Meas. Sci. Technol. 4 (1993) 26—-34. Printed in the UK

Operational mode and gas species
effects on rotational drag in pneumatic
dead weight pressure gauges

James W Schmidt, Bernard E Welch and Charles D Ehrlich

Thermophysics Division, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899, USA

Received 28 February 1992, in final form 29 June 1992, accepted for publication
7 September 1992

Abstract. Rotational dissipation in a low-pressure pneumatic dead weight piston
gauge has been measured for four gases: He, H,, N, and SF,. Significant
differences in the rotational dissipation were observed between the four gas
species. Even larger differences were observed between two operational modes
(gauge and absolute}. The measured results are interpreted by a model for the
rotational dissipation due to the gas in the annular region between the piston and
cylinder. Good agreement was found between the measured and modelled results
for all four gas species with essentially no adjustable parameters.

Nomenclature

Flow velocity of a tluid element in the
azimuthal direction

A Area of overlap between piston and cylinder U, Radial component of molecular velocity
b, dnkTi(Mch) z Axial coordinate
b, 64nkTj(mMch) Zy Axial coordinate (top of piston)
¢ Mean molecular speed of the pressurizing gas B Axial coordinate (bottom of piston)
D mk*R,/j6 | Angular torque coefficient (due to gas in the
F, Momentum transfer function {(angular direction) annulus)
F, Momentum transfer function (axial direction) L Angular torque coefficient {due to gas in bell
F, Drag force on the piston in the azimuthal jar)
direction r Angular torque coefhicient (all sources)
H, Clearances of various weights loading piston A Mean {ree path between intermolecular
h  Crevice width collisions
I Moment of inertia of piston and weights A Mean distance betwecn molecular collision
J Molecular flow rate (number of molecules/unit events {with walls or other molecuies)
lime/unit area) N Viscosity of pressurizing gas
k  Boltzmann’s constant Haie Viscosity of the gas in the bell jar
M Molecular mass of the pressurizing gas f Angular variable of integration
L Length of the region of overlap (piston and T Rotational period of piston asscmbly
cylinder) Ty Rotational period of piston assembly at initial
n  Number density of gas molecules time
P Pressure variable Q Angular frequency of piston assembly
P, Pressure at top of piston Q, Angular frequency of piston assembly at initial
P, Pressure at bottom of piston time
r  Radial variable dQ/d: Angular deceleration of the piston assembly
R, Radius of the piston
R, Radius of the cylinder
R; Radii of various weights ioading piston
t Time 1. Introduction
to  Mean times between intermolecular collisions
£, Mecan times between collisions with walls of the The physical dimensions of modern dead weight piston
crevice gauges can be manufactured to within very close toler-
T  Temperature {in K) ances (0.1 gm or better). With these gauges, pressures
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can be generated andjor measured reproducibly to
within a few parts per million (ppm) [1-3]. Recently,
two effects have been observed in some gauges to be
greater than had been previously assumed for pneumatic
gauges [4, 5]. One effect is the gas species effect which,
as the term implies, is observed when a gauge pressurized
with onc species of gas generates a pressure that differs
from the pressure generated using a second species for
the same mass load. While this effect is usually small, it
1s larger than the resolution of the best gauges available.
A second effect is the gauge mode to absolute mode
effect and, as the terms imply, is obscrved when the
pressures gencrated by the same gauge in the two
different modes of operation differ by an amount slightly
different than the ambient atmospheric pressure.

Since the two cffects are almost certainly related to
the flow of gas through the annular region between the
piston and cylinder, another property that depends on
details of the physics of the gas or fluid in the annular
region was measured. This property is the rotational
deceleration dQ/dr of a piston assembly with known
moments of inertia inside a close fitting cylinder [1].
The dependcnce of the rotational deceleration on gas
specics arises primarily from the viscosity difference
between gases. All else being equal, a more viscous gas
produces more dissipation. However, this dependence
on gas species s somewhat more complicated because
the viscosity (or more precisely the momentum transfer
coefficient) of the gas in the ¢revice depends on the ratio
4fh. where /4 is the mean free path of a gas atom or
molecule and k is the crevice width. In some cases a gas
with a higher viscosity but with a smaller molecular size
and hence a larger ratio will provide less dissipation
than another gas with a smaller viscosity. In addition
very different pressure profiles along the length of the
crevice can resull from a change of gas species.

