Carbon nanotube metrology for science and manufacturing

John Hart

University of Michigan
ajohnh@umich.edu
www.mechanosynthesis.com

February 28, 2011
Order = quality, purity, alignment
Quantity = #/volume

Configurations

- **individual**
 - Stanford, ETH

- **forest (aligned)**

- **yarn/sheet**
 - Nanocomp

- **network (tangled)**
 - Florida

- **dispersion**

Order =

- high
- low

Quantity =

- few
- many
Applications

Enabled by longer, more ordered CNTs

- Filtration/desalination
- 3D energy devices
- Thermal interfaces
- Lightweight conductors
- Organized composites

Interconnects
- Emissors, memory
- Transistors

Higher precision of CNT diameter (chirality) needed

Order
- high
- low

Quantity [#/vol]
- few (<< 1g)
- many

ESD/plastics
Batteries (powder electrodes)

A.J. Hart | 4
The 4th Carbon Nanotube Workshop at NIST: Control and Measurement of Chirality

September 23rd and 24th 2010
Hosted by the National Institute of Standards and Technology
Gaithersburg, MD 20899

Organizing Committee
Stephen Freiman
Jeffrey A. Fagan
Stephanie Hooker
Kalman B. Migler
Angela R. Hight Walker
Ming Zheng

Measurement Issues in Single Wall Carbon Nanotubes

Edited by:
Stephen Freiman
Stephanie Hooker
Kalman Migler
NIST Materials Science and Engineering Laboratory

and
Sivaram Arepalli
NASA-JSC

March 2008
RM 8281 is a set of dispersed nanotube populations with different average lengths; the set includes a long, medium and short fraction, as well as a 1 % (mass/volume) surfactant blank. A set contains a sealed, sterilized, ampule (~2.6 mL) of each component. These sets were produced using centrifugation based separation of a common parent dispersion produced from SRM 2483. Applications of these materials include fundamental research, instrument calibration, and EHS applications.

CNT material measurements

- **Structure**
 - Diameter and chirality: TEM, AFM, Raman, Photoluminescence
 - Length: TEM, SEM
 - Quality (= defect density): Raman, TEM, TGA

- **Morphology**
 - Bundling: SEM, TEM
 - Alignment: Optical polarization,
 - Connectivity/ends: X-ray scattering

- **Chemistry**
 - Purity; residual catalyst: TGA
 - Functionalization: IR spectroscopy
 - Interaction with surroundings (e.g., in composites)
ensembles (films, fibers, forests)

individual CNTs

Sample size

< μm²

mm²

Measurement resolution

low

high

A.J. Hart | 9
Typical CNT film Raman spectrum

RBM = SWNT diameter

G/D Ratio = CNT quality

D-band = Defects in CNTs and defective carbon on substrate

\[\omega \approx \frac{220}{d} + 10 \]

\[d \approx \frac{220}{\omega - 10} \]
The Kataura plot: visibility vs. laser energy

Figure 4.3. Experimentally determined Kataura plot for SWNTs in sodium dodecyl sulfate (SDS) solution. The colored horizontal bars represent different common laser energies (blue: 488 nm, green: 514.5 nm, red: 632.8 nm, magenta: 785 nm). Data points are grouped according to common $2n+m = \text{constant}$ families, with the near zigzag terminus of each family identified. For semiconducting tube types, circles represent chiralities with $\text{mod } (n-m, 3) = -1$, while triangles represent chiralities with $\text{mod } (n-m, 3) = +1$. Experimental data obtained from (11-14).

A. Swan, chapter 4 in “Measurement Issues in Single Wall Carbon Nanotubes”, NIST 960-19
MWNT spectra – effect of collection time

→ Improvements in detectors, control of laser power

courtesy of Victor Sapirstein, Lambda Solutions Inc.
G/D ratio as a measure of quality

Example:
Annealing of a DWNT powder reduces G-band peak intensity and width

- High-quality samples: G/D = 10-100

A. Swan, chapter 4 in “Measurement Issues in Single Wall Carbon Nanotubes”, NIST 960-19
Measuring purity by thermogravimetric analysis (TGA)
Identification of defects in TEM

Figure 2 Atomic arrangement of the Stone–Wales (SW) model. a, The SW transformation leading to the 5–7–7–5 defect, generated by rotating a C–C bond in a hexagonal network. b, HR-TEM image obtained for the atomic arrangement of the SW model. c, Simulated HR-TEM image for the model shown in b.

Growth/processing advances help metrology

- Precise control of catalyst size and composition
 - Growth of narrow chirality distributions

- CNT separations by diameter, chirality, and length
 - Ultracentrifugation
 - Gel electrophoresis
 - DNA wrapping/functionlization

- Directed placement of CNTs on substrates
 - Aligned (vertical, horizontal) growth
 - Dielectrophoresis

- Understanding of how dispersion methods modify CNT quality, bundling, length
Challenges in overcoming CNT growth limits

- How is carbon incorporated into growing CNTs?

- What determines CNT chirality?
 - When is it established?
 - What causes chirality changes?

- What limits CNT growth rate and length?

