving force
of the ⊥-beam is not sufficient to sustain continuous motion.

Minimizing the occurrence of the slips is important for some applications [19, 20].
Even without understanding their underlying cause, the slips can be minimized by minimizing
the ⊥-beam torque, either through active control of the ⊥-beam position or by appropriate
tailoring of the ⊥-beam profile7. Increasing the strength of the rotating perturbation should
also decrease the frequency of slips due to small ion rearrangements. Two runs taken with
half the rotating perturbation strength of the data set analysed here showed an increase in the
number of slips and rotational creep of the ion crystal.

3. Plasma wakes

Laser-cooled, spheroidal plasmas in Penning traps are a pedagogically interesting system for
the study of plasma modes. This is because the modes can be calculated exactly [33, 34] and
precise measurements of the mode eigenfrequencies [35] and eigenfunctions [36] are possible.
In addition, mode studies have provided new experimental tools for probing and controlling
plasmas of cold charged particles [37, 38]. Previous mode studies utilized electric fields acting
on the entire plasma to excite global modes. In contrast, here [39] we excite localized waves
by ‘pushing’ on a cold ion plasma with the radiation pressure of a focused laser beam. In this
experiment, the ions rotate relative to the push beam, and the waves interfere ‘downstream’ to
produce a stationary wake pattern, analogous to the wake behind a ship [40, 41]. The technique
offers a new way to locally probe and diagnose cold ion plasmas and demonstrates a method
for studying waves that were not accessible with previous techniques. In addition, wakes in
Coulomb crystals are also a subject of current interest in their own right [42, 43], due primarily
to recent experiments in which Mach cones and wakes were generated in two-dimensional
(2D) dusty plasma crystals [44, 45].

The experimental setup is very similar to that described in the previous section. In the
plasma wake experiment, the trapping potential was increased to Vo = 1000 V, leading to
an axial frequency ωz/2π = 800 kHz. About 15 000–45 000 laser-cooled 9Be+ ions were
confined near the trap centre at a density of n0 ∼ 2 ×108 cm−3. We experimentally controlled
ωr with a dipolar rotating field perturbation [18, 46] as described in section 2. For the data
presented here, the rotation frequency ωr/2π ranges from 42.5 to 128 kHz with a respective
range in aspect ratio of α = 0.005 (corresponding to a two-dimensional single-plane disc of
ions) to α = 1.0 (corresponding to a thee-dimensional spherical ball of ions). For example,
in figures 4(b) and (c) top- and side-view images are shown for a cloud with α = 0.042 and
ωr/2π = 45 kHz (for both images the radial extent of the cloud Ro ≈ 860 µm is beyond the
camera’s field of view).

7 The ⊥-beam torque can be reduced with a beam that has a large waist and frequency dispersion across the waist
that matches the ion Doppler shifts due to the plasma rotation.



506 J J Bollinger et al

top-view
camera

Push 
Beam

side-view
camera

Axial
cooling beam

-Vo

z

B

(a)
(b)

(c)

100 µm

100 µm

r

Figure 4. (a) Schematic illustration of the setup used to study wakes. (b) Top-view image of the
fluorescence I (r, θ) from an α = 0.042 Be+ ion crystal. The white spot is due to the push beam
and the diagonal white line is due to a perpendicular cooling beam (not shown in the schematic).
(c) Side-view image of an α = 0.042 crystal.

As discussed in the previous section, the main (axial) cooling beam has a 0.5 mm waist
and is directed up along the trap axis; in addition, there is also a cooling beam directed
perpendicularly to the trap axis (not shown in figure 4(a)). The push beam used to excite the
waves is split off from the same 313 nm laser beam used for cooling, and is focused down to
a relatively narrow waist of w ≈ 50 µm. As shown in figure 4(a), this push beam is directed
antiparallel to the axial cooling beam and is offset from the rotation axis by an amount Rpb,
which we vary from 155 to 450 µm.