In the next section a model will be developed for the
momentum transfer function in the crevice. The func-
tional dependence on pressure and gas species will be
given and to complete the model the pressure profile
along the length of the crevice will also be developed.
The model conlains essentially no adjustable parameters
although in the analysis of the present measurements
we first used the crevice width as a parameter to obtain
the best fits to the data for each gas, but then used the
average value for the final analysis.

In section 3 data in the form of spin period against
time will be presented. Data were obtained from four
different gascs including helium (He), nitrogen (N,).
sulphurhexafluoride (SF) and hydrogen (H,). The pre-
sent model will then be compared with the data in
section 4.

2. Theory

The rotational motion of the piston assembly is described
by the following differential equation:

1dQ{dr= —TQ (1)
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where I' =T, + I, is considered to be the angular torque
coefficient arising from two sources, the drag due to the
gas in the annular region I, and the aerodynamic drag
due to the gas in the bell jar on ali of the other moving
surfaces I,. All other sources were considered to be
negligible in comparison with these two. In equation (1)
Q2 is the anguiar frequency, I is the moment of inertia
and fdQ/dr 1s the change in angular momentum per
unit time due to the deceleration torque (— Q) acting
on the piston assembly. The solution to equation (1) is
Q=Q,exp(—Tt/I) or, cquivalently, t=r1,exp(+Tt/)
where 1 is the period, which is the quantity actually
measured in these experiments.

Estimates of the coefficients I, and T, show that the
larger contribution to I' is T,, due to the gas in the
annular region and that I is typically a few per cent of
I, in gauge mode and is less than 1% in absolute mode.
I, is given by the foliowing equation for two limiting
cases corresponding to the viscous flow regime [6] and
the collisionless molecular flow regime respectively

[7.8].

_Ri4 {n ih<l (2a)

L.~
h | McPhjakT Jhs 1. (2h)

Here R, is the radius of the piston, h is the annular
width or radial clearance between piston and cylinder,
A is the cylindrical surface area of the piston within the
cylinder, # is the viscosity of the gas, M is the molecular
mass, P is the pressure, ¢ is the mean molecular speed
(=8kT/zMY'?), k is Boltzmann’s constant, T is the
temperature in Kelvin and / is the mean free path of
the gas molecules. (Sce the appendix for derivations of
cquations {2a) and (2h).)

In the gauge mode of operation the mean free path
of the gas molccules 2 is typically smaller than the
annular width A everywhere in the annulus and so this
physical situation should approach that described by
equation (2a). In the absolute mode of operation A/h <1
at the bottom of the piston, but at the top of the piston
(vacuum) £/h$ 1 and therefore there is a region where
equation (2b) applies. Instead of using equations (2a)
and (2k) separately, we now obtain an effective viscosity
or momentum transfer function F,{i/h) that bridges the
two limiting cases indicated by these cquations. F,{i/h)
should equal MEPR{AKT at low pressures where Ak > 1
and it should approach the gas viscosity n asymptotically
for large P where A/h< 1. The functional form [9-11]
ol the momentum transfer function F, (x) can be obtained
by noting that, as an effective viscosity, it should be
proportional to the number density of molecules
n(=P/kT), the molecular mass M. the mean molecular
speed ¢, and a length A = ¢t which represents the mean
distance that a molecule travels in time 7 before under-
going a collision event either with another molecule or
with the walls, i.e.

