

Which material properties / features determine the biological response to carbon nanotubes?

Robert Hurt Brown University, Providence Rhode Island

Presented at NIST March 1st, 2011

Examples from literature on carbon nanotube health risks

- producing asbestos-like pathology in mice [Poland et al.]
- promising biocompatible materials for drug deliverywith no toxic side effects [Dai and coworkers]
- showing only "false" toxicity through an adsorptive artifact in a common toxicity assay [Worle-Knirsch et al.]
- causing oxidative damage to mouse lung and heart tissue [Lie et al.]
- toxic only if not purified; copepods [Templeton et al.]; human lung cells [Krug et al.]
- only toxic if not functionalized [Sayes et al.]

The largest discrepancy is between biomedical studies and toxicological studies

Some Basics.....

Risk = Hazard x Exposure

"All things are toxic...." or "the dose makes the poison" [only by defining and limiting dose can something be regarded as non-toxic, in that situation]

Paracelsus: 1493-1541 "father of toxicology"

Toxics affects have been documented for ethanol, vitamin E, oxygen, water.....

Scientific papers on nano-toxicity will, by design, report and discuss toxic effects

Effect of SWNTs on Liver Cells

Simple Experiment

SWNTs + Cell culture medium

SWNT removal by centrifugal ultrafiltration

culture cells in "exposed" media

Viability of HepG2 liver cells

Nanotubes Inhibit Cell Proliferation by Hydrophobic Adsorption of Folic Acid

[Guo et al., Small, 4 (6) 721–727 2008]

[Worle-Knirsch et al., 2006]

CNT iron catalyzes reactive oxygen species (ROS) generation and inflammatory reactions

Studies on Fe effects in CNT biological response:

Kagan et al., 2006; Guo et al., Chemistry of Materials, 2007; Koyama et al. Carbon, 2009

Leaching, or ion-particle partitioning, Is a major theme in nanomaterial safety

Carbon nanotubes

Fe²⁺, Ni²⁺, Y³⁺, Co³⁺....

ZnO

Zn²⁺

A general experimental method to measure metal bioavailability or ion-nanoparticle partitioning

[Liu et al. Env. Sci. Tech., 44:6 2169–2175 2010]

Biological surface reactivity of CNTs

Dr. Xinyuan Liu

Glutathione (GSH): the key intracellular antioxidant:

Dissolved O₂ consumption b 10 Dissolved Oxygen (mg/L) 8 6 another 4mM GSH added 2 $\sim \sim \sim$ 0 500 1500 2000 2500 0 1000 3000 Time (min)

Annealing

Biological surface reactivity

The Effect of CNT Geometry

The Carbon Nanotube / Asbestos Analogy A. Kane and R. Hurt, Nature Nanotechnology, 2008

Prof. A. Kane Pathology and Laboratory Medicine

Asbestos-like mechanisms may arise for fibers with : d <~ 3 um (for inhalation into the deep lung) and L > 10-20 um (for impaired clearance by macrophages) and biopersistence (for long-term effects)

There is evidence that long length (> 10-20 um) impairs lung clearance and also causes cytotoxicity

Nanotechnology, 2008

Biopersistence / biodegradability

- Biopersistence is the single most important material property influencing toxicity of respirable fibers.
- Environmental persistence greatly increases the potential adverse impact of a toxicant
- Carbon does not dissolve, but can, in principle, be oxidized

Carboxylate-functionalized SWNTs <u>do</u> degrade during 90 days in phagolysosomal simulant fluid

Biodegradation of Single-Walled Carbon Nanotubes through Enzymatic Catalysis

Brett L. Allen,[†] Padmakar D. Kichambare,[†] Pingping Gou,[†] Irina I. Vlasova,[‡] Alexander A. Kapralov,[‡] Nagarjun Konduru,[‡] Valerian E. Kagan,[‡] and Alexander Star^{*,†}

Departments of Chemistry, and Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Only a few nanotube types show visible biodegradation [Liu et al., "Biodurability....", Carbon, 2010]

<u>Sample</u>	Functionalization	Observation
SWNTs	Non-functionalized	No significant change
(d:1-2nm)	Aryl sulfonate	No significant change
	Ozonate	No significant change
	1000°C treated	No significant change
C	Carboxylate	No significant change
	Commercial (nitric acid treated)	Visible degradation
	In-house functionalized	
	(mixed acid treated)	
	15mi	No significant change
	1hr	Visible degradation
	3hr	Visible degradation
MWNTs	Non-functionalized	No significant change
(d: 35±10nm)	Aryl-sulfonate	No significant change
	CNFs (d: 200nm)	
	Non-functionalized	No significant change
	Aryl sulfonate	No significant change
Reference	Wollasonite	Dissolved
Materials	Crocidite Ashestos (d. 30-150nm)	No significant change
	Croclaric / 3005105 (d. 50-1501111)	10 significant change

The only degradable nanotubes are SWNTs treated with oxidizing acids (HNO_3 / H_2SO_4) , which are known to produce COOH groups

A hypothesis for carbon nanotubes:

Toxicity / biocompatibility is determined by multiple material features

CNTs are a good case study in that material features and formulation appear to matter

What can we do with this information?

Case I: Engineered CNTs in end applications

Data suggest real opportunities to design for safety, through:

- Binding to substrates or in matrices (no free tips)
- Shortening
- Deep purification
- Surface functionalization for hydrophilicity
- Biodegradability (?)

Can/should we define different hazard categories?

Case II: Primary manufacture

Exposures likely occur before opportunity to engineer properties So: control exposure

- process release / respirators / air filtration

Case III: Misuse, Accident Scenarios, and End-of-Life

- Manufacturers lose control of their products after sale
- We need to envision, assess, and manage risk is multiple scenarios by managing hazard or exposure

Institute for Molecular and Nanoscale Innovation

Financial support is acknowledged from the NIEHS R01 and Superfund basic research program, NSF NIRT program, EPA STAR grants

Contributors

Materials Chemistry

Prof. Robert Hurt Xinyuan Liu Lorin Jakubek Aihui Yan Lin Guo Dr. Indrek Kulaots Daniel Morris

Pathobiology

Prof. Agnes Kane Prof. Charles A. Vaslet Ashley Smith Dr. Annette Von Dem Bussche Kevin McNeil Vanesa Sanchez Jody Pietruska

Neuroscience

Prof. Diane Lipscombe Jessica Raingo Spiro Marangoudakis