The ion fluorescence due to the axial cooling beam provides the primary diagnostic. Two
sets of lenses form top- and side-view images of this fluorescence on either a CCD camera or an
imaging photomultiplier tube. The wakes studied here are stationary in the lab frame, allowing
us to simply collect the fluorescence continuously for about 30–120 s to generate an image.
These images provide information about coherent ion motion since the relative intensity of
an ion’s fluorescence is highly sensitive to its axial velocity. In essence, we have a Doppler-
velocimetry diagnostic: ions moving towards the red-detuned axial cooling beam (here defined
to have velocity vz > 0) encounter light that is Doppler-shifted closer to the resonance peak
and hence fluoresce more strongly. Conversely, ions moving away from the beam (vz < 0)
fluoresce more weakly. For random thermal motion the variations in fluorescence average out;
however, for coherent ion motion these variations enable the identification and measurement
of waves and modes [36, 47].

Figure 5(a) is an example of Doppler velocimetry for a laser-induced wake. Here we use a
greyscale to show the change in fluorescence due to the laser push 	I (r, θ) ≡ I (r, θ)− Io(r, θ),
where Io(r, θ) is a ‘background’ image taken without the push beam and I (r, θ) is taken with
the push beam (in this case figure 4(b)). The white spot in the left side of the image is due to the
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Figure 5. (a) Differential top-view image 	I (r, θ) of a laser-induced wake in a clockwise rotating
Be+ ion crystal. (b) Average fractional change in fluorescence 	 Ī (x) for the annular region between
the white circles in (a). Here, x = 0 is defined to be at the centre of the push beam. The solid curve
is a fit to the data using a damped sinusoid (equation (3)).

additional scattered light from the push beam located at a distance Rpb ≈ 320 µm, whereas the
downstream alternating dark and light arcs are variations in fluorescence due to coherent ion
motion. We estimate that the change in fluorescence for the first peak of the wake corresponds
to a change in velocity8 of δvz ∼ 1 m s−1. We further estimate that this δvz corresponds to a
maximum displacement9 of δz ∼ 0.3 µm, which is much less than the interparticle spacing of
∼10 µm.

The laser-induced wakes observed here are analogous to the wake behind a ship moving
in deep water [40, 41]. Due to the radiation pressure, ions receive a downward ‘kick’ as they
rotate through the push beam, similar to the kick water experiences as a moving ship passes
above. In both situations, the kick or push excites a large spectrum of waves with different wave
numbers k and frequency ω, which travel in all possible directions. Wakes that are stationary
in the frame of the source occur due to the constructive interference of waves that satisfy a
stationary phase condition [40, 41]. The pattern of the wake depends upon the details of the
appropriate dispersion relationship ω(k). The analysis of a wake is simplified directly behind
the source along the direction of motion, where the stationary phase condition is satisfied by
transverse10 waves with a phase velocity ω/k that matches the relative velocity v of the source.

We thus obtain dispersion relationship data by analysing the wakes in an annular region
directly behind the push beam to obtain a wavenumber k = 2π/λ, and then use the relationship
ω/k = ωr Rpb to obtain a frequency ω. For example,figure 5(b) is a plot of the radially averaged
fractional change in intensity

	 Ī (x) ≡
∫

r dr 	I (r, x)
1

2π Rpb

∫
dx

∫
r dr Io(r, x)

, (2)

where the radial integrals are performed over the annular region between the circles in
8 Here we use the slope of the resonant transition curve at a detuning of 10 MHz.
9 Here we use δz = δvz/ω with ω/(2π) = 490 kHz, where the method for obtaining this value of ω is described
later in the text.
10 In this context ‘transverse’ means that the wavefronts are approximately perpendicular to the direction of motion,
in contrast to ‘lateral’ where the wavefronts are approximately parallel to the direction of motion.
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figure 5(a), and x ≡ Rpbθ is the rotational distance from the centre of the push beam. As
shown by the solid curve in figure 5(b), the oscillating wake is well fit by an exponentially
damped sinusoid of the form

	 Ī (x) = Co + C1 sin(C2x + C3)e−C4(x/ωr Rpb). (3)

Here, the C are fit coefficients where the wavenumber is k ≡ C2 and the damping rate is
γ ≡ C4. (In the current experiments the damping is due to the axial cooling beam.) From the
fit in figure 5(b) we get λ = 2π/k = 185 µm, which in turn gives ω/2π = 490 kHz using the
calculated relative velocity of v = ωr Rpb = 90 m s−1.