F, oc nMéA. (3)

In the higher pressure viscous flow regime, A is equal
to the molecular mean free path 4=z éry, while in the

27



J W Schmidt ef af

low-pressure molecular flow regime in which 4/h » | the
length A must be of the order of h = ¢t,. 1, and t; define
the mean times between collision events in the two
regimes. Following Reif [10], we notc that the total
probability per unit time (l/f) that a given molecule
undergoes a collision event is the sum of the individual
probabilities for the two types of events, i¢. a collision
with another molecule or collision with the walls of the
annulus;

(0)-G)-() "
I fo I

By substituting for f, ¢y, and ¢, in terms of A, 4 and h
respectively and solving for A one obtains

A pl
TN+ Ajh

. (5)

Substituting this cxpression for A into equation (3) yiclds
the approximate functional form for F:

nMc/.
F, o —. 6
s 1+ itk (6)
F; is defined 1o be:
U
F(P =|—F— 7
= () 0
where
b, 4nkT
= McPh (8a)
A
~ 8b
i (8b)

The factor #{= Mcni/3) in equation (7) ensures an asymp-
totic approach to y in equation (2a) in the limit 2/h < 1.
The definition of b, in equation (8¢) ensures a smooth
match onto McPh/4kT in equation (2b) in the limit
Ath» 1. Although not done here, it 1s often the practice
with the equations describing spinning rotor gauges,
which equation (2h) parailels, to include an accomod-
ation coefficient in the expression for b, /P to account
for differences between species [7, 12].

The momentum transfer function F,{P) will now be
used to calculate . One starts by writing down the
elemental contribution to T, arising from an eiemental
piston—cylinder overlap area d4 =2zR, dz due to gas
in the annular region at prcssure P,

RZ
dr,, = ?1 F\(P)dA. (9)
This equation, when integrated over the overlap region,
will supersede equations (2a) and (2b). Equation (9) can
be integrated provided one can obtain the pressure
profile P(z) in terms of the axial distance z along the
annular region from the top to the bottom of the piston.

To calculate the dependence of P (und hence F,) on
z, it is observed that under stcady state conditions the
nct flow of molecules must be constant in the axial
direction z in the annular region [ 11, 13]. The molecular

28

flow rate (number of molecules per unit time) through
an annulus of radial dimensions R, and R, +h and of
length Az in the viscous flow regime is given by the
equation [ 14, 5]

I nh*nR A_Ij

10
6 Az (10)

and the molecular flow rate through an annulus in the
molecular flow regime is [16, 17]

- 4nch’ Ry AP

x . 11
3T Az th

One can represent J in both regimes by the single
equation;

J=D(n/F,)dPidz (12)

where F, represents a second momentum transfer
function which is taken as:

F,(P)= (HZZP) (13)

The choice of D=nrh*R,/6 and b, =064nkT/nMch
ensures that equation (12) will match smoothly onto
equations (10) and (11), which represent the bottom and
the top of the annulus respectively. The functional form
of {13) has been chosen in the same spirit as that of F
carlicr in the text. Next (12) is integrated from the top
of the piston z, at reference pressure P, to an arbitrary
position z at pressure P with n = P/kT. This yields:

p (T h,
I—Zp= 0 Pl1+-—=]dP 14
0 InkT JAP ( P) (144a)

b

The above quadratic equation is solved for P(z) and the
physically meaningful ‘positive’ root is taken to obtain
the pressure profile Piz):

Pizy=
5 ), JnkT 1:2
“'bz'l' b2+2 PO’FF2+h2PO+ D (Z‘*Zo) .

(15)

Also note that J can be evaluated for a given set of
conditions P,, P,, T and n:

J = D[P} — P3){2+ by(P,— P)ImkTL  (16)

where P, is the system pressure at the bottom of the
piston z, and L =z, — z,,. Equations (15} and (16) define
a pressure profile in the annulus and exhibit the pressure
profile’s dependence on gas species and pressures £, and
P, . Figure | exhibits an example of the pressure profile’s
dependence on gas species in both gauge and absolute
modes. In all of the above discussion we have assumed
h to be independent of position z. For a discussion of
how a variation of & with z may influence the pressure
profile the reader is referred 1o the work of Bass {18].
Returning now to equation (9), one can integrate it
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Figure 1. Model pressure profile P(z) against vertical
distance from top (z =0) to bottem (z= 4.5 ¢m) of the
piston for four gases N,, He, $F; and H,. Both absolute
(a} and gauge (b) modes are displayed with an applied
pressure difference in each case x75.0 kPa. The model is
for NIST piston gauge PG36 and assumes a mean radial
clearance fi=1.61 um. The gas species effect is clearly
visible here in the absolute mode.

using the above pressure profile to obtain T,,:

RZ 2n o
F“":hlj R, dfi'[ F.[P(z)] dz (17a)
1]