- How do interactions among CNTs affect collective growth and assembly?

→ Can CNTs be grown to indefinite length?
→ What are the limits of alignment and density?
CNT process metrology

- Catalyst
 - Size (and distribution)
 - Chemical state
 - Composition

- Gas chemistry
 - Hydrocarbons
 - Hydrogen
 - Oxygen and water

- Temperatures and flows

- How the CNTs evolve in situ
Watching SWNT nucleation in TEM
Watching SWNT nucleation in TEM

Figure 7. (a–c) ETEM image sequence of Ni-catalyzed CNT root growth recorded in 8×10^{-3} mbar C_2H_2 at 615 °C (extracted from Supporting Information video S2). The time of the respective stills is indicated. (d–f) Schematic ball-and-stick model of different SWNT growth stages.

Problem: CNT growth is a “black box”

CNT forest: a model system to understand population dynamics during growth

1. Catalyst preparation and pre-treatment
 - deposit thin film
 - establish chemical state (e.g., Fe$_2$O$_3$ \rightarrow Fe)
 - establish particle size

2. Nucleation
 - create cap and determine CNT structure
 - maximize yield and uniformity

3. Growth
 - control carbon “construction”
 - maintain uniformity (diameter, density)

4. Termination
 - maximum height = 1-20 mm ...*why*?
In situ X-ray scattering of CNT film growth
Catalyst particles form rapidly on the substrate

As-deposited

2 min. H₂

Δt ≈ 1.5 s
Fe agglomerates rapidly yet coarsens slowly

As-deposited

2 min. H₂

28 min. H₂

Measuring CNT diameter distribution by SAXS

\[I_C(q) = \frac{\int_0^\infty P(R)f^2(q, R)\,dR}{\int_0^\infty P(R)\,dR} \]

\[P(R) = \frac{1}{R\sigma\sqrt{2\pi}} \exp \left[-\frac{(\ln R - \mu)^2}{2\sigma^2} \right] \]

Log-normal distribution of core-shell cylinders

\[f(q, R, c) = \Delta\rho R \frac{2[J_1(Rq) - cJ_1(cRq)]}{qR(1 - c^2)} \]

\[c = \frac{r}{R} \]

Quantifying CNT alignment

Transmission SAXS

Hermans orientation parameter

\[
H = \frac{1}{2} \left(3 \langle \cos^2 \phi \rangle - 1 \right)
\]

\[
\langle \cos^2 \phi \rangle = \frac{\int_0^{\pi/2} I(\phi) \sin \phi \cos^2 \phi d\phi}{\int_0^{\pi/2} I(\phi) \sin \phi d\phi}
\]

- \(H = 1.0 \): perfect vertical
- \(H = 0.0 \): random
- \(H = -0.5 \): horizontal

Hermans, 1948.
Time evolution of alignment
Collective growth model

Metrology of the reactor environment

Before pre-heater

After pre-heater

VOCs

PAHs

- Hydrogen
- Ethylene
- Methane
- Ethane
- Benzene
- Propene
- Propyne
- Pentane
- But-1-en-3-yne
- 1,2-butadiene
- 1,3-butadiyne
- 1,3-CPD
- Naphthalene
- Acenaphthylene
- Acenaphthene
- Fluorene
- Phenanthrene
- Anthracene
- Fluoranthene

- Ethylene
- Methane
- Ethane
- Benzene
- Propene
- Propyne
- Pentane
- But-1-en-3-yne
- 1,2-butadiene
- 1,3-butadiyne
- 1,3-CPD
- Naphthalene
- Acenaphthylene
- Acenaphthene
- Fluorene
- Phenanthrene
- Anthracene
- Fluoranthene

Selective testing reveals *alkynes* as effective precursors.

All $T_s = 750 \, ^\circ C$, $T_p = 25 \, ^\circ C$ (+ 0.01 atm of select HC)

ARCS Schematic
(Adaptive Rapid Experimentation & in-situ Spectroscopy)
Benji Maruyama, AFRL

CVD Parameters
- Chamber pressure 25 Torr
- Sputtered 2 nm Fe and Ni
- $C_2H_4/Ar/H_2$: 5/25/10 sccm

$G(t) = v\tau[1-\exp(-t/\tau)]$

Graph:
- G_{max}
- $G(t)$ for 1200 °C and 860 °C

Silicon Wafer
- Grow carb
- Collect Ram
- Obtain grow
Discussion topics

- Accelerating rapid quality control of CNT production
 - Minimum suite of methods?
 - What are the key metrics of process health?
 - What are the needs/uses of in situ techniques?
 - Ways to close the loop between growth process and material properties

- Demands for advancement in tools/techniques
 - Statistical analysis of CNT populations
 - Characterization across entire SWNT/DWNT diameter range
 - Compact instruments and dedicated systems for in situ measurements

- Where do the “growth limits” matter?
- Characterization standards/protocols for EHS qualification
Mechanosynthesis Group

Precursor chemistry: Desiree Plata (Mt. Holyoke)
X-ray scattering at Cornell: Arthur Woll, Sol Gruner