Dispersion relationship data obtained in this manner are shown in figure 6, where the
different symbols correspond to different aspect ratios. Here the wave frequency ω is scaled
by the plasma frequency ωp = [2ωr (�c − ωr )]1/2 [27] (where �c/2π = 7.6 MHz is the bare
cyclotron frequency); and the wavenumber k is multiplied by half the cloud thickness at the

radial position of the push beam Z p ≡ α

√
R2

o − R2
pb. For a single aspect ratio, different wake

patterns were generated by changing Rpb, which effectively changed the relative velocity
v of the push beam. Also shown in figure 6 is a theoretical dispersion curve. This is the
dispersion curve for drum-head-like oscillations in an infinite, planar slab (i.e. α = 0) of a
cold, magnetized ion plasma [39]. The theoretical dispersion relationship agrees very well with
the data. While the agreement with this slab model at low aspect ratio is better, as expected,
the reasonably good agreement at higher aspect ratio (α ∼ 1) is somewhat surprising. This
latter agreement indicates that the waves are excited locally and depend essentially upon the
local plasma thickness Z p with little dependence on the global shape of the plasma.

A theoretical description of the complete wake pattern must account for the nonzero size
of the laser beam and the rotation of the plasma, and consider the complete set of oscillations
with particle motion perpendicular to the plane of the slab (that is, not just the drum-head



Laser-cooled ion plasmas in Penning traps 509

(a) (b)

Figure 7. Scaled experimental image (a) of a wake for a plasma with α = 0.042 shown alongside
the corresponding theoretical calculation (b). The greyscale describes relative variations in the
axial velocity of the ions.

oscillations). This is discussed in more detail in [39]. In figure 7 an experimental image
	I (r, θ) is shown and compared with the corresponding theoretical calculation. As in figure 5,
we use a greyscale to represent the variations in axial velocity 〈δvz〉, and scale each image
by the value at the first peak of the wake. (In the experimental image, the extra fluorescence
due to direct scattering of the push beam gives rise to the large white spot.) The experimental
image in figure 7(a) is the same as that shown in figure 5(a), where the cloud is relatively
thin (α = 0.042) with w = 50 µm, Rpb = 320 µm, ωr/2π = 45 kHz, ωp/2π = 825 kHz
and Z p = 33.5 µm. The theoretical calculation shown in (b) used the above experimental
values with γ = 2.3 × 105 s−1, which was determined from the damped sinusoid fit shown in
figure 5(b). With no free parameters, the theoretical image is able to capture the qualitative
features of the experimental image very well. For example, both images are dominated by
arc-like transverse wakes; in addition, subtle features due to lateral wakes (see footnote 10),
such as the line that appears to split the transverse arcs, appear in both the theoretical and
experimental images.

The experiment described here demonstrates a method of exciting and studying a new
class of waves in cold ion plasmas with potentially interesting applications. For example, the
method can be used as a local probe of the plasma, providing information about such things as
the local plasma thickness. In addition, with a more focused push beam than that used here,
it may be possible to excite waves with wavelengths on the order of the interparticle spacing.
Furthermore, with a slightly different setup, it may be possible to excite particle motion parallel
to the plane of the slab (rather than perpendicular to it). For example, it would be interesting
to excite (as yet unobserved) torsional E × B shear modes [48]. The restoring force in these
modes is due only to the ion correlations and therefore shear modes are a sensitive probe of
the correlations. Shear modes are also the lowest-frequency modes of ion plasmas in Penning
traps. Because low-frequency modes can create difficulties in schemes which use trapped ions
for quantum information, it is important to know the frequencies and level of excitation of
these modes.

Acknowledgments

This research was supported by the US Office of Naval Research and the National Science
Foundation (DHED). We thank Rich Fox, Carol Tanner, and David Smith for their comments
on the manuscript.



510 J J Bollinger et al

References

[1] Ichimaru S, Iyetomi H and Tanaka S 1987 Phys. Rep. 149 91
[2] Dubin D H E 1990 Phys. Rev. A 42 4972
[3] Van Horn H M 1991 Science 252 384
[4] Malmberg J H and O’Neil T M 1977 Phys. Rev. Lett. 39 1333
[5] Gilbert S L, Bollinger J J and Wineland D J 1988 Phys. Rev. Lett. 60 2022
[6] Rahman A and Schiffer J P 1986 Phys. Rev. Lett. 57 1133
[7] Dubin D H E and O’Neil T M 1988 Phys. Rev. Lett. 60 511
[8] Totsuji H, Kishimoto T, Totsuji C and Tsuruta K 2002 Phys. Rev. Lett. 88 125002
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