=0

{change the variable of integration from z to P via
equation {14h))

2RI (4 D

= —— (P +h5)dP 1
N L’” Fl(P)‘ka( + b3) (17h)
2nRI D [ 7

= P+ bh,)dP 17¢
h JnkTLU 1 p,p TP (17e)
2xR} D {(P:—P})

Tk JkT{ ; Thamhy

y [(Pl —Py)—h, log (;L{%ﬂ} (17d)
0 1

(and substitute for J using equation (16) and simplify to
get):

2R3 by —b,
= Ldleaf 2™
P { - (P1+PD

| b oo (Prth - 2b, )
x{1— / —_—
P — Py 8 Po+bhi /)i P+ Py

Equation {17¢) now supersedes equations {2a) and

{17¢)
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(2b) aund will be used as a basis to interpret the wide
variation (by a factor of eight) in measured values of T
The gas species cnters into the rotational dynamics as
indicated in equation (17¢) through the viscosity  and
the molecular mass M used in the definitions of 5, and
b,. Figure 2 clearly shows differences in the momentum
transfer function F,[P(z)] plotted as a [unction of z for
the four cases N;, He, SF, and H, in absolute mede.
A description of how mecasured values of T are obtained
is given in section 3. Values caiculated by the model
described above will then be compared with these
measured values,

3. Measurements

Spin time measurcments were made using one of the
three pistons of the three piston gauge apparatus (TGPa)
which is currently under development to investigate the
gas species and operational mode effects in further detail.
The TPGA is shown schematically in figure 3. The middle
piston gauge (number 2y is the gauge under investigation
and gauges 1 and 3 can be used to generate and measure
accurately the applied pressure and the reference back
pressure, tespectively, of gauge 2. This design makes it
possible to operate gauge 2 in a mode intermediate
between the conventional ‘absolute’ and “gauge’ modes.
Due to the long spin times involved in the present
measurements, it was necessary 1o automate the height
control for gauge 2. A metering valve was used to bleed
in more gas than escaped through the annular region
and an automotive fuel injector [ 197 was used to remove
any excess. To control the height of gauge 2 the injector
was used with feedback from an inductive position
sensor, a digital voltmeter and a microcomputer. The
position sensor on gauge 2 was able to detect rotational
motion as well as vertical position of the piston. For

kg ]
m-sec

Y

MOMENTUM TRANSFE
FUNCTION x108

¢ 1.0 2.0 3.0 4.0
z/cm

Figure 2. Momentum transter function F,(z2) against
vertical distance from top to bottom of the piston for four
gases Ny, He, SF; and H,. The absolute mode is displayed
here with an applied pressure diflerence in each case
x75.0 kPa. The model is for NIST piston gauge PG36 and
assumes a mean radial clearance A= 1.61 um. The gas
species effect is clearly visible here.
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Figure 3. Schematic drawing of the NIST three piston gauge apparatus (TPGA) under development to investigate gas
species effects and gauge mode to absotute mode effects. The middle piston gauge is under investigation. The piston
gauge on the left measures applied pressure, the one on the right the reference pressure.

the experiments described here it was only necessary to
know the nominal pressure being generated by gauge 2,
so that pauges | and 3 were usually 1solated from the
system.

The piston gauge used in the 2 position and on
which spin time mcasurcments were made is denoted as
PG36, and is a commercial gas operated, gas lubricated
gauge with a hollow stainless steel piston and a tungsten
carbide cylinder with a nominal eflective area of
3356 x 10"*m? and a nominal radial clearance of
1.5+ 0.5 um. This gauge was examined under a variety
of operating conditions. Four gases, nitrogen, helium,
sulphurhexafluoride and hydrogen, were alternately used
to float the piston. Three moments of inertia correspond-
ing to three diflerent mass loads (pressure differences)
spanning one order of magnitude were used in the N R R R B N S

bl
=)

In{z/sec)
= o w -~
o o ) =

o
[=)

-
L=

measurements. In addition, the gauge was operated in 0 2000 4000 6000

both the gauge and absolute modes. A few data points TIME / sec

were taken with reference pressure Py x 50 kPa. Figure 4. Natural logarithm of the rotation period t against
Some typical spin time data are displayed in figures time for PG36 using three moments of inertia in gauge

4 and 5 in which In(z7) is plotted against time. In each mode: /; = 0.00114 kg m*; 4, =0.00389 kg m? and f,=

of these figures the clock was arbitrarily set to zero when 0.0121 kg m?. The pressurizing gas was N,. The slopes of

the lines are a measure of I'/f. The timer was arbitrarily

1 !
the period 7 equalled 1s. Thus the slopes (T'/[) of the set to zero when the period was 1§ or In{z/s) — 0.00,

lines representing various conditions can be readily
compared. The data plotted in figure 4 display the
kinematic effect that an object with a larger moment
spins proporticnately longer, as it should. Figure 5
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Figure 5. Natural logarithm of the rotation period t against
time for two gases N, and He. Each gas was used in both
gauge {a)} and absolute (b) modes. The same moment of
inertia (/= 0.00389 kg m?} was used in each case shown.

shows the gauge mode to absolute mode cffect and the
gas specics cffect for He and N, (for the same mass load
and moment of inertia). Data for H, and SF, have been
left off of this figure for clarity but are displayed in
figures 6{(c) and 6{d) in the form of [ against generated
pressure. In all, more than 100 runs were made under
various conditions as described above. The measured
values of T" are plotted in figures 6(a)-6(d) against
appiied pressure.

4. Discussion

As can be seen in figures 6(a)-6(d), ' is not very
dependent on pressure in the gauge mode. Of the two
modes of operation, the gauge mode correspends more
closely to a simple viscous flow model of the fluid or
gas in the annular region, where « is shorter than f over
the length of the annular region. In the simple viscous
flow model, viscosity (and hence I') is independent of
pressure as shown by the dotted lines in figures 6(a)-6(d).
Although the gauge mode results correspond approxi-
mately to the simple viscous flow model, there is some
deviation from the simple viscous flow model for some
gases al lower pressures, and this is predicted by the
present model (full line). The present model for T,
{(equation (17¢)) shows a slight decrease as differcntial
pressurc (P, — Py) is decreased. In the gauge mode (as
can be seen when comparing figures 6(a)- 6(c)), T, is
weakly dependent on the gas species. H, is an exception
{figure 6{d)) and reflects the fact that it has a viscosity
which is only halfl that of N,, He, and SF, as indicated
in table |

The most striking effects observed in the present
measurements are the changes in I in going from the
gauge mode to the absolute mode and in changing the
applied pressure in the absolute mode. The effect is most

Effects on rotational drag in piston gauges

pronounced in He and H, but can be seen clearly in
each of figures 6(a)—6(d).

In order to model our results we first estimated T,
from dimensional measurements of the weight stack and
clearances between the various rotating and stationary
clements of the gauge, ie. I, xcn,, LR} /H,, where n,,, is
the cffective viscosity of the gas in the bell jar surround-
ing the piston and eylinder, R; are the various radii of
the weights and H, are the various clearances between
the rotating weights and the stationary surroundings.
Obviously the largest contributions to T, occurred where
the clearances H, were smallest and/or the diameters of
the weights were largest. For (he present system the
smallest clearances occurred between the bell jar cover-
ing the gauge and the largest diameter weights mn the
stack. Estimates were obtained for I, = (0.10, .20,
0.37+0.5) x 10" % kg m? s~ ! respectively for the smaliest
to the largest of the three weight stacks used. T, was set
equal to zero for each of the three weight stacks in the
absolute mode since in this case #,,, is close to zero.

The fitted results from the present model T'(h) =
I..{(R)+ T, are displayed as full lines and broken curves
(gauge and absolute modes respectively) in figures
6{a)-0(d). A lcast-squares fitting algorithm first found
the value of & that generated the best fit for each gas
species. The values for /& obtained in this way were all
within 13% of thc average valuc k= 1.6]1 ym and are in
line with the manufacturer’s nominal value 1.5+ 0.5 gm.
Ideally the parameter b chosen by the fitting procedurc
would be independent of gas species and this is the casc
here to within a few per cent of the average. The values
for # and M used as inputs to equation (17¢) and the
resulting values for h are included in table 1.

After the initial fitting of h shown in table | for each
gas, h was fixed at its average value (1.61 um} for the
four gases. The gauge and absolute modes shown in
figures 6(a)-6(d) are results with h=1.6] ym. In the
above analysis we have assumed a perfect piston and
cylinder so that the annular width h was independent
of z.

As can be seen in figure 6 the model described above
by equation (17¢) does reasonably well in fitting I for
the piston and cylinder operating in the absolute mode
for all four gases (N;, He, SF, and H.) used in the
present investigation and the model fits reasonably weil
in the gauge mode for all four gases except for H, at
low pressure. The model also predicts the pronounced
roll-off shown by the data for small applied pressures
in the absolute mode.

The model in principle contains no free parameters
although at present h is adjusted to optimize the fit to
the data (it could be measured and eliminated as a free
parameter). Independent fail rate measurements are
sometimes used to determine A. In the present case this
method yielded the value h=22.0 um which is signifi-
cantly higher than the value obtained by the spin time
method. Since the fall rate method is very sensitive to
gas volume changes with temperature and since the
gauge was not thermostated we prefer the value of
obtained by fitting the model to measured values of T
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Figure 6. (a) The torque coefficient I’ =T, + I, for N, as measured under various conditions as described in the text
against differential pressure (P, — P,). The full line indicates calculated values (present modei) for the gauge maode. The
broken curve indicates calculated values (present model) for the absolute meode. A simple viscous flow model would give a
constant value for [ independent of pressure (dotted line). Circles indicate measured vaiues in the gauge mode; triangles
indicate measured values in the absolute mode. (6) The torque coefficient I' = I, + I}, for He as measured under various
conditions as described in the text against differential pressure (P, — £,). Notation is as in part (a) and squares indicate
measured values in intermediate mode. (¢) The torgue coefficient I =I,, + I, for SF; as measured under varicus conditions
as described in the text against differential pressure (P, — 7A,}. Notation is as in part (a) and squares indicate measured
values in intermediate mode. (d) The torque coefficient I' =1, + I, for H, as measured under various conditions as
described in the text against differential pressure {P, — F,}. Notaticon is as in part (a).

Table 1.

Gas Viscosity Molecular Molecular mass Fitted parameter
species # (10 fkgm "s™ ") weight M {10 * kg) h (pm)

N, 17.862 28 46.7 1.73

He 20.5° 4 6.68 1.68

SF, 15,34¢ 146 243.8 1.61

H, 8.45° 2 3.34 1.42

Av 1813

@ See Hirschfelder et af [22].

b See Chapman and Cowling [23]; table 13 extrapolated to 300 K.
° See Kestin ef af [24].

9 See Chapman and Cowling [23]; table 11 extrapolated to 300 K.
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from the four gases. A possible explanation might be an
asymmetry in the clearance between the pistons and
cylinder, which would tend to decrease the value of k
obtained by the rotational measurements and would
tend to increase the value of h obtained by fall rate
measurements. Other possible explanations for the dis-
crepancy need to be explored in the future but are
beyond the scope of this paper.

Although a combined species and mode change can
produce large changes in I, a correspondingly large
change in the generated pressure (or effective area) is
not indicated by present theory, which is influenced by
vertical rather than circumferential forces exerted by the
gas in the annulus. Rather the theory [20], which covers
only two limiting cases. is species independent and only
weakly mode dependent. For the gauge used in the
present measurements this limited theory would indicate
that a change of less than 2 ppm in the effective area is
expected when the mode is changed from gauge to
absolute. Published measurements [3] on similar gauges
indicate larger species effects of the order of 4 ppm.
Other measurements [4] on different types of gauge
indicate even larger mode and species cffects of the order
of 25 ppm. A definitive theory that can explain this
discrepancy between theory and experiment has not yet
been developed. As noted in the appendix equation (2b)
assumes that molecules leaving a surface do so on
average in a direction perpendicular to the surface with
a frame of reference attached to that surface. Other
models [21] that allow for specular reflections of mol-
ecules from surfaces might allow changes in the effective
area large enough to cover the discrepancy between
present theory and experiment, The upper bound on
this effect would be of the order A/R which for the piston
and cylinder used in the present measurement is
2160 ppm.

5. Summary

Spin times were measured in a low-pressure pneumatic
dead weight piston gauge for four gases He, H,, N;,
and SF,. Significant diflerences were observed between
the different species of gas (H, and He for example) and
even larger differences were observed between gauge and
absolute modes of operation for the same gas (He for
example). These differences were interpreted with a
model for the momentum transfer function which
depends on the pressure profile due to the gas in the
annular space. This momentum transfer function bridges
the transition region between viscous and molecular
flow where the physics is better known and this function
gives good agreement with measured values of the
rotational torque coefficient when integrated over the
annular region. The implications that the present results
have for the determination of the eflective area of this
and other piston gauges have not yet been worked out.
However the importance of the pressure profile in the
annular region of a gas piston gauge in influencing the
rotational behaviour of the gauge is clearly suggested.

Effects on rotational drag in piston gauges

Acknowledgments

This work has been supported by the US Air Force
under contract CCG-910A038, Task 319 and by the
NIST Office of Physical Measurements Services, JWS
acknowledges very helpful discussions with Mike
Moldover, Rich Kayser, Pat Looney, Ray Mountain
and Asoka Ratnam. JWS aiso thanks Verne Bean for
critical readings of the manuscript.

Appendix

1. Viscous flow regime

The velocity v,(r) of a fluid element in the azimuthal
direction inside the annular region for a piston of radius
R, rotating with angular velocity Q inside a non-rotating
cylinder of radius R, with radial clearance h= R, — R,

is [6]
QR? RZ
vlr) = ﬁ( - “)

The drag force F, on the piston in the azimuthal
direction is

de
Fa,= 21‘[R1Lr] a“*(i‘)
@

Ry

where L i3 the length, 2rR, L is the area of overlap
between the piston and cylinder and # is the viscosity
of the fluid. Evaluating d,/dr (r){R, one obtains

Q
F¢=2ERlL1]m(~'R%*R§)

=27R, Ly ’2(—2R%ﬁ2th—hz).

Q
2R h+h

Since in the present case #/R, < |, one obtains

Q
F,~ —2nRiLly .

h
The drag torque is then

Q
R, F,~ —ZIchan
~—[Q

where the coefficient I is defined to be (2nR3 Ln/h). This
is equation (2a) in the text

T = RinA/h

where A is the piston-cylinder overlap area 2nR, L.

2. Collisionless flow regime

A piston with angular velocity € is assumed to rotate
inside a stationary cylinder with mean radial clearance
much less than the mean free path, and the change in
angular momentum of the piston ([AQ) due to the
addition of one molecule with mass M that sticks
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momentarily to the piston and then leaves is considered.
[t is further assumed that on average the molecules will
arrive with only a radial component of velocity in the
laboratory frame of reference and that the molecule
leaves the piston on average in a direction perpendicular
to the surface of the piston in the piston’s rotating frame
of reference. The average angular mementum change of
the piston per event is then

JIAQ, = —MRIQ.

The number of such events per unit time per unit surface
area of the piston is

(/2| =

!

E J‘ Uy exp(* MUTZ/ZI{T) dUr .;‘J J‘ CXp(f MU}ffsz) dvr
0 [ Jao

where n is the number of molecules per unit volume, v,
is the radial component of molecular velocity, M is the
molecular mass, k is Boltzmann’s constant and T is the
thermodynamic temperature. The factor of § is included
because only hall of the molecules surrounding the
piston are moving toward the piston, the other half have
alrcady imparted their momentum to the piston and are
moving away. Evaluating the integrals one obtains

n n (2kT\!/?
5(1%\) = Z(W)

_n¢

22

where the mean molecular speed ¢ = (8kT/Mnr)''?. The

total change in angular momentum of the piston per

unit time integrated over the piston—cylinder overlap
area is then

AQ

[—=-2rMR}L

At @

b=
b

Finally we take the simpiest case n = P/kT and substitute
to obtain:
AQ Pe
I— = -2zMR}L—-Q
At S Yo
and then define a torque coeflicient, in this case
Pé
C=2aMRIL .
MR LT

This is equation (2b) in the text,